Comparing Cache Injection and Data Prefetching for I/O in CMPs

The University of New Mexico

Edgar A. León and Arthur B. Maccabe The University of New Mexico

The Memory Wall

- The memory wall: disparity between processor and memory speeds.
- Memory wall adversely affects application performance, specially those limited by *memory bandwidth*.
- Examples: scientific computations (e.g., DNA matching), encryption, signal processing, some graphics applications, etc.
- Prefetching widely used to address this problem.
- Cache injection reduces memory latency and memory pressure for I/O.

Experimental Evaluation and Results

Scalable Systems Lab

- Measure memory bandwidth utilization and execution time of an application using simulation.
- Application performs linear traversal of incoming network data followed by a reduction operation.

Simulation env.	Mambo: IBM PowerPC full-system simulator	
OS	IBM K42 research OS.	
Communication	OS-bypass, zero-copy UDP implementation	
Processor freq.	1.65 GHz	
L1 I/D cache	64KB/32KB, 2-way/4-way, 128B line	
L2 cache	1.875MB, 3-slice, 10-way, 10 cycle latency	
L3 cache	36MB, 3-slice, 12-way, 80 cycle latency	
	$\Box = \Box =$	

How does cache injection compare to prefetching?

What is Cache Injection?

- Producer-driven non-binding technique to place data from I/O DMA devices directly into cache.
 - Producer-driven: data transfer initiated by producer.
 - Non-binding: data is not bound to a particular cache block.

Main memory 512MB, 230 cycle latency

Memory Bandwidth

Comparing Cache Injection and Prefetching

	Data Prefetching	Cache Injection
Resource Usage	 write to memory fetch to cache 	1) write to cache
	incurs memory latency and memory bandwidth usage	reduces memory latency and bandwidth usage
Fails When	data fetched too late	data injected too early
Applicability	general-purpose	limited to I/O data
Communication	consumer-driven	producer-driven

Related Work

- Bohrer et al. Method and apparatus for accelerating I/O processing using cache injections. US Patent 6,711,650 B1, 2004.
- Huggahalli et al. Direct cache access for high bandwidth network I/O. ISCA 2005.

Conclusions and Future Work

Cache injection outperforms prefetching in terms of memory

Cache injection reduces memory latency and memory pressure for I/O

bandwidth and compares well on execution time.

 Appropriate injection policies are necessary to leverage cache injection.

 Study injection policies based on OS, compiler, cache, and application information.

Acknowledgments

Orran Krieger, Michal Ostrowski, Lixin Zhang and Hazim Shafi from IBM. The Scalable System Lab at UNM. This work was supported by IBM and Intel.