
Cache Injection for Parallel Applications

Edgar A. León
IBM Research, Austin

∗

eleon@us.ibm.com

Rolf Riesen
IBM Research, Ireland

†

rolf.riesen@ie.ibm.com

Kurt B. Ferreira
Sandia National Laboratories

‡

kbferre@sandia.gov
Arthur B. Maccabe

Oak Ridge National
Laboratory

maccabeab@ornl.gov

ABSTRACT
For two decades, the memory wall has affected many ap-
plications in their ability to benefit from improvements in
processor speed. Cache injection addresses this disparity for
I/O by writing data into a processor’s cache directly from
the I/O bus. This technique reduces data latency and, un-
like data prefetching, improves memory bandwidth utiliza-
tion. These improvements are significant for data-intensive
applications whose performance is dominated by compulsory
cache misses.

We present an empirical evaluation of three injection poli-
cies and their effect on the performance of two parallel appli-
cations and several collective micro-benchmarks. We demon-
strate that the effectiveness of cache injection on perfor-
mance is a function of the communication characteristics
of applications, the injection policy, the target cache, and
the severity of the memory wall. For example, we show that
injecting message payloads to the L3 cache can improve the
performance of network-bandwidth limited applications. In
addition, we show that cache injection improves the per-
formance of several collective operations, but not all-to-all
operations (implementation dependent). Our study shows
negligible pollution to the target caches.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—design studies, modeling techniques; C.1.4 [Proc-
essor Architectures]: Parallel Architectures—distributed
architectures

∗This work was partially supported by an Intel fellowship
and an IBM grant under subcontract from IBM on DARPA
contract NBCH30390004.
†Rolf Riesen participated in this work while working for San-
dia National Laboratories.
‡Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

Copyright 2011 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
HPDC’11, June 8–11, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0552-5/11/06 ...$10.00.

General Terms
Performance, Experimentation, Design

Keywords
Cache injection, memory wall

1. INTRODUCTION
For two decades, the growing disparity of processor to

memory speed has affected applications with poor tempo-
ral locality in their ability to benefit from improvements in
processor speed [30]. This disparity known as the memory
wall [36] makes memory speed the limiting system perfor-
mance factor for many types of applications. Even systems
with infinitely sized caches are affected due to compulsory
cache misses on data with poor temporal locality. Current
techniques such as data prefetching may not alleviate this
problem in applications where the memory bus is already
saturated, or those with not enough computation in between
memory accesses to mask memory latency.

Examples of applications affected by the memory wall
include scientific, cryptographic, signal processing, string
processing, image processing, and some graphics computa-
tions [24]. Recent high-end, real-world scientific applica-
tions strongly depend on the memory characteristics of a
system [29, 28]. These applications show poor locality by
accessing large amounts of unique data (data-intensive ap-
plications). This data generates compulsory cache misses
resulting in an increased dependency on memory bandwidth
and latency.

The advent of multi- and many-core architectures poses
an even greater challenge to mitigate the memory wall. As
shown in Figure 1, the theoretical memory bandwidth per
core decreases with newer generation chips which contain
more cores. Table 1 shows the details of the processors used
for this figure [3, 11, 2, 18, 1]. We quantify the memory
wall using bytes per cycle per core to take into consideration
the absolute memory bandwidth per chip, the number of
cores, and the processor frequency. The absolute memory
bandwidth (GB/s) per core is not informative enough since
it does not account for processor frequency.

The number of applications affected and the severity of the
memory wall will increase in the near future as the number of
cores increases in next generation processors. Manufacturers
are making an effort to increase the number of memory ports
and the memory bandwidth per bus but are hindered by pin
count and other physical limitations. This means that the

 0

 1

 2

 3

 4

 5

 6

 7
M

e
m

o
ry

 b
a

n
d

w
id

th
 (

b
y
te

s
 p

e
r

c
y
c
le

 p
e

r
c
o

re
)

Generation

IBM Power

P5-570 (2)

P6-595 (2)

P7-780 (8)

Intel Xeon

Xe-E5502 (2)

Xe-X5667 (4)
Xe-X7560 (8)

AMD Opteron

Op-875 (2)

Op-8393 (4)
Op-8439 (6)

Figure 1: Theoretical memory bandwidth per core.
The advent of multi-core architectures exacerbates
the memory wall. We quantify the memory wall us-
ing bytes per cycle per core. This unit takes into con-
sideration the absolute memory bandwidth per chip,
the number of cores, and the processor frequency.

Table 1: Architecture of processors used in Figure 1.
Each of these chips include integrated, on-chip mem-
ory controllers. C=# of cores; T=# of threads;
/c=per core; *=Off-chip cache.

Processor chip Freq C/T L2/c L3/c Memory BW/c

GHz MB MB MHz GB/s

POWER5-570 2.20 2/4 0.95 18∗ DDR2-528 12.67

POWER6-595 4.20 2/4 4.00 16∗ DDR2-667 21.34

POWER7-780 3.86 8/32 0.25 4 DDR3-1066 17.06

Xeon E5502 1.86 2/2 0.25 2 DDR3-800 9.60

Xeon X5667 3.06 4/8 0.25 3 DDR3-1333 8.00

Xeon X7560 2.27 8/16 0.25 3 DDR3-1333 5.33

Opteron 875 2.20 2/2 1.00 0 DDR-400 3.20

Opteron 8393SE 3.10 4/4 0.50 1.5 DDR2-800 3.20

Opteron 8439SE 2.80 6/6 0.50 1 DDR2-800 2.13

per-core and per-thread memory bandwidth will decrease
over time.

More cores sharing the available memory bandwidth in
and between sockets means fewer bytes per flop per core.
More cores also tax a network interface controller (NIC)
more. However, the resource contention is disproportional.
The more cores on a node, the more communication will take
place inside the node, using the memory access channels,
rather than going off-node through the NIC. The amount of
traffic through the NIC is related to the amount of memory
per node, while the amount of traffic on the memory bus is
related to the number of cores on a node. The number of
cores per socket is increasing more rapidly than the amount
of memory per socket.

Cache injection alleviates the memory wall by placing data
from an I/O device directly into the cache [9, 17, 12]. In cur-
rent architectures, I/O data is transferred to main memory,
and cached copies of old values are invalidated. Accessing
I/O data results in compulsory cache misses and, thereby,
accesses to main memory. The benefits of cache injection
are reduced memory access latency on I/O data and re-
duced memory pressure – number of requests satisfied by
main memory per unit of time. This technique, however,

is prone to cache pollution since the data transfer is initi-
ated by the producer (e.g., a NIC) rather than the consumer
of data. Cache injection affects performance to the degree
of which I/O data is responsible for its share of the overall
memory pressure.

Even though cache injection can reduce memory access
latency, in this paper we concentrate more on its band-
width benefits due to reduced memory pressure. We do this
because network latency (micro seconds) dominates mem-
ory access times (nano seconds). There are certain events,
however, that benefit from the improved latency, e.g., when
polling a NIC for new message headers. Overall, cache in-
jection for network I/O has a greater impact on bandwidth
rather than latency.

Prefetching can hide memory latency by overlapping mem-
ory accesses with computation [6, 26]. This technique antic-
ipates memory accesses based on usage patterns or specific
instructions issued by the compiler, the OS, or the appli-
cation. Unlike cache injection, prefetching does not reduce
and may increase traffic over the already saturated mem-
ory bus; a precious resource for memory-bound applications.
Prefetching is more widely applicable than cache injection,
but the latter provides better performance for I/O [12].

Chip manufacturers have expressed interest in cache in-
jection to reduce data access latency. Recent Intel architec-
tures provide a mechanism called Prefetch Hint [31] which
allows early prefetching of I/O data initiated by the NIC.
Like prefetching, however, this technique does not reduce
memory bandwidth utilization. The PERCS system [5] de-
signed by IBM allows the interconnect to write data directly
into the L3 cache. This system, however, is not yet available.

In previous work, we proposed policies to leverage the
benefits of cache injection by selectively injecting into the
caches [12] – an injection policy selects the data to inject
and the target device in the memory hierarchy. This pre-
vious work, however, neither implements/simulates the pro-
posed policies nor evaluates their impact on performance.
In the current paper, we present the evaluation of easy to
implement, yet non cache-intrusive, injection policies and
their effect on the performance of two applications and sev-
eral collective operations. The main contributions of this
paper are:

• An empirical evaluation of three injection policies on
two applications and several collective operations.

• An analysis of cache injection performance in terms of
the communication characteristics of applications.

• An investigation of cache injection performance on cur-
rent and (expected) future systems’ memory wall.

• The design and implementation of low-overhead injec-
tion policies based on the header and payload of a mes-
sage.

Overall, our results shows that the effect of cache injection
on application performance is highly dependent on the com-
munication characteristics of applications, the injection pol-
icy, and the severity of the memory wall. Our characteriza-
tion of cache injection can be used as a framework to deter-
mine the usefulness of this technique on parallel applications
based on their communication characteristics.

In the next section, we describe our cache injection im-
plementation and the injection policies we use throughout

the paper. Section 3 describes our test environment includ-
ing a brief description of our simulation infrastructure and
the applications we use. In Section 4, we evaluate key fac-
tors that determine the effectiveness of cache injection on
performance. Section 5 describes the related work and we
conclude in Section 6.

2. CACHE INJECTION
Cache injection [9, 17] is one of several techniques to miti-

gate the imbalance between processor and memory speeds [26,
27, 24]. This technique reduces memory access latency and
memory pressure by placing data from the NIC directly into
the cache. Cache injection, however, is prone to cache pollu-
tion since the data transfer is not initiated by the consumer
of data [12]. In this section, we describe important trade-offs
we face in our design of cache injection and the policies we
implement on the NIC to determine when and what data to
inject into the cache.

We use IBM’s Power5 architecture [33], a multi-core sys-
tem with an integrated, on-chip memory controller (see Fig-
ure 2), and extend it with cache injection. This architecture
provides a hierarchy of caches, some local to a specific core
(L1) and others shared by a number of cores (L2 and L3).
We chose the L2 and L3 caches for injection because the
larger cache size reduces the probability of evicting an appli-
cation’s working set, and the shared property reduces com-
plexity on the NIC to determine the specific core that will
consume the data. The cost associated with these choices, as
opposed to choosing a local cache, is a higher access latency.

Inter-chip

Core Core

L2

Fabric Ctrl

L3
Dir

Mem
Ctrl

I/O
Ctrl

NICL3

Mem

Figure 2: Base architecture.

When cache injection is enabled, data can be injected to
both memory and cache, or only to the target cache. In the
former, the state of the appropriate cache block is set to
clean-exclusive, while in the latter, modified-exclusive. We
chose to inject to both memory and cache, to reduce the
number of write-backs to memory when the cache line is
evicted and the data is not modified.

The base architecture provides data and control paths to
the cache through the fabric controller. When moving in-
coming network data to the host, the NIC issues invalida-
tion requests to the cache and data requests to main mem-
ory. When cache injection is enabled, invalidation requests
are replaced with allocate/update requests. The fabric con-
troller forwards these requests and the associated data to
the cache.

Since cache injection may replace an application’s working
set with network data (pollute the cache), we implement
a set of policies to determine the appropriate place in the
memory hierarchy (L2, L3, or main memory) and discern
the data to inject. These policies, implemented on the NIC,
are tailored for message-passing applications.

The first policy, denoted header or hl2, writes message
headers (communication events) to the L2 cache. This policy
is based on the interaction between the host communication
library (MPI-MIAMI [13]) and the NIC. The host library
and the NIC communicate through a queue of communica-
tion events residing on the host and pinned in memory. An
event in the queue is used by the library to invoke a par-
ticular communication operation on the NIC. The library
creates an event with the operation’s parameters and signals
the NIC using memory mapped registers. The NIC pulls the
event from host memory, initiates the requested operation,
and writes a response back to the appropriate event.

When the headers policy is used, the response is written
into the L2 cache. Since the user library polls the queue
for responses from the NIC, the communication events are
fetched directly from the L2 cache. The size of an event
is exactly one cache block (128 bytes), and the user queue
is block-aligned. The choice of L2 is appropriate because
data is consumed promptly after it is injected and its size is
small. To reduce the risk of evicting part of the application’s
working set from the cache, only one cache line is injected
into the L2 cache per communication event.

This policy can be generalized to other communication
libraries where the NIC writes small amounts of data (head-
ers) concerning specific communication operations. Most
architectures follow this model either by issuing an inter-
rupt or by polling a queue. In our implementation, we use
polling. A similar approach has been explored by writing
TCP/IP headers into the cache [17, 20], but that work was
limited to two machines and to replaying traces on a sin-
gle machine, lacking information about the global impact of
cache injection on application performance.

The second policy, denoted payload, injects message data
(payload) into the L3 cache. The performance of this policy
depends on the amount of data received from the network
and the timely consumption of this data by the application
(message locality). Since an application’s message data is
not bound to a particular size, data is injected to the larger
L3 cache to avoid polluting the L2 cache. The trade-off is
a higher latency than the L2. This policy does not inject
message payloads of more than half the size of the L3 cache
to reduce pollution. Also, only full cache blocks are injected
into the cache (partial blocks are written into main mem-
ory). Injecting partial blocks that are not present in the
cache would require fetching the block from the lower levels
of the memory hierarchy. With this design, all messages that
are smaller than a cache block are written to main memory.

The third policy, denoted hl2p, is the union of both the
payload and header policies; i.e., inject communication events
or headers into the L2 cache, and inject message payloads
into the L3 cache.

Section 4 shows that the performance of these policies on
application performance is dependent on several application
characteristics including the size and frequency of messages,
the type of communication operations, and the ratio of com-
munication to computation.

3. TEST ENVIRONMENT
Using simulation, we evaluate cache injection by execut-

ing MPI applications on a variety of system configurations
and injection policies. We use a cycle-accurate framework to
simulate a cluster comprised of hundreds of PowerPC com-
putational nodes with cache injection connected through a
high-performance network model [13]. Our target system
configuration is shown in Table 2. The target cluster is in-
terconnected using a fully connected network with the com-
munication characteristics of a Cray XT-3 Red Storm ma-
chine [32]. The Red Storm represents a well-known super-
computer network.

Table 2: Target system configuration.

Feature Configuration

Processor POWER5 with cache injection [33, 9],
1.65 GHz frequency

L1 cache Inst.: 64 kB/2-way; Data: 32 kB/4-way
L2 cache 1.875 MB, 3-slice, 10-way, 14 cycles latency*
L3 cache 36 MB, 3-slice, 12-way, 90 cycles latency*
Block size 128 bytes
Memory 825 MHz on-chip controller, 275 MHz DDR2

1,024 MB, 230 cycles latency*

OS K42 [4]
Network- MPICH 1.2.7-MIAMI with OS-bypass and
stack zero-copy [13]

Network Fully connected Cray XT-3 Red Storm

*measured latency using lmbench [25].

A detailed description and evaluation of the cluster sim-
ulator we use can be found in the literature [13]. Briefly,
every node in the target cluster is simulated using two com-
ponents: Mambo [8], IBM’s PowerPC full-system simulator,
and a simulated NIC module that attaches to Mambo. The
simulated NIC implements the network model of choice (Red
Storm) and the injection policies. The simulated nodes run
a full-OS and communicate with each other through MPI
using OS-bypass and zero-copy transfers. The cluster sim-
ulator itself runs as an MPI job on a host cluster. Note,
however, that the configurations of the target and the host
clusters are independent.

We run the target cluster on a host machine comprised of
4,480 compute nodes. They are dual 3.6GHz Intel EM64T
processors with 6 GB of RAM. The network is an Infiniband
fabric with a two level Clos topology. The nodes run Red
Hat Enterprise Linux with a 2.6.9 kernel and use Lustre as
the parallel file system. We use OpenMPI [15] version 1.2.7
and OFED version 1.3.1 to connect to the Infiniband fabric.

We use two high-performance parallel applications for our
evaluation: AMG from the Sequoia acceptance suite [22] and
FFT from the HPC Challenge benchmark suite [23].

AMG [16] is an algebraic, multigrid solver for linear sys-
tems arising from problems on unstructured grids. The com-
munication and computation patterns of AMG exhibit the
surface-to-volume relationship common to many parallel sci-
entific codes. We choose AMG because it spends a signifi-
cant amount of time of its execution time using the MPI li-
brary to transfer messages. This code is run in weak-scaling
mode with the default problem (a Laplace-type problem on
an unstructured domain with an anisotropy in one part),

setting the refinement factor for the grid on each processor
in each direction to one. This problem size is selected due
to the real-time overhead of running this application in our
simulation infrastructure.

AMG has three phases of operation. The solver runs in
the third phase (solve phase), while the first two phases are
used for problem setup. Considering the amount of time it
takes to run this application in our simulation environment,
we augmented AMG to run without simulating the caches
for the first two phases and enabled the caches before the
third phase. Cache simulation is started early enough to
allow the caches to warm-up before the solve phase. This
allows us to advance the simulation quickly and to enable
fully-accurate simulation just for the phase of interest.

FFT (Fast Fourier Transform) is one of seven benchmarks
designed to examine the performance of HPC architectures
using kernels with more challenging memory access patterns
than previous benchmarks (HPL). These benchmarks were
designed to bound the performance of many real applica-
tions as a function of memory access characteristics, such as
spatial and temporal locality.

FFT measures the rate of execution of double precision,
complex, one-dimensional Discrete Fourier Transform (DFT).
We chose FFT because it requires all-to-all communication
and stresses inter-processor communication of large mes-
sages. FFT runs in weak-scaling mode maintaining the same
amount of work per processor. We ran this code for three
problem sizes: small, medium, and large; each processor
computes a vector of 4,096, 65,536, and 262,144 elements re-
spectively. Thus, the global size for a large problem on 256
nodes is 256×262,144 elements. The performance of FFT is
measured in gigaflops (one-billion floating-point operations
per second).

4. RESULTS AND ANALYSIS
Cache injection may benefit or hinder an application’s per-

formance. This section explores the conditions that influ-
ence application sensitivity to cache injection. We ran thou-
sands of simulations and measured application performance
in different settings, varying the factors of interest: memory
and processor speed, injection policy, and node count. We
used AMG and FFT as our test applications because their
communication patterns differ significantly. The results in
the following sections show small fluctuations between runs
due to OS noise introduced by K42 [14]; e.g., different mem-
ory layouts due to demand paging. In all cases, we issued
at least three runs for every experiment described in each
section.

4.1 Simulation parameters and initial experi-
ments

Over time, processor frequencies and memory access speeds
have improved, although not at the same rate. For multi-
core processors we expect this trend to continue with the
caveat that the per core bandwidth to memory will actually
decrease. Physical limitations, among them pin count, will
limit the memory bandwidth into a chip. As the number
of cores inside the chip increases, the available bandwidth
per core will go down. In Figure 1 we saw this trend of re-
duced memory performance in the number of bytes per cycle
delivered to each core in some current and recent CPUs.

For our AMG experiments we simulated various CPU fre-
quencies and memory speeds. We reduced the memory speed

from our baseline system (Table 2) to bring them in line with
the bytes-per-cycle peak performance for each core of cur-
rent and near future processors. Table 3 lists the memory
and DRAM controller frequency ratios we used.

Table 3: Memory speeds used for AMG experi-
ments. Memory frequencies are expressed as frac-
tions of processor speed frequency.

Slowdown Mem. controller DRAM Bytes per cycle
factor frequency frequency per core

1.0 1/2 1/6 6.0 B/c
2.5 × 1/5 1/15 2.4 B/c
5.0 × 1/10 1/30 1.2 B/c
7.5 × 1/15 1/50 0.8 B/c

Figure 3 illustrates the range of our experiments using
a rectangular area around the sixteen parameter combina-
tions we used for CPU frequency and memory speed. We
also plot the CPUs listed in Figure 1 to show where their
performance characteristics place them in relation to our
experimental range. Our simulations span the full range of
memory access speeds as represented by the nine processors
from Figure 1. Our CPU frequencies are lower than sev-
eral of the representative processors. The reason is that we
had difficulties booting K42 inside our version of the Mambo
simulator at frequencies higher than 2.1 GHz. As demon-
strated below this should not invalidate our results because
absolute CPU speed has very little impact on the relative
effectiveness of cache injection.

0.0

1.0

2.0

3.0

4.0

5.0

0.01.02.03.04.05.06.07.0

C
P

U
 f

re
q

u
e

n
c
y
 (

G
H

z
)

Memory bandwidth (bytes per cycle per core)

IBM Power
Intel Xeon

AMD Opteron
Simulations

Figure 3: The shaded rectangle shows the simulation
parameter range explored. Individual experiment
series are marked by downward-pointing triangles.
Other points in the graph mark the performance
characteristics of the processors from Figure 1.

For this paper we consider four cache injection policies:
base, hl2, hl2p, and payload. The base policy represents our
starting point; i.e., no cache injection. We have simulated all
four policies with all combinations of the memory frequency
dividers from Table 3, and CPU frequencies of 900 MHz,
1,200 Mhz, 1,800 Mhz, and 2,100 Mhz. We ran each simu-
lation at least three times to calculate a minimum, average,
and maximum. Space prevents us from showing all results.
Instead, we focus on three key findings for AMG.

The first question we wanted to answer is which cache
injection policy works best for AMG. Figure 4 shows that

hl2p is the winner. The figure shows all four policies for two
node counts and memory running at full speed and slowed
down to 0.8 bytes per cycle per core. Because we expect fu-
ture generation multicore processors to deliver less memory
bandwidth to each core, we are interested in the impact of
cache injection in such systems.

60

65

70

75

80

85

90

95

100

105

6.0 0.8 6.0 0.8

S
o

lv
e

 p
h

a
s
e

 t
im

e
 n

o
rm

a
liz

e
d

 (
%

)

Memory bandwidth (bytes per cycle per core)

base hl2 hl2p payload

64 nodes8 nodes

Figure 4: Performance gain of each cache injection
policy for AMG for two different node counts and
two memory peak bandwidths on 2,100 Mhz pro-
cessors. Each bar is the minimum value of three
or more runs. Memory speed has a significant im-
pact on the base performance of AMG which is not
visible in this normalized plot. This method of pre-
sentation is chosen to highlight the benefits of cache
injection independent of the absolute performance
of the application.

For Figure 5 we chose a 2,100 MHz processor, ran AMG on
8 and 64 nodes, and analyzed the performance when avail-
able memory bandwidth is reduced. Because we know that,
for AMG and this particular workload, the hl2p policy is
best we only show the base and hl2p policy simulation runs.

60

65

70

75

80

85

90

95

100

105

6.0 2.4 1.2 0.8 6.0 2.4 1.2 0.8

S
o

lv
e

 p
h

a
s
e

 t
im

e
 n

o
rm

a
liz

e
d

 (
%

)

Memory bandwidth (bytes per cycle per core)

base hl2p

64 nodes8 nodes

Figure 5: Impact of memory bandwidth and cache
injection on AMG performance.

For both the 8 and the 64-node runs, cache injection be-
comes more beneficial when memory bandwidth is reduced.
This particular example demonstrates a reduction in the ex-
ecution time of the solve phase of AMG of more than 15%.
This is a strong indication that cache injection can play an
important role in future multicore systems where the mem-
ory wall for each core will be higher than it is today.

The last question to be answered in this section is whether
cache injection performance depends on processor speed. In
Figure 6 we present four different processor frequencies, each
coupled with our standard frequency memory system from
Table 2 and our worst case where we slow down the memory
system frequency to 0.8 bytes per cycle per core. The figure
shows that processor speed has no impact on the benefits of
cache injection; it is the processor speed to memory band-
width ratio that shows a significant gain for cache injection.

60

65

70

75

80

85

90

95

100

105

6.0 0.8 6.0 0.8 6.0 0.8 6.0 0.8

S
o

lv
e

 p
h

a
s
e

 t
im

e
 n

o
rm

a
liz

e
d

 (
%

)

Memory bandwidth (bytes per cycle per core)

base hl2p

2.1 GHz proc.1.8 GHz proc.1.2 GHz proc.900 MHz proc.

Figure 6: Impact of processor speed to memory
bandwidth fraction and cache injection on AMG
performance.

We conducted a series of tests on FFT to evaluate the im-
pact of cache injection policy and show the result in Figure 7.
We ran various problem sizes and show the performance re-
sults for the smallest and largest matrix we ran. The results
omitted from the graph for the intermediate sizes fall be-
tween the two extremes. We ran each experiment at least
three times on node sizes between 8 and 256 and show the
best performance achieved. FFT reports results in gigaflops
per second. To allow easier comparison to our AMG results
we invert the FFT results in our graph; i.e., shorter bars
indicate higher performance.

60

65

70

75

80

85

90

95

100

105

08 16 64 128 256 08 16 64 128 256

E
x
e

c
u

ti
o

n
 t

im
e

 n
o

rm
a

liz
e

d
 (

%
)

Number of nodes

base hl2 hl2p payload

Large problem sizeSmall problem size

Figure 7: Performance of each cache injection policy
for FFT for the small and large problem size and
increasing number of nodes.

For FFT, hlp2 is still a good policy, but we make two
observations. For the small problem size, the performance
gains from cache injection are less clear. In some cases, for
example hl2 on 8 nodes, cache injection decreases perfor-

mance. When we grow the problem size, the results become
more distinguishable as we can see on the right side of Fig-
ure 7. The hl2p and payload policy clearly improve perfor-
mance. In contrast to AMG it is hl2p and payload instead
of hl2p and hl2 that are the clear winners. In the following
sections we analyze the difference in application behavior to
provide an explanation for this.

4.2 Application communication characteristics
Why do the header policies (hl2 and hl2p) affect AMG

and FFT differently than the payload policies (hl2p and
payload)? We used the mpiP library [35] to characterize the
communication behavior of our applications. Figures 8 and 9
show the computation to communication ratio for AMG and
FFT. Scaling up AMG increases the time it spends com-
municating relative to compute time. AMG’s literature [22]
states that AMG can, on large number of nodes, spend more
than 90% of its time communicating. FFT on the other
hand, has a near constant, and fairly low, communication
share of the total execution time.

0

20

40

60

80

100

2 4 8 16 32 64

E
x
e

c
u

ti
o

n
 t

im
e

 (
%

)

Number of nodes

Communication Computation

Figure 8: Communication to computation ratio for
AMG.

0

20

40

60

80

100

08 16 64 128 256

E
x
e

c
u

ti
o

n
 t

im
e

 (
%

)

Number of nodes

Communication Computation

Figure 9: Communication to computation ratio for
FFT.

The increasing importance of communication for AMG
explains why, in Figures 4 and 5, the hl2p policy provides
a bigger performance gain on 64 nodes than on 8 nodes.
For FFT, the performance improvement shown in Figure 7
is nearly constant and independent of the number of nodes
used; particularly for the larger problem size.

The next step in understanding why cache injection pol-
icy affects AMG and FFT differently, is to analyze the types
of communication operations used by the two applications.
Figure 10 shows that AMG divides its communication time
about evenly among waiting, receiving, and sending point-
to-point messages. Investigating the messages sizes used by
AMG we learned that the relatively few MPI_Allreduce() op-
erations used are all 8 bytes in length. The size of the point-
to-point operations decreases as the number of nodes used
grows. At 64 nodes, the average message length is 152 bytes.

0

20

40

60

80

100

2 4 8 16 32 64

C
o

m
m

u
n

ic
a

ti
o

n
 t

im
e

 (
%

)

Number of nodes

Waitall Isend Irecv Allreduce

Figure 10: Types of communication operations used
by AMG.

0

20

40

60

80

100

08 16 64 128 256

C
o

m
m

u
n

ic
a

ti
o

n
 t

im
e

 (
%

)

Number of nodes

Alltoall Allreduce Others

Figure 11: Types of communication operations used
by FFT.

For the problem and node sizes we ran using AMG, mes-
sages are frequent and small. That explains why the header
policies – hl2 and hl2p – work well for AMG. FFT’s commu-
nications are dominated by MPI_Alltoall() (see Figure 11).
The average message length of these operations decrease as
the number of nodes used increase. However, even at 64
nodes, the average message size of an MPI_Alltoall() used
by FFT is still 64 kB. That is a large enough message so
that processing the payload takes much more time than the
inspection of the incoming header. Therefore, FFT benefits
from the payload policies. The hl2p policy combines hl2 and
payload and is therefore beneficial to both AMG and FFT.

4.3 Memory reads and cache misses
When we began this research project we expected that

cache injection can reduce the number of memory reads by

supplying data in the cache that is used right away [13]. In
this section we explore the cache and memory access behav-
ior of AMG and FFT and relate the observed cache injection
benefits to the reduced number of cache misses and memory
reads.

For the large problem size runs on the right hand side
of Figure 7 we show in Figures 12 and 13 the number of
memory reads and cache misses. FFT issues many more
reads than shown in Figure 12, but they are satisfied by the
caches. The reads shown in this figure are the ones that
were satisfied by main memory.

0

50 k

100 k

150 k

200 k

250 k

300 k

8 16 64 128 256

M
e

m
o

ry
 r

e
a

d
s

Number of nodes

base hl2 hl2p payload

Large problem size

Figure 12: Number of memory reads of FFT on
1,650 Mhz processors.

0

0.5 M

1.0 M

1.5 M

2.0 M

2.5 M

3.0 M

8 64 256 8 64 256
0

50 k

100 k

150 k

200 k

250 k

300 k

L
2

 c
a

c
h

e
 m

is
s
e

s

L
3

 c
a

c
h

e
 m

is
s
e

s

Number of nodes

base hl2 hl2p payload

L3 missesL2 misses

Figure 13: Number of cache misses of FFT’s large
problem size on 1,650 Mhz processors. The reduced
misses by the header policy in the L3 cache appear
much larger than the L2 due to the different scale
used in the y axes of each cache.

Figure 13 shows that the injection policies are not intru-
sive to the L2 and L3 caches. To the contrary, the hl2 pol-
icy reduces a very small fraction of L2 and L3 misses while
the payload policies reduce significantly the number of L3
misses. This behavior is the result of the relatively large
message sizes used by FFT, the number of bytes injected by
the payload policies is much larger than those by the header
policies. Although the hl2 policy reduces a very small frac-
tion of the L2 misses, this reduction “propagates” to the L3
cache and main memory as shown in Figure 12 (misses on
network data are compulsory misses in the base case). Sim-
ilarly, the reduction of L3 misses by the payload policies

results in a reduced number of memory reads. The large
fraction of reduced L3 misses/memory reads explains the
improved performance of FFT under the payload policies.

Figure 14 replicates the 64-node results from Figure 4 and
inserts the data for the two other memory speeds we mea-
sured. This better illustrates that the header policies keep
improving AMG’s performance as the CPU to memory fre-
quency ratio increases. A higher ratio means fewer bytes
from memory per floating-point operation of the CPU. The
payload policy is not really affected by this. To better un-
derstand the effect of the different policies on performance
across the different CPU to memory ratios, we study the
number of cache misses and memory reads as shown in Fig-
ures 15 and 16.

60

65

70

75

80

85

90

95

100

105

6.0 2.4 1.2 0.8

S
o

lv
e

 p
h

a
s
e

 t
im

e
 n

o
rm

a
liz

e
d

 (
%

)

Memory bandwidth (bytes per cycle per core)

base hl2 hl2p payload

64 nodes

Figure 14: Performance of AMG on 64 nodes and
2,100 Mhz processors.

1 k

10 k

100 k

500 k

6.0 2.4 1.2 0.8 6.0 2.4 1.2 0.8

C
a

c
h

e
 m

is
s
e

s

Memory bandwidth (bytes per cycle per core)

base hl2 hl2p payload

L3 missesL2 misses

Figure 15: Number of cache misses of AMG on 64
nodes and 2,100 Mhz processors. We use a loga-
rithmic scale on the y axis to show more clearly the
behavior of the header policies.

From Figure 15 we make several observations. First, as ex-
pected, the payload policy does not affect the L2 cache. Sec-
ond, the payload policy slightly reduces L3 misses as shown
by the hl2p policy; this reduction is not visible from the
payload policy itself due to the logarithmic scale of the y
axes. A small amount of data is actually injected to the
L3 cache since most messages are short and payloads of less
than a cache block are written to main memory only (see
Section 2). Third, the header policies largely reduce the
number of misses. As shown by Figure 16 these misses are

1 k

10 k

100 k

500 k

6.0 2.4 1.2 0.8

M
e

m
o

ry
 r

e
a

d
s

Memory bandwidth (bytes per cycle per core)

base hl2 hl2p payload

64 nodes

Figure 16: Number of memory reads of AMG on
2,100 Mhz processors. We use a logarithmic scale
on the y axis to show more clearly the behavior of
the header policies.

compulsory since they propagate from the L2 to the L3 and
to memory. The large reduction of cache misses/memory
reads confirms the performance improvement of AMG un-
der the header policies.

We now focus on the behavior of the caches and mem-
ory across the different memory bandwidths studied (see
Figures 15 and 16). The number of reads that the header
policies cannot fulfill from cache is relatively constant across
the various memory speeds. The number of cache misses and
memory reads for base and payload is reduced as memory
gets slower. To understand this behavior, we consult Fig-
ure 17 which shows the number of events that travel across
the memory bus between the CPU and the NIC.

0

50 k

100 k

150 k

200 k

250 k

300 k

350 k

6.0 2.4 1.2 0.8

N
IC

 t
o

 h
o

s
t

e
v
e

n
ts

Memory bandwidth (bytes per cycle per core)

base hl2 hl2p payload

64 nodes

Figure 17: Number of NIC to host communication
events of AMG on 2,100 MHz processors.

AMG, with our test cases, transmits a lot of messages
and spends a considerable amount of time waiting for new
information to arrive. The MPI_Waitall() function polls the
NIC to learn whether a send has completed or a new message
has arrived.

When we lower the available memory bandwidth the CPU
can process fewer of these events because it is hitting the
memory wall. This is visible for base and payload which pro-
cess fewer NIC events as memory gets slower. That means
the reduced number of reads across memory speeds in Fig-
ure 16 by the payload policy is simply an indication that

the MPI library polls the NIC less frequently due to mem-
ory constraints.

When header policies are used, the CPU can process an
almost constant number of NIC events and is not hampered
by reduced memory speed. The reason is that the CPU
fetches these events from the L2 cache.

In summary, the different injection policies for the appli-
cations studied here are not cache intrusive, to the contrary,
they can decrease the number of compulsory misses due to
network data and thus reducing memory traffic. Choosing
the right policy, based on the communication characteristics
of the application, is key to improving performance.

4.4 Collective operations
Collective operations are an important aspect of many

parallel applications. We analyze the impact of cache in-
jection on these operations to provide application and sys-
tem developers with information about the potential ben-
efits of this technique on performance based on the com-
munication characteristics of their applications. We use a
micro-benchmark that measures the average execution time
of seven runs of specified collective operations. We run this
micro-benchmark at least five times for every experiment
and report the minimum of the runs.

Cache injection can improve the performance of parallel
applications that use collectives by a) reducing the execu-
tion time of a collective operation, b) reducing the latency
and memory pressure of accessing data provided by a col-
lective operation, or c) both. The benefit provided in (a)
is independent of the caller’s usage of the data delivered by
the collective operation, while (b) completely depends on
this usage. All of our injection policies have the potential of
addressing (a), while only the payload policies (payload and
hl2p) can address (b).

The extent to which an injection policy can address (a)
is dependent on the algorithms used to implement the col-
lective operation, e.g., binomial tree, recursive doubling, re-
cursive halving, and ring [34]. Figure 18 shows MPICH’s
implementation of Broadcast on 8 nodes for 32 kB of data.
For this message size and number of processors, this oper-
ation performs a Scatter followed by an Allgather (Van de
Geijn algorithm [7]). Scatter is implemented using a bino-
mial tree, while Allgather uses recursive doubling.

As this figure shows, data traverses through several nodes
before it reaches its final destination. At every step of the
algorithm, a subset of the nodes is involved sending and
receiving messages. Each of these nodes process incoming
messages selecting, storing, and forwarding payload data (an
Allreduce operation may perform a reduction operation).
Cache injection can improve the performance of these op-
erations by having their operands in cache instead of main
memory. The local improvements and dependencies between
nodes result in a significant reduction in the overall execu-
tion time of the collective operation.

In Figure 19 we show the impact of our injection policies
on the execution time of Broadcast. The payload policies re-
duce execution time by up to ∼30% as a function of message
size. This is due to an increased number of L3 hits for larger
messages. The different peaks in this figure show the switch
points between algorithms used to implement this operation
– binomial tree broadcast for messages less than 12 kB, Van
de Geijn with recursive doubling between 12 and 512 kB,
and Van de Geijn with ring for 512 kB and greater.

0

1

7

653

42

4
4

8 8
16

8

16

4
4

4
4 16

8 8

16
8 4

4

16

Figure 18: MPICH’s broadcast algorithm for 32 kB
and 8 nodes. Broadcast is implemented using Van
de Geijn algorithm, which performs a Scatter (sin-
gle lines) followed by an Allgather (double lines).
Message sizes along the edges are given in kB. Dou-
ble lines indicate communication of the specified size
in both directions. Using a small number of nodes
makes the algorithm easier to display.

-5

0

5

10

15

20

25

30

35

512 B 2 KB 8 KB 32 KB 128 KB 512 KB 2 MB

E
x
e

c
u

ti
o

n
 t

im
e

 i
m

p
ro

v
e

m
e

n
t

(%
)

Size

base
hl2

payload
hl2p

Figure 19: Effect of the different cache injection poli-
cies on the execution time of Broadcast on 64 nodes.

The hl2 policy is not particularly suited for this operation
since the time to process the message’s data dominates the
processing of the small message header. Figure 19 shows
that the improvement by the hl2 policy diminishes as the
message size increases. The hl2 policy is useful in latency-
sensitive operations where a significant amount of the pro-
cessing per message is spent on processing the message’s
header. Applications using a large number of short mes-
sages meet this criteria. This is the reason hl2 improves
AMG performance.

We also measured the effect of the different policies on
other collective operations. We observed that hl2 has no ef-
fect on Allreduce, Allgather, Alltoall, Broadcast, and Scatter
for 8, 16, and 64 nodes. We also observed that hl2p performs
almost equally as payload (hl2 provides almost no improve-
ment), and that the payload policy shows a similar pattern
across node counts. Thus, in the following experiments we
only describe the payload policy on the larger node count.

Figure 20 shows the impact of the payload policy on collec-
tive operations for 64 nodes. The different peaks of Broad-
cast, Allgather, and Allreduce show the switch points be-
tween algorithms used to implement these operations – re-
cursive doubling, ring, recursive halving, and binomial tree.
A common characteristic of these algorithms is the inter-
mediate processing of data as messages propagate to their
final destination. As we showed for Broadcast, the payload
policy can improve the performance of these intermediate
operations resulting in an improvement of the overall exe-
cution time. The best performing algorithms are those used
by Broadcast. The graph also shows, implicitly, the im-
provement of Scatter, demonstrated by the improvement of
Broadcast over Allgather for messages of at least 12 kB –
Broadcast uses the Van de Geijn algorithm, which performs
a Scatter followed by an Allgather.

-5

0

5

10

15

20

25

30

35

512 B 2 KB 8 KB 32 KB 128 KB 512 KB 2 MB

E
x
e

c
u

ti
o

n
 t

im
e

 i
m

p
ro

v
e

m
e

n
t

(%
)

Size

Bcast
Allgather
Allreduce

Alltoall

Figure 20: Performance improvement of certain col-
lective operations using the payload policy on 64
nodes.

Figure 20 also shows that cache injection does not improve
the performance of Alltoall operations. Unlike the collec-
tives discussed above, Alltoall is implemented by a different
type of algorithm [34]. For small messages of at most 32 kB,
every node posts p non-blocking receives and p non-blocking
sends followed by a Waitall operation, where p is the number
of nodes. The data is transferred directly from the source
to the final destination in one step, thus there is no inter-
mediate processing of the data that can be exploited by the
payload policy. For messages larger than 32 kB, a pairwise-
exchange algorithm is used. Similarly to the small message
case, there is no intermediate usage of the data during the
operation.

Thus, the benefits of the payload policy on Alltoall are not
realized during its execution, but can be leveraged when the
operation completes. If an application uses the Alltoall data
promptly after completion of the operation, the data will still
be in the cache and thus, improve the subsequent computa-
tions on this data. Since this operation delivers data to all
the nodes in the communicator, every node would see an im-
provement. This is the reason the payload policy improves
FFT performance although it does not reduce Alltoall’s ex-
ecution time.

In summary, the payload policy reduces the execution
time of Allgather, Allreduce, Broadcast, and Scatter by im-
proving the intermediate processing of the underlying algo-
rithms. Cache injection may improve the performance of
applications strongly affected by these operations or well-

known collective algorithms such as binomial tree, recursive
doubling, and ring. The impact of the payload policy on
applications driven by Alltoall operations is dependent on
their data usage patterns.

The hl2 policy is best suited for applications exchanging
a large number of small messages. These applications tend
to be latency-sensitive. In addition, we believe that hl2 will
improve the performance of algorithms such as the Bruck
algorithm [10] used in MPICH for very small messages.

Since the impact of cache injection on the different collec-
tives is dependent on the algorithms used to implement these
operations, cache injection performance may differ among
MPI implementations.

5. RELATED WORK
Bohrer et al. [9] propose cache injection as a mechanism to

reduce memory access latency in processing I/O data. Us-
ing simulation, the authors show improvements in execution
time for network and disk micro-benchmarks. Huggahalli
et al. [17] show that cache injection of incoming network
packets, termed Direct Cache Access (DCA), can reduce
data access latency and memory bandwidth usage for sev-
eral benchmarks including SPECweb99, TPC-W and TPC-
C. Their simulation work reduced significantly the overhead
of TCP/IP protocol processing.

The processing of TCP/IP packets is a desirable target
for cache injection since network processing occurs imme-
diately after writing the packet to the cache (signaled by
an interrupt to the processor). DCA improves the perfor-
mance of memory copies executed by the network stack. Our
work focuses on high-performance computing environments
where message data is usually delivered directly to the ap-
plication without copies or interrupts. In this context, the
application’s data usage patterns determine the effectiveness
of cache injection.

Kumar et al. [20] provide an initial evaluation of DCA on
a real machine based on Intel’s I/O Acceleration Technology
(I/OAT) [31]. This technology, through prefetch hint, allows
the NIC to signal the host’s prefetch engine to start fetching
incoming network data into the cache. Their study shows
that prefetch hint can reduce processor utilization for cer-
tain micro-benchmarks. Their target environment is a data
center where many applications may be running at once on
the same node. Therefore, applying DCA to the process-
ing of network packets may increase processor availability
for other applications. This study has been extended to ad-
dress the usage of DCA in multi-core architectures and a
standard Linux network stack [21]. Unlike cache injection,
the prefetch hint implementation of DCA does not reduce
memory bandwidth usage.

León et al. [12] compare cache injection with data prefetch-
ing. Using simulation, the authors show that cache injection
outperforms prefetching in reducing memory bandwidth uti-
lization. This reduction is important for applications limited
by memory bandwidth. The authors also propose using ap-
propriate injection policies based on OS, compiler, and ap-
plication information to minimize the amount of pollution
introduced by cache injection in an HPC environment. The
proposed policies, however, were not evaluated.

Khunjush et al. [19] propose the creation of a network
cache to store incoming network data of small size (one cache
block). Using simulation, the authors show their system
can avoid memory copies due to network stack processing.

The authors gathered traces from a real system and replay
them into one simulated node which implements their ar-
chitectural modifications. Unlike our work, this approach is
applicable only to small packets and has the cost of imple-
menting and searching an additional cache in the system.

6. SUMMARY AND CONCLUSIONS
In this paper, we present an empirical evaluation of three

types of cache injection policies – header, payload, and the
combination of the two – and their effect on the performance
of two applications and several collective operations.

The choice of injection policy is an important factor in
the performance of cache injection. Our results show that
the header policies improve the performance of AMG, while
the payload policies improve the performance of FFT. The
different effect on performance is directly related to the ap-
plication’s communication characteristics. The header poli-
cies are best suited for applications using a large number of
small messages, while the payload policies are most effective
on applications exchanging medium and large messages.

Our results also show that for the applications studied
here, cache injection does not have a negative impact on the
caches. As expected, the policies that improve performance
significantly reduce the number of compulsory cache misses
relative to the total number of main memory accesses. Those
policies that do not improve performance keep the number
of L2 and L3 misses close to the base case. Clearly, the im-
pact on the caches is application dependent – an application
needs to consume the injected data promptly. Many appli-
cations, however, have this property. For example, codes
using collective operations will likely use the network data
shortly after the operation completes.

To help identify types of applications that may benefit
from cache injection based on their communication char-
acteristics, we investigated the impact of this technique on
collective operations. The payload policies reduce the execu-
tion time of Broadcast, Allgather, Allreduce, and Scatter by
up to 30% as a function of message size. The improvement is
dependent on the algorithms used to implement these oper-
ations: binomial tree, recursive halving, recursive doubling,
and ring. Cache injection, however, does not improve the
execution time of Alltoall operations due to the pairwise-
exchange algorithm used. Despite this lack of improvement,
applications using Alltoall operations can still benefit from
cache injection by using the data delivered by the operation
promptly after completion. This is the reason the payload
policy improves FFT performance although it does not re-
duce Alltoall’s execution time.

Thus, based on the communication characteristics of ap-
plications, one can make an informed decision about the
potential benefits of this technique on performance. This
provides a metric for application developers to determine
whether to enable/disable cache injection when it becomes
available. Furthermore, our work shows that cache injection
hardware will be more broadly useful and perform better if
it supports custom replacement policies for specific appli-
cations and different programming models, rather than just
the ability to turn it on or off.

Since we expect future generation multicore processors to
deliver less memory bandwidth per core, we also explored
the impact of cache injection on systems with different pro-
cessor and memory speed configurations. Our results indi-
cate that cache injection can play an important role in these

systems where the memory wall for each core will be higher
than it is today. Furthermore, understanding the trade-offs
of this technique is important as new architectures capa-
ble of performing cache injection, such as the PERCS high-
performance interconnect, become available.

For future work, we are interested in analyzing a wider
range of applications and problem sizes. We also plan on in-
vestigating dynamic policy reconfigurations. Using “hints”
from applications and the MPI library, the NIC may deter-
mine automatically, for every message, the target device in
the memory hierarchy. A simple example, a generalization
of the policies studied here, is a dynamic policy that selects
the target cache based on the size of incoming messages. A
more complex example involves using hardware counters and
other information so that the NIC can dynamically adapt
when the caches are polluted.

7. REFERENCES
[1] AMD Inc. Opteron 875, Opteron 8393SE, and

Opteron 8439SE. http://www.amd.com/, Mar. 2010.

[2] G. Anselmi, B. Blanchard, Y. Cho, C. Hales, and
M. Quezada. IBM Power 770 and 780 technical
overview and introduction. Technical Report
REDP-4639-00, IBM Corp., Mar. 2010.

[3] G. Anselmi, G. Linzmeier, W. Seiwald, P. Vandamme,
and S. Vetter. IBM system p5 570 technical overview
and introduction. Technical Report REDP-9117-01,
IBM Corp., Sept. 2006.

[4] J. Appavoo, M. Auslander, M. Burtico, D. D. Silva,
O. Krieger, M. Mergen, M. Ostrowski, B. Rosenburg,
R. W. Wisniewski, and J. Xenidis. K42: an
open-source Linux-compatible scalable operating
system kernel. IBM Systems Journal, 44(2):427–440,
2005.

[5] B. Arimilli, R. Arimilli, V. Chung, S. Clark,
W. Denzel, B. Drerup, T. Hoefler, J. Joyner, J. Lewis,
J. Li, N. Ni, and R. Rajamony. The PERCS
high-performance interconnect. In Symposium on
High-Performance Interconnects (Hot Interconnects),
Aug. 2010.

[6] J.-L. Baer and T.-F. Chen. An effective on-chip
preloading scheme to reduce data access penalty. In
ACM/IEEE conference on Supercomputing (SC),
pages 176–186, Albuquerque, New Mexico, 1991.

[7] M. Barnett, L. Shuler, S. Gupta, D. G. Payne, R. A.
van de Geijn, and J. Watts. Building a
high-performance collective communication library. In
Supercomputing, pages 107–116, 1994.

[8] P. Bohrer, M. Elnozahy, A. Gheith, C. Lefurgy,
T. Nakra, J. Peterson, R. Rajamony, R. Rockhold,
H. Shafi, R. Simpson, E. Speight, K. Sudeep, E. V.
Hensbergen, and L. Zhang. Mambo – a full system
simulator for the PowerPC architecture. ACM
SIGMETRICS Performance Evaluation Review,
31(4):8–12, Mar. 2004.

[9] P. Bohrer, R. Rajamony, and H. Shafi. Method and
apparatus for accelerating Input/Output processing
using cache injections, Mar. 2004. US Patent No. US
6,711,650 B1.

[10] J. Bruck, C.-T. Ho, S. Kipnis, and D. Weathersby.
Efficient algorithms for all-to-all communications in
multi-port message-passing systems. In Symposium on

Parallel Algorithms and Architectures (SPAA), pages
298–309, 1994.

[11] C. Cler and C. Costantini. IBM Power 595 technical
overview and introduction. Technical Report
REDP-4440-00, IBM Corp., Aug. 2008.

[12] E. A. León, K. B. Ferreira, and A. B. Maccabe.
Reducing the impact of the memory wall for I/O using
cache injection. In Symposium on High-Performance
Interconnects (Hot Interconnects), Palo Alto, CA,
Aug. 2007.

[13] E. A. León, R. Riesen, A. B. Maccabe, and P. G.
Bridges. Instruction-level simulation of a cluster at
scale. In International Conference on
High-Performance Computing, Networking, Storage
and Analysis (SC), Portland, OR, Nov. 2009.

[14] K. B. Ferreira, R. Brightwell, and P. G. Bridges.
Characterizing application sensitivity to OS
interference using kernel-level noise injection. In 2008
ACM/IEEE Conference on Supercomputing (SC),
November 2008.

[15] R. L. Graham, T. S. Woodall, and J. M. Squyres.
Open MPI: A flexible high performance MPI. In 6th
Annual International Conference on Parallel
Processing and Applied Mathematics, Poznan, Poland,
September 2005.

[16] V. E. Henson and U. M. Yang. Boomeramg: a parallel
algebraic multigrid solver and preconditioner. Applied
Numerical Mathematics, 41:155–177, 2000.

[17] R. Huggahalli, R. Iyer, and S. Tetrick. Direct cache
access for high bandwidth network I/O. In 32nd
Annual International Symposium on Computer
Architecture (ISCA’05), pages 50–59, Madison, WI,
June 2005.

[18] Intel Corp. Xeon E5502, Xeon X5667, and Xeon
X7560. http://ark.intel.com/, Mar. 2010.

[19] F. Khunjush and N. J. Dimopoulos. Comparing
direct-to-cache transfer policies to TCP/IP and
M-VIA during receive operations in mpi environments.
In 5th International Symposium on Parallel and
Distributed Processing and Applications (ISPA’07),
Niagara Falls, Canada, Aug. 2007.

[20] A. Kumar and R. Huggahalli. Impact of cache
coherence protocols on the processing of network
traffic. In 40th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’07), pages
161–171, Chicago, IL, Dec. 2007. IEEE Computer
Society.

[21] A. Kumar, R. Huggahalli, and S. Makineni.
Characterization of direct cache access on multi-core
systems and 10GbE. In 15th International Symposium
on High-Performance Computer Architecture
(HPCA’09), Raleigh, NC, Feb. 2009.

[22] Lawrence Livermore National Laboratory. ASC
Sequoia benchmark codes.
https://asc.llnl.gov/sequoia/benchmarks/, Apr.
2008.

[23] P. Luszczek, J. J. Dongarra, D. Koester,
R. Rabenseifner, B. Lucas, J. Kepner, J. McCalpin,
D. Bailey, and D. Takahashi. Introduction to the HPC
challenge benchmark suite, Mar. 2005.

[24] S. A. McKee, S. A. Moyer, and W. A. Wulf. Increasing
memory bandwidth for vector computations. In
International Conference on Programming Languages
and System Architectures, pages 87–104, Zurich,
Switzerland, Mar. 1994.

[25] L. McVoy and C. Staelin. lmbench: Portable tools for
performance analysis. In USENIX Annual Technical
Conference, pages 279–294, Jan. 1996.

[26] T. Mowry and A. Gupta. Tolerating latency through
software-controlled prefetching in shared-memory
multiprocessors. Journal of Parallel and Distributed
Computing, 12(2):87–106, 1991.

[27] S. A. Moyer. Access Ordering and Effective Memory
Bandwidth. PhD thesis, Department of Computer
Science, University of Virginia, Apr. 1993.

[28] R. Murphy. On the effects of memory latency and
bandwidth on supercomputer application
performance. In IEEE International Symposium on
Workload Characterization (IISWC’07), Boston, MA,
Sept. 2007.

[29] R. C. Murphy and P. M. Kogge. On the memory
access patterns of supercomputer applications:
Benchmark selection and its implications. IEEE
Transactions on Computers, 56(7):937–945, July 2007.

[30] J. Ousterhout. Why aren’t operating systems getting
faster as fast as hardware. In USENIX Annual
Technical Conference, pages 247–256, 1990.

[31] G. Regnier, S. Makineni, R. Illikkal, R. Iyer,
D. Minturn, R. Huggahalli, D. Newell, L. Cline, and
A. Foong. TCP onloading for data center servers.
Computer, 37(11):48–58, Nov. 2004.

[32] R. Riesen. A hybrid MPI simulator. In IEEE
International Conference on Cluster Computing
(Cluster’06), Barcelona, Spain, Sept. 2006.

[33] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J.
Eickemeyer, and J. B. Joyner. POWER5 system
microarchitecture. IBM Journal of Research and
Development, 49(4/5), 2005.

[34] R. Thakur, R. Rabenseifner, and W. Gropp.
Optimization of collective communication operations
in MPICH. International Journal of High
Performance Computing Applications, 19:49–66, 2005.

[35] J. S. Vetter and M. O. McCracken. Statistical
scalability analysis of communication operations in
distributed applications. In ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPOPP’01), Snowbird, UT, July 2001.

[36] W. A. Wulf and S. A. McKee. Hitting the memory
wall: Implications of the obvious. ACM SIGARCH
Computer Architecture News, 3(1):20–24, Mar. 1995.

