Comparing Cache I njection and Data data followed by a reduction operation. To evaluate cache
Prefetching for I/0O Datain injection in a suitable environment for high-performance
Chip-Multiprocessors applications, we use a zero-copy, OS-bypass messaging
. system based on UDP semantics [4].
Edgar A. Leon (student) and Arthur B. Maccabe First, we measure the memory bandwidth used by the ap-
University of New Mexico plication in terms of the number of memory reads issued to
{I eon, neccabe}@s. unm edu the memory controller. The base case and prefetching per-
. : form equally as prefetching has to fetch incoming network
The memory wall, disparity between processor and mem- : -
‘data from memory. Prefetching anticipates data accesses
ory speeds, adversely affects the performance of applica-

tions, particularly those limited by memory bandwidth. Exc_orrectly due to the sequential access pattern used by the

.) C application. Cache injection reduces the number of mem-
amples of these computations include scientific and vec- L .
. ory reads by up to 96% as all application accesses to incom-
tor computations, encryption, signal processing, strirg p

S : . ing network data hit the L3 cache. Second, we measure the
cessing, image processing, and DNA sequence matchin

Several techniques both in hardware and software ha%&((eecut!op tw_ne of the appllca}tlon in processor cycles. Both
. . cache injection and prefetching outperform the base case as
been devised to manage the imbalance between procegso

r . .
and memory speeds includinggta caching, prefeiching, ey both reduce the number of cache misses. Prefetching

software access ordering. andhardware-assi sted aceess or- reduces execution time by up to 37% while cache injec-
9 tion by up to 30%. Prefetching performs better because it

dering. V.Vh"e these techniques h"’?"e proven o be eﬁeCt'Yeetches blocks to the L2 and L1 caches, while our cache in-
for a variety of workloads, they all incur in memory latenc

and memory traffic delays when accessing /O d&sche }éction implementation targets the L3 cache. We expect that

injection [2, 3], a complimentary technique to cachin fc)ipjec:tions to the L2 will perform as good as prefetching.
I Y P y q 9 The performance of cache injection is dependent on sev-

I/0 data, reduces memory latency and memory bandwidth

: : : al factors including timely usage of data, the amount of
usage by placing I/O data directly into cache from the 1/ Lta. and the aoplication’s data usage patterns. To lever-
bus. While effective its applicability is limited to I/O dat ’ PP ge p '

. . iniectidde this technique injection policies to determine when and
In this poster, we present an evaluation of cache injectio o . .
where to inject data are necessary. In this work, the applica

and data prefetching for incoming network data in an & jon uses the data shortly after it is injected into the cache

vironment suitable for high-performance applications. o .
. A . . IT'the application does not use the data promptly, cache in-

chose data prefetching due to its similarity with cachednje. . . . SR

ection may create cache pollution taking the applicaton

t|(_)ﬂ. Cache injection is a producer-driven non-blndln(jntegJ Rrking set out of the cache. Thus, the performance bene-
nique that reduces memory latency and memory bandw!é\ts of this technique rely on good injection policy.

usage by placing /O data directly into cache. Prefetchmgln conclusion, cache injection outperforms prefetching

is a consumer-driven non-binding technique that reduces memory bandwidth and performs comparably on exe-

. 0
memory latency by fetching soon to be accessed data 'Qlﬁ%ion time. This work provides a basis for studying in-

cache. Processor requests for this data are met by the cac & L : :)
ction policies in a high-performance computing environ-

Many studies have shown that prefetching is an effdS:
. y s P 9 . ment. Exploration of these policies based on OS, compiler,
tive technique to reduce memory latency. However, it has TS) :
. '~ cache and application information remains as future work.
several disadvantages when compared to cache injection.
First, data may be fetched too late to reduce memory
tency. Secor_1d, |t.|ncreases memory bandwidth traffic du for the PowerPC architecturACM S GMETRICS Per-
two transactions: (1) transfer of data from the I/O producer

to memory, and invalidating cached copies; and (2) fetching formance Eval uation Review, 31(4):8-12, March 2004.

data from memory. With cache injection, the second trarngj Patrick Bohrer et al. Method and apparatus for accel-

action is not necessary. Third, even if prefetching colyect erating Input/Output processing using cache injections,

anticipates the access to I/O data, fetch requests canenly b March 2004. US Patent No. US 6,711,650 B1.

served from main memory, incurring in memory latency as .) .

well as using memory bandwidth. [3] Ram H_uggahalh et al. Direct cache access_for high
We compare these techniques using simulation. We use Pandwidth network I/O. Ir82nd Annual International

IBM’s PowerPC full-system simulator, Mambo [1], running ~ Ymposium on Computer Architecture (ISCA 2005),

the K42 research OS. We use a Power5 architectural con- Pages 50-59, Madison, W1, June 2005.

figuration with a cache injection implementation to the Lﬁg

n -

cache. Our evaluation consists of measuring memory band- e for the development of kernel network services. In

width and execution time of an application in three config- o1y AcM Symposiumon Operating Systems Principles
urations: (1) base case with no optimizations; (2) prefetch (SOSP' 05). Poster Session, Brighton, United Kingdom
ing; and (3) cache injection. The application used in this Gcioper 2005 ACM SIGOPS. ’

evaluation performs linear traversals of incoming network

eﬁé Patrick Bohrer et al. Mambo — a full system simulator

Edgar A. Ledn and Michal Ostrowski. An infrastruc-

