
Comparing Cache Injection and Data Prefetching for I/O Data in Chip-Multiprocessors

Edgar A. León and Arthur B. Maccabe
Computer Science Department

University of New Mexico

The memory wall, disparity between processor and mem-
ory speeds, adversely affects the performance of applications,
particularly those limited by memory bandwidth. Examples
of these computations include scientific and vector computa-
tions, encryption, signal processing, string processing,image
processing, and DNA sequence matching.

Several techniques both in hardware and software have
been devised to manage the imbalance between processor
and memory speeds includingdata caching, prefetching, soft-
ware access ordering, and hardware-assisted access order-
ing. While these techniques have proven to be effective for
a variety of workloads, they all incur in memory latency and
memory traffic delays when accessing I/O data.Cache in-
jection [2, 3], a complimentary technique to caching for I/O
data, reduces memory latency and memory bandwidth usage
by placing I/O data directly into cache from the I/O bus. While
effective its applicability is limited to I/O data.

In this work, we present an evaluation of cache injection
and data prefetching for incoming network data in an en-
vironment suitable for high-performance applications. We
chose data prefetching due to its similarity with cache injec-
tion. Cache injection is a producer-driven non-binding tech-
nique that reduces memory latency and memory bandwidth
usage by placing I/O data directly into cache. Prefetching is
a consumer-driven non-binding technique that reduces mem-
ory latency by fetching soon to be accessed data into cache.
Processor requests for this data are met by the cache.

Many studies have shown that prefetching is an effective
technique to reduce memory latency. However, it has several
disadvantages when compared to cache injection. First, data
may be fetched too late to reduce memory latency. Second, it
increases memory bandwidth traffic due to two transactions:
(1) transfer of data from the I/O producer to memory, and in-
validating cached copies; and (2) fetching data from memory.
With cache injection, the second transaction is not necessary.
Third, even if prefetching correctly anticipates the access to
I/O data, fetch requests can only be served from main mem-
ory, incurring in memory latency as well as using memory
bandwidth.

We compare these techniques using simulation. We use
IBM’s PowerPC full-system simulator, Mambo [1], running
the K42 research OS. We use a Power5 architectural con-
figuration with a cache injection implementation to the L3

cache. Our evaluation consists of measuring memory band-
width and execution time of an application in three configu-
rations: (1) base case with no optimizations; (2) prefetching;
and (3) cache injection. The application used in this evalua-
tion performs linear traversals of incoming network data fol-
lowed by a reduction operation. To evaluate cache injectionin
a suitable environment for high-performance applications, we
use a zero-copy, OS-bypass messaging system based on UDP
semantics [4].

First, we measure the memory bandwidth used by the appli-
cation in terms of the number of memory reads issued to the
memory controller. The base case and prefetching perform
equally as prefetching has to fetch incoming network data
from memory. Prefetching anticipates data accesses correctly
due to the sequential access pattern used by the application.
Cache injection reduces the number of memory reads by up
to 96% as all application accesses to incoming network data
hit the L3 cache. Second, we measure the execution time of
the application in processor cycles. Both cache injection and
prefetching outperform the base case as they both reduce the
number of cache misses. Prefetching reduces execution time
by up to37% while cache injection by up to30%. Prefetch-
ing performs better because it fetches blocks to the L2 and L1
caches, while our cache injection implementation targets the
L3 cache. We expect that injections to the L2 will perform as
good as prefetching.

The performance of cache injection is dependent on several
factors including timely usage of data, the amount of data, and
the application’s data usage patterns. To leverage this tech-
nique injection policies to determine when and where to inject
data are necessary. In this work, the application uses the data
shortly after it is injected into the cache. If the application
does not use the data promptly, cache injection may create
cache pollution taking the application’s working set out ofthe
cache. Thus, the performance benefits of this technique rely
on agood injection policy.

In conclusion, cache injection outperforms prefetching on
memory bandwidth and performs comparably on execution
time. This work provides a basis for studying injection poli-
cies in a high-performance computing environment. Explo-
ration of these policies based on OS, compiler, cache and ap-
plication information remains as future work.

[1] Patrick Bohrer et al. Mambo – a full system simulator for the
PowerPC architecture.ACM SIGMETRICS Performance Evalu-
ation Review, 31(4):8–12, March 2004.

[2] Patrick Bohrer et al. Method and apparatus for accelerating In-

put/Output processing using cache injections, March 2004.US
Patent No. US 6,711,650 B1.

[3] Ram Huggahalli et al. Direct cache access for high bandwidth
network I/O. In32nd Annual International Symposium on Com-



puter Architecture (ISCA 2005), pages 50–59, Madison, WI,
June 2005.

[4] Edgar A. León and Michal Ostrowski. An infrastructure for the
development of kernel network services. In20th ACM Sympo-

sium on Operating Systems Principles (SOSP’05). Poster Ses-
sion, Brighton, United Kingdom, October 2005. ACM SIGOPS.

2


