
Reducing the Impact of the Memory Wall for I/O Using Cache Injection

Edgar A. León, Kurt B. Ferreira, and Arthur B. Maccabe

Computer Science Department

The University of New Mexico

Albuquerque, NM 87131

{leon,kurt,maccabe}@cs.unm.edu

Abstract

Cache injection addresses the continuing disparity be-

tween processor and memory speeds by placing data into a

processor’s cache directly from the I/O bus. This disparity

adversely affects the performance of memory bound appli-

cations including certain scientific computations, encryp-

tion, image processing, and some graphics applications.

Cache injection can reduce memory latency and memory

pressure for I/O. The performance of cache injection is de-

pendent on several factors including timely usage of data,

the amount of data, and the application’s data usage pat-

terns. We show that cache injection provides significant ad-

vantages over data prefetching by reducing the pressure on

the memory controller by up to 96%. Despite its benefits,

cache injection may degrade application performance due

to early injection of data. To overcome this limitation, we

propose injection policies to determine when and where to

inject data. These policies are based on OS, compiler, and

application information.

1. Introduction

Processor speeds continue to increase faster than mem-

ory speeds. This disparity adversely affects the perfor-

mance of memory bound applications [21]. Computations

with poor locality are typically limited by memory band-

width. Examples of these computations include certain sci-

entific applications, encryption, signal processing, string

processing, image processing, and some graphics applica-

tions [14]. Cache injection [3, 9] is one of several tech-

niques to alleviate the imbalance between processor and

memory speeds [16, 17, 14]. This technique reduces mem-

ory latency and memory pressure (the number of requests

issued to the memory controller per unit of time) by placing

data from I/O devices directly into the cache as soon as data

is available.

In current architectures, the transfer of data from I/O

devices is done by writing to the system’s main mem-

ory. When an application requests this data, the processor

fetches it into the cache. Prefetching [16] anticipates ac-

cesses to blocks of memory based on usage patterns. With

prefetching, we can hide memory latency by overlapping

memory reads with computation. Unlike prefetching which

uses memory bandwidth, cache injection reduces memory

pressure by reducing the number of accesses to main mem-

ory.

The performance of cache injection is dependent on sev-

eral factors including timely usage of data, the amount of

data, and the application’s data usage patterns. In a multi-

processor system, the consumer processor has to be identi-

fied so that data is written into the appropriate cache. If the

application does not use the injected data promptly, cache

injection may result in cache pollution, thereby evicting the

application’s working set from the cache. Therefore, the

need for injection policies that determine the consumer pro-

cessor and the target of data is crucial for optimal applica-

tion performance.

In this paper we show that cache injection provides sig-

nificant performance benefits over prefetching and without

an appropriate policy can be harmful to application perfor-

mance. We also propose injection policies based on OS,

compiler, and application information that can overcome

the limitations of cache injection. The rest of this paper is

organized as follows. Cache injection is described in Sec-

tion 2. An evaluation of cache injection and data prefetch-

ing is described in Section 3. In Section 4, we provide an

example where cache injection without an appropriate pol-

icy decreases application performance. Section 5 describes

injection policies based on OS, compiler and application in-

formation. Related work is described in Section 6. Finally,

Section 7 states our conclusions and future work.

2. Cache injection

On current architectures, data from I/O devices is written

to main memory. When this data is requested, the proces-

sor or prefetch engine fetches it into the cache. With cache

injection, data from I/O devices is placed directly from the

I/O bus into a processor’s cache. This technique reduces

memory latency by satisfying memory requests from cache,

and it reduces memory pressure by reducing the number of

requests to the memory controller.

Cache injection is a producer-driven and non-binding

technique. It is producer-driven since the data transfer is

initiated by the producer of data, in this case an I/O device.

When a block of data is written or injected into the cache,

it follows the cache’s replacement and coherency protocol.

This operation is called non-binding: data is not bound to a

particular cache block in the cache.

Producer-driven mechanisms can be classified as im-

plicit or explicit [5] depending whether the producer knows

the identity of the consumer. Cache injection is an explicit

method, the consumer or target of data has to be identified

before the injection operation takes place. The target can be

a level 2 cache, level 3 cache, or main memory. Also, the

consumer processor has to be identified to determine the ap-

propriate cache or memory. In the remainder of this paper,

we use cache injection of incoming network messages to

provide a specific example of this technique, even though

cache injection can be used with other DMA devices.

In Figure 1, a network interface controller (NIC) writes

incoming network data to main memory. When this data

is needed, it is fetched by the processor incurring memory

latency due to the impact of the memory wall. Although

this latency can be overlapped with computation by using

prefetching, memory bandwidth is still consumed.

Mem

NIC IOC MC

Invalidate

Write

Fetch/

Prefetch

Procs Cache

1

3

2

2

Figure 1. Memory write operation initiated by

the NIC. In step 1, incoming network data ar-

rives at the NIC which in turn initiates the
transfer to memory through the IO controller

(IOC); in step 2 cached copies are invalidated

and data is written to main memory through
the memory controller (MC); in step 3, the

processor or the prefetch engine fetches data

from main memory into the cache.

As Figure 2 shows, cache injection transfers incoming

network data directly from the NIC to a processor’s cache.

When this data is used promptly by the processor, mem-

ory latency and memory pressure are significantly reduced.

Fetching incoming network data from memory is no longer

necessary and thus requests issued to the memory controller

are reduced.

1

2
Mem

NIC IOC MC

Allocate

Write

Procs Cache

2

Figure 2. Cache injection operation initiated
by the NIC. Unlike the memory write opera-

tion, step 2 allocates incoming network data
into the cache. If the processor uses this data

promptly, there is no need to fetch it from

main memory.

3. Comparing cache injection and prefetching

Cache injection and data prefetching strive to reduce

memory latency by moving data into the cache before it is

needed. Unlike prefetching which provides a general tech-

nique to reduce memory latency, cache injection can only be

applied to data from I/O devices. Prefetching is a consumer-

driven technique while cache injection is producer-driven.

Many studies have shown that prefetching is an effective

technique to reduce memory latency. However, it has sev-

eral disadvantages when compared to cache injection. First,

prefetching data from I/O devices incurs memory band-

width due to two transactions: (1) transfer of data from the

I/O producer to memory, and invalidating cached copies;

and (2) fetching data from memory to the consumer. With

cache injection, the second transaction is not necessary.

Second, even if prefetching correctly anticipates the access

to I/O data, fetch requests can only be served from main

memory, incurring memory latency as well as using mem-

ory bandwidth.

It is important to note that both cache injection and

prefetching may not perform optimally. With prefetching,

data may be fetched too late to reduce memory latency.

With cache injection, data may be injected into the cache

too early. This early injection of data may evict part of

the application’s working set. The working set has to be

brought back to cache from lower levels of the memory

hierarchy incurring additional overhead. This overhead is

studied in Section 4. Table 1 summarizes the differences of

prefetching and cache injection. The next two subsections

describe the experimental framework, methodology, and re-

sults of our evaluation of these two techniques.

Table 1. Prefetching vs. cache injection.
Prefetching Cache injection

Resources

1) write to memory
1) write to cache

2) fetch to cache

incurs memory la-

tency and bw usage

reduces memory la-

tency and bw usage

Fails when fetch too late inject too early

Applicability general-purpose limited to I/O

Comm. consumer-driven producer-driven

3.1. Experimental framework

The experimental infrastructure is based on simulation

and consists of two components: the base architecture and a

high-performance communication system. The base archi-

tecture is based on IBM’s Mambo full-system simulator [2].

Mambo has been extended with an implementation of cache

injection to the L3 cache [3]. The simulated machine is a

multi-core, cache-coherent, distributed shared memory ar-

chitecture.

The high-performance communication system consists

of a simulated high-performance NIC and an OS-bypass

zero-copy network stack [13]. The NIC is capable of run-

ning arbitrary functionality. It interacts with the host system

through conventional memory write operations and through

non-binding cache injection operations. The NIC is also ca-

pable of moving data into any level 2, level 3 caches or main

memory.

The network stack provides an unreliable datagram con-

nectionless service with a UDP-like interface. We imple-

mented this interface using an OS-bypass, zero-copy design

which is common in high-performance networks. Our im-

plementation, Fast UDP, consists of code running on the

host and the NIC. The code running on the host is a user-

level library that virtualizes NIC resources to the applica-

tion. The code running on the NIC implements message

matching and checksum processing.

3.2. Experimental evaluation

We measure memory bandwidth and execution time of

an application in three configurations: (1) base case with no

optimizations; (2) base configuration with prefetching; and

(3) base configuration with cache injection [12]. The ap-

plication used in this evaluation performs a linear traversal

of incoming network data in calculating a reduction opera-

tion. We chose this application because: (1) it represents a

stage of computation that is limited by memory bandwidth;

and (2) it provides an optimal case for prefetching (linear

traversal of data).

The machine configuration for these experiments is

shown in Table 2. The simulated machine is a Power5 ar-

chitecture [19] with a non-binding cache injection imple-

mentation to the level 3 cache. The Power5 processor chip

includes two cores, a level 1 cache per core, a shared level 2

cache, a memory controller, and an I/O controller. The level

3 cache is a victim cache [8] and is implemented off-chip.

Data prefetching is implemented in hardware by the archi-

tecture. Data is prefetched into the L1 data cache by first

fetching it into the L2 cache and then from the L2 to the L1

cache.

Table 2. System configuration parameters.
Simulator Mambo PowerPC full-system simulator

OS K42 w/OS-bypass zero-copy Fast UDP

Architecture Power5 with cache injection to L3

Processor 1.65GHz frequency

L1 I/D cache 64KB/32KB 2-way/4-way

L2 cache 1.875MB 3-slice 10-way 10 cycle latency

L3 cache 36MB 3-slice 12-way 80 cycle latency

Cache line 128B

Main memory 512MB 230 cycle latency

First, we measure the memory bandwidth used by the ap-

plication in terms of the number of memory reads requested

to the memory controller. As shown in Figure 3, the base

case and the prefetching configuration perform equally as

prefetching has to fetch incoming network data from mem-

ory. Prefetching anticipates data accesses correctly due to

the sequential access pattern used by the application. Cache

injection significantly reduces the number of memory reads

by up to 96% as all application accesses to incoming net-

work data hit the L3 cache.

Second, we measure the execution time of the applica-

tion in processor cycles. As shown in Figure 4, cache injec-

tion and prefetching outperform the base case as they both

reduce the number of cache misses. Prefetching reduces

execution time by up to 37% while cache injection by up to

30%. Prefetching performs better because it fetches blocks

to the L2 cache, while our cache injection implementation

targets the L3 cache. We are investigating the impact of

injecting data into the L2 cache. Given its lower latency,

we expect that injections to the L2 will perform as well as

prefetching.

 0

 2

 4

 6

 8

 10

 16 32 64 128 256 512 1024

#
 m

e
m

o
ry

 r
e

a
d

s
 (

k
ilo

)

message size (KB)

Base
Prefetch

Inject

Figure 3. Memory bandwidth utilization.

 0

 1

 2

 3

 4

 16 32 64 128 256 512 1024

p
ro

c
.

c
y
c
le

s
 (

m
e

g
a

)

message size (KB)

Base
Prefetch

Inject

Figure 4. Execution time.

Since cache injection reduces memory pressure for in-

coming network data, its benefits are dependent on the ra-

tio of incoming network data and local data used by the

application. The communication traffic and granularity of

communication vary from application to application and

thus the improvements on performance will vary. Several

high-performance computing applications will likely ben-

efit from cache injection as they exchange a significant

amount of network messages. For example, SMG2000 [4],

a memory intensive application, at 384 tasks spends almost

75% of the overall application aggregate time in communi-

cation operations [20].

4. Blind cache injection

In the previous section, we showed that cache injec-

tion reduces memory pressure significantly. Also, previ-

ous work [3, 9], has shown that cache injection can provide

significant performance improvements for a particular type

of application, namely TCP/IP protocol processing. In this

case, the kernel consumes the injected data right after it is

written, signaled by an interrupt to the processor.

Cache injection, however, presents challenges intrinsic

to the explicit producer-driven nature of this technique,

namely timely transfer and identifying the consumer of

data. With cache injection, data may be transfered too early

for the consumer to process it. We refer to this type of data

movement as blind transfer since data is transfered without

knowledge of the usage patterns of the consumer. Blind

cache injection may create cache pollution taking useful

data out of the cache.

Cache injection requires explicit knowledge about the

identity of the consumer. The NIC, the producer of data,

has to choose between a set of potential consumers. Even

in a uniprocessor system, the choice between a level 2 and

level 3 cache has to be made. In a multiprocessor system,

a chip, core or processor has to be chosen. An incorrect

choice of the target may result in higher delays than just

moving data directly into main memory.

In the remaining of this section, we show an application

in which cache injection without an appropriate injection

policy (i.e., blind injection) is harmful to performance. This

motivates the study of injection policies, which are directly

related to the effectiveness of this technique.

4.1. The Jacobi method

The Jacobi method [7] is an iterative algorithm to solve a

partial differential equation called the Laplace equation. An

example application of this algorithm is the temperature cal-

culation of a body represented by a multidimensional grid.

At each time step, the Jacobi method computes the tem-

perature of all interior points based on their neighbors tem-

perature. The algorithm continues to refine the temperature

values until a specific threshold is reached. The edge or

boundary points are fixed and set by boundary conditions.

In a two-dimensional grid (n, n), we can partition the

problem domain into sub-domains that can be assigned to

individual processes. This domain decomposition provides

the basis for a parallel implementation. Given p processes,

the grid is decomposed into sets of n/p rows. Every pro-

cess is in charge of computing n2/p points. To compute

the values in the first and last row for a particular process,

the values of the boundary rows from its previous and next

neighbor processes are needed. This requires data exchange

between processes: at every time step each process sends

the values of its first and last row (2N values) to its neigh-

boring processes accordingly. In a message-passing com-

munication paradigm such as MPI [6], an algorithm (per

process per iteration) that overlaps computation and com-

munication can be outlined as follows:

1. MPI Isend boundary data

2. MPI Irecv boundary data

3. Perform local computation

4. MPI Wait for remote data to arrive

5. Perform remote data computation

4.2. Performance using blind injection

The steps of the algorithm outlined above can be clas-

sified into communication, computation and delay stages.

Steps 1 and 2 are communication steps, steps 3 and 5 are

computation steps, and step 4 is a delay step.

Assume that the algorithm is running in a cluster of

nodes, where one process runs in one node and every node

is connected through a NIC to the cluster’s local network.

At the beginning of execution, every process executes the

communication steps. Since the communication operations

are non-blocking, every process continues executing step 3

even if the previous operations have not been completed.

Also, assume that while executing step 3, data arrives to

the NIC and is written to main memory (overlap of com-

putation and communication). If step 3 takes long enough

for the communication stage to complete, then step 4 com-

pletes immediately and we continue to execute the last step.

Otherwise, the process waits for the requested data to arrive

at which point moves to the last step.

In a system with blind cache injection, i.e., data is moved

directly from the NIC to the processor’s cache as soon as

it arrives, the overlap of communication and computation

steps may actually be problematic. While the processor is

working on local data, the NIC cache injection operation

may be taking the application’s working set out of the cache.

Thus, the application has to fetch again its working set pos-

sibly replacing those blocks written by the NIC displacing

network data back to main memory. After completion of

step 3 and if all the network data has arrived, the processor

has to fetch the network data back to the cache to execute

the last step. The effects of blind injection in this case result

in the overhead of unnecessarily evicting the application’s

working set from the cache, and then fetching this data back

to the cache. This overhead increases memory bandwidth

traffic as well as memory latency. The conventional system

without cache injection performs better.

The performance penalty incurred by blind injection is

due to the producer-driven nature of this technique. In other

words, data is written to the cache as soon as it is produced

(when it arrives from the network), which happens to be too

early for the application to take advantage of it. To leverage

the memory latency and memory bandwidth benefits of this

technique we need injection policies that allow the NIC to

make smarter decisions about when to inject into the cache.

Two simple policies can overcome this problem: (1) for

incoming network data which size exceeds a specific thresh-

old, write data to the L3 cache, otherwise write data to

the L2 cache; and (2) if the consumer thread or process

is blocked waiting for data, write into the L2, otherwise

write to main memory. The first policy is appealing con-

sidering the growing size of level 3 caches, for example a

Power5 machine contains a 36MB L3 cache. The second

policy which requires OS information, performs as well as

the conventional system with the added benefit that if the

application is blocked waiting for data, it will perform bet-

ter by avoiding the added overhead of memory latency.

Thus, if an application does not use the injected data

promptly, blind cache injection may create cache pollution

resulting in loss of performance. The performance benefits

of this technique rely on a good injection policy. This pol-

icy is dependent upon the usage pattern of an application,

the OS and the compiler.

5. Injection policies

To leverage the performance improvements that can be

provided by cache injection, adequate policies are needed.

The goal of these policies is to determine the target device

where the data will be consumed. This target can be ei-

ther a level 2 cache, a level 3 cache, or main memory. In a

multiprocessor system, a policy also determines which pro-

cessor will consume the data. We have identified a set of

policies which we believe will enhance the performance of

applications using cache injection. The following policies

are based on information from the OS, the compiler, and the

application.

Processor-direction. Inject to the processor/cache indi-

cated by the memory descriptor posted by the application.

The memory descriptors residing on the NIC to match in-

coming messages have information about the consumer of

data. When a buffer is registered by the application with the

kernel, the OS adds the processor identifier where the appli-

cation’s thread is running to this buffer’s memory descrip-

tor. If threads migrate in the system, the OS can update the

NIC with this information so that messages can be routed to

the appropriate processor.

Size-dependent. Inject to the level 2 cache, level 3

cache, or main memory depending on the size of the in-

coming message. Inject to the L2 cache if message size is

below a cache threshold, to the L3 cache if size is between

the cache threshold and a memory threshold, and to main

memory if size is over the memory threshold.

In-cache. Inject to the target cache if the line is in it.

Searches in a cache can be an expensive operation since the

whole cache may be traversed. Smart searches [10] can be

employed to determine rapidly if a line is not in the cache.

However, the search algorithm is prone to false-hits. In

other words, the search may indicate a hit when the line

is not cached. Smart searches use an array located in the

cache controller to store partial tag bits. Depending on the

number of bits, false-hits are less probable to occur at the

cost of extra space in the smart search array.

On-wait. Inject to the target cache when the consumer

thread is blocked waiting for incoming network data. The

MPI implementation can notify the NIC when the applica-

tion is about to block waiting for network data. To do so, the

message descriptor identifier or token is also passed to the

NIC. When the message arrives from the network, the NIC

writes to the cache if the memory descriptor for that mes-

sage indicates that the application is waiting. Otherwise,

data is written to main memory.

Compiler-driven. Inject to the target cache when the

application and/or compiler explicitly solicits the data. This

policy uses software injection which is analogous to soft-

ware prefetching. With software injection, hints can be

passed to the NIC to indicate that specific messages should

be injected into cache. These hints can be automatically

generated from the compiler using software prefetching

techniques, or they can be specifically indicated by the ap-

plication.

6. Related work

Several techniques currently exist to manage the im-

balance between processor and memory speeds. Data

caching reduces memory latency for data access patterns

with good locality. With prefetching, memory latency can

be overlapped with computation to improve processor per-

formance. However, prefetching exhibits the same short-

comings of caching for poor locality computations. Fur-

thermore, it does not improve memory bandwidth. Soft-

ware access ordering [17] improves memory bandwidth by

changing the order of memory accesses at compile time.

This technique, however, is limited to static information and

cannot take advantage of run-time access patterns of data.

Hardware-assisted access ordering [14] decouples the order

of requests issued by the processor from those issued to the

memory system. This technique strives at minimizing the

average latency over a coherent set of accesses dynamically.

Unlike cache injection, all of these techniques incur

memory latency and memory bandwidth usage for data

from I/O devices. Data has to be fetched from main memory

when requested by a processor. Cache injection can reduce

memory latency and memory pressure by placing data di-

rectly into the cache from the I/O bus. Cache injection can

be effective even for computations with poor locality.

Bohrer [3] proposed and analyzed cache injection as

a mechanism for reducing memory latency. The authors

used this technique on TCP/IP protocol processing. Us-

ing micro-benchmarks for network and disk communica-

tion they showed significant improvements on execution

time. The work by Huggahalli [9] improves upon Bohrer’s

work by showing a significant reduction in both memory

latency and memory bandwidth usage for benchmarks such

as SPECWeb9, TPC-W and TPC-C.

In these two studies, data is injected into the cache

blindly and it does not adapt to the application’s needs. In

some instances, writing to cache may not be desirable. The

processing of TCP/IP packets is a desirable target for blind

injection since the kernel consumes the injected packet right

after it is written (signaled by an interrupt to the processor).

However, as we have discussed, blind injection is prone to

degradation of application performance.

Cache injection is one of several producer-driven non-

binding techniques to reduce memory latency between pro-

cessors. The Standford Dash multiprocessor [11] included

two producer-initiated operations: update-write and

deliver. The former writes data directly to all proces-

sors’ caches that have cached the data, while the latter to

a specific group of processors. In Poulsen’s work [18],

data is forwarded between processors to optimize shared ac-

cesses of data. Data forwarding was implemented using the

forwarding write operation. Abdel-Shafi’s work [1]

also uses data forwarding in the form of remote write

operations to reduce memory latency for fine-grain commu-

nication.

Milenkovic [15] uses a combination of data forwarding

and prefetching. The consumer uses a prefetch-like instruc-

tion (lprefetch) to fetch data likely to be used in the near

future. Unlike prefetching, this instruction only records the

requested data in an injection list that resides in the cache

controller. At the producer side, a forward-like instruction

(write back) is used to send data over the bus when it

becomes available. Consumers snoop the bus and store the

data if it matches an entry in the injection list. To my knowl-

edge, the work by Milenkovic on bus based multiprocessors

is the first to use the term cache injection.

The difference between data forwarding and our work

on cache injection is the producer and consumer of data. In

data forwarding both processors reside in the same compu-

tational node. In cache injection the producer and consumer

processors reside in different computational nodes linked

together by a high performance network. This architectural

difference must be accounted for in the timings of injection

policies. Some ideas used in data forwarding about when to

inject into the cache can also be applied to cache injection.

7. Conclusions and future work

In this paper we have shown how cache injection out-

performs prefetching in reducing the impact of the mem-

ory wall on applications. More specifically, cache injection

reduces memory latency and memory pressure by placing

data from I/O devices directly into the cache. This reduction

in memory pressure stems from a reduction in the number

of requests issued to the memory controller. The perfor-

mance of cache injection is dependent on several factors in-

cluding timely usage of data, the amount of data, and the

application’s data usage patterns. Without an appropriate

policy to determine when to inject into the cache, cache in-

jection may degrade application performance. We believe

that these policies will be based on information from the

OS, the compiler, and the application. We have proposed

certain policies based on this information which we plan to

implement and evaluate. We are also characterizing those

scenarios where cache injection is appropriate, and charac-

terizing the types of applications that will benefit from this

promising optimization technique.

Acknowledgments

We would like to thank Orran Krieger, Michal Os-

trowski, Lixin Zhang, and James Peterson from IBM Re-

search; Hazim Shafi from Microsoft Research; and Patrick

Widener from the University of New Mexico. This work has

been supported by an Intel Fellowship and an IBM grant.

References

[1] H. Abdel-Shafi, J. Hall, S. V. Adve, and V. S. Adve. An

evaluation of fine-grain producer-initiated communication in

cache-coherent multiprocessors. In 3rd IEEE Symposium

on High-Performance Computer Architecture (HPCA ’97),

pages 204–215, San Antonio, TX, 1997.

[2] P. Bohrer, M. Elnozahy, A. Gheith, C. Lefurgy, T. Nakra,

J. Peterson, R. Rajamony, R. Rockhold, H. Shafi, R. Simp-

son, E. Speight, K. Sudeep, E. V. Hensbergen, and L. Zhang.

Mambo – a full system simulator for the PowerPC architec-

ture. ACM SIGMETRICS Performance Evaluation Review,

31(4):8–12, Mar. 2004.

[3] P. Bohrer, R. Rajamony, and H. Shafi. Method and appa-

ratus for accelerating Input/Output processing using cache

injections, Mar. 2004. US Patent No. US 6,711,650 B1.

[4] P. N. Brown, R. D. Falgout, and J. E. Jones. Semicoarsening

multigrid on distributed memory machines. SIAM Journal

on Scientific Computing, 21(5):1823–1834, 2000.

[5] G. T. Byrd and M. J. Flynn. Producer-consumer communi-

cation in distributed shared memory multiprocessors. Pro-

ceedings of the IEEE, 87(3):456–466, 1999.

[6] M. P. I. Forum. MPI: A message-passing interface standard.

Technical Report UT-CS-94-230, Knoxville, TN, 1994.

[7] F. R. Gantmacher. The Theory of Matrices, volume I. AMS

Chelsea, 1959. Translated from Russian.

[8] B. Gibbs, B. Atyam, F. Berres, B. Blanchard, L. Castillo,

P. Coelho, N. Guerin, L. Liu, C. D. Maciel, C. Sosa, and

R. Thirumalai. Advanced POWER Virtualization on IBM

eServer p5 Servers: Architecture and Performance Consid-

erations. IBM Redbooks, second edition, 2005.

[9] R. Huggahalli, R. Iyer, and S. Tetrick. Direct cache access

for high bandwidth network I/O. In 32nd Annual Inter-

national Symposium on Computer Architecture (ISCA’05),

pages 50–59, Madison, WI, June 2005.

[10] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-

uniform cache structure for wire-delay dominated on-chip

caches. In 10th International Conference on Architectural

Support for Programming Languages and Operating Sys-

tems (ASPLOS X), pages 211–222, San Jose, CA, Oct. 2002.

[11] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber,

A. Gupta, J. Hennessy, M. Horowitz, and M. S. Lam. The

Stanford Dash multiprocessor. Computer, 25(3):63–79,

1992.

[12] E. A. León and A. B. Maccabe. Reducing memory band-

width for chip-multiprocessors using cache injection. In 7th

USENIX Symposium on Operating Systems Design and Im-

plementation (OSDI’06). Poster Session, Seattle, WA, Nov.

2006.

[13] E. A. León and M. Ostrowski. An infrastructure for the

development of kernel network services. In 20th ACM

Symposium on Operating Systems Principles (SOSP’05).

Poster Session, Brighton, United Kingdom, Oct. 2005. ACM

SIGOPS.

[14] S. A. McKee, S. A. Moyer, and W. A. Wulf. Increas-

ing memory bandwidth for vector computations. In Inter-

national Conference on Programming Languages and Sys-

tem Architectures, pages 87–104, Zurich, Switzerland, Mar.

1994.

[15] A. Milenkovic and V. Milutinovic. Cache injection on

bus based multiprocessors. In 17th Symposium on Reli-

able Distributed Systems (SRDS’98), pages 341–346, West

Lafayette, IN, 1998.

[16] T. Mowry and A. Gupta. Tolerating latency through

software-controlled prefetching in shared-memory multi-

processors. Journal of Parallel and Distributed Computing,

12(2):87–106, 1991.

[17] S. A. Moyer. Access Ordering and Effective Memory Band-

width. PhD thesis, Department of Computer Science, Uni-

versity of Virginia, Apr. 1993.

[18] D. K. Poulsen and P.-C. Yew. Data prefetching and data

forwarding in shared memory multiprocessors. In Interna-

tional Conference on Parallel Processing (ICPP’94), pages

276–280, North Carolina State University, NC, 1994.

[19] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer,

and J. B. Joyner. POWER5 system microarchitecture. IBM

Journal of Research and Development, 49(4/5), 2005.

[20] J. S. Vetter and A. Yoo. An empirical performance evalua-

tion of scalable scientific applications. In 2002 ACM/IEEE

Conference on Supercomputing (SC’02), pages 1–18, Balti-

more, Maryland, 2002.

[21] W. A. Wulf and S. A. McKee. Hitting the memory wall:

Implications of the obvious. ACM SIGARCH Computer Ar-

chitecture News, 3(1):20–24, Mar. 1995.

