
Instrumenting LogP Parameters in GM:
Implementation and Validation

�

Edgar A. León, Arthur B. Maccabe
Scalable Systems Lab

Computer Science Department
The University of New Mexico
Albuquerque, NM 87131-1386�

leon,maccabe � @cs.unm.edu

Ron Brightwell
Scalable Computing Systems Department

Sandia National Laboratories
Org 9223, MS 1110

Albuquerque, NM 87185-1110
bright@cs.sandia.gov

Abstract

This paper describes an apparatus which can be used
to vary communication performance parameters for MPI
applications, and provides a tool to analyze the impact of
communication performance on parallel applications. Our
apparatus is based on Myrinet (along with GM). We use
an extension of the LogP model to allow higher flexibility
in determining the parameter(s) to which parallel applica-
tions may be more sensitive to. We show that individual
communication parameters can be controlled within a small
percentage error, and that the other parameters remain un-
changed.

1 Introduction

Parallel architectures are driven by the needs of applica-
tions. Application developers and users, often deal with a
variety of problems regarding the performance of applica-
tions on specific parallel architectures. The origin of these
is diverse and may be related to different aspects of the
application and the platform, such as scalability, latency
and bandwidth issues, balance between communication and
computation, etc. We have created an apparatus to identify
the causes of these problems regarding communication per-
formance, and thus help users and developers in improving
overall application performance and to make decisions on
which parallel architectures may or may not be suitable for
their applications.

In this paper, we describe a tool to vary communication
parameters on high-performance clusters. This tool should
prove useful in analyzing the requirements and sensitivity

�
This work was supported in part by Sandia National Laboratories un-

der contract number AP-1739.

of applications to communication performance. Our appa-
ratus is based on the LogP model, which has been useful in
characterizing communication performance and extended in
different ways, to provide specific characterizations in terms
of message size, type of network, etc. We also extend this
model to specify a more fine grain characterization of the
network, providing greater detail in the sensitivity of appli-
cations to network performance.

Over the last few years, Myrinet has become the high-
performance clusters interconnect of preference over the
community. Together with Myrinet, the GM message-
passing system has been widely used and, in many cases,
has served as the basis for customized communication sys-
tems that use Myrinet. In this work, we have instru-
mented an extension of the LogP communication param-
eters into GM, so we can arbitrarily vary communication
performance. Despite the fact that we implement our appa-
ratus in GM, we do not expect applications to be written in
GM to benefit from it, but in MPI (Message Passing Inter-
face), which defines a standard, portable message-passing
system. MPI has been ported to a variety of platforms, in
particular to Myrinet through GM. Thus, any library imple-
mented on top of GM will provide the apparatus.

Our apparatus allows a better understanding of parallel
applications and may suggest possible communication bot-
tlenecks that would otherwise be hard to detect. It is also
specific in terms of which communication parameter(s) the
application may be more sensitive to. It also provides ap-
plication designers with a better understanding of the archi-
tectural requirements of their applications, and if a certain
platform (or upgrade) may or may not improve the perfor-
mance of their applications in a significant way.

The remainder of this paper is organized as follows. Sec-
tions 2 and 3 give a brief overview of GM and MPICH-GM
respectively. A description of the communication parame-
ters used in our apparatus is presented in Section 4. Sec-



tion 5 describes the instrumentation of the LogP parameters
in GM. Section 6 describes our measurement methodology
and shows the results of our empirical validation and cali-
bration of the communication parameters. A discussion of
related work is presented in Section 7. Finally, Section 8
presents our conclusions and outlines our intentions for fu-
ture work.

2 Glenn’s Messages (GM)

GM [12] is a low-level message-passing system created
by Myricom1 for its Myrinet networks [3]. GM is com-
prised of a driver, a library, and a Myrinet Control Program
(MCP) that runs on the network interface. A Myrinet in-
terface in turn, is comprised of the LANai [13] and local
SRAM memory.

GM provides reliable, in order delivery of messages. It
allows any non-privileged user to use the network interface
directly without the intervention of the host Operating Sys-
tem (OS). This technique, called OS-bypass, offloads part
of the OS functionality to the network interface, avoiding
the need to interrupt the OS to handle message sends or re-
ceives. GM has several internal queues to handle the com-
munication between the LANai and the user. These queues
reside in either, host virtual memory or LANai SRAM.

A message to be sent over the network is divided in frag-
ments called packets. Although Myrinet does not impose
any limitation on the size of the fragment to send, GM uses
packets of GM MTU (= 4KB) length, where it reaches its
maximum bandwidth.

Flow control in GM is done at two levels. At the user
level, GM provides send and receive tokens to the user. A
send token is needed by the user to send a message over
the network. Similarly, a receive token is needed in or-
der to post a receive buffer. When the operation com-
pletes, the token is passed back to the user. The number of
tokens (GM NUM SEND TOKENS + GM NUM RECV-
TOKENS) assigned to a user determines how many slots

there are to use in certain LANai queues and it is based on
a page size of the host machine. At the MCP level, GM has
an “ACK/NACK-based go back N” flow control protocol.

The MCP is a state based program and controls the trans-
actions on its four state machines: SDMA, SEND, RDMA
and RECV, see Figure 1. Depending on the state of the
”system”, the MCP will trigger events for the different state
machine interfaces to control the flow of messages between
the network and the user, and vice-versa.

Upon reception of a packet, the RECV state machine
checks its header, if it’s not valid, the packet is dropped. If
the header is valid, it DMAs the packet to a buffer or stag-
ing area in LANai SRAM (at this point the packet is being

1http://www.myri.com.

called a chunk). The RECV machine notifies the RDMA
machine about chunks in the SRAM receive buffers.

The RDMA state machine is in charge of dealing with
the message fragments or chunks in LANai SRAM. Among
other tasks, the RDMA machine looks up for user receive
buffers in the receive queue that matches the message size
and priority of the incoming message. If the message is
bigger than a constant (GM MAX FAST RECV BYTES
= 128) and there’s no matching buffer, the message is
dropped. Otherwise, the message is DMAed to the match-
ing user buffer and an event describing the receive is en-
queued in a receive event queue in host memory.

The user is in charge of polling the receive event queue
to check for receive events (and other events) that have
completed. The user does that by using the function
gm receive() (part of the library interface) and other sim-
ilar functions2.

The user sends a message by invoking the GM library
function gm send with callback() and other similar send
functions3. This function passes the send descriptor (or to-
ken) to the send queue in LANai SRAM. Note that prior to
the send, the user should allocate the message in DMAable
memory at the host (this can be done by using the library
functions gm malloc() or gm register memory()), to en-
sure that the DMA engine would be able to transfer the mes-
sage directly from user space to LANai SRAM.

The SDMA state machine removes an entry from the
send queue, and begins the transfer of the message to LANai
SRAM in chunks that fit in the send buffers, as the buffers
become available. It will also notify the SEND state ma-
chine to begin the delivery of the chunks. The SEND ma-
chine then injects the chunks as packets to the network
prepending the correct route to the destination node, and
records the send to the sent list.

3 MPI on GM (MPICH-GM)

MPICH-GM is a port of MPICH [6], a portable imple-
mentation of MPI, to GM. MPICH-GM is a two-level proto-
col, it uses an eager protocol for the transmission of small
messages, and a rendez-vous protocol for long messages.
The two-level protocol reflects the trade-offs to achieve low-
latency and high-bandwidth.

The eager protocol allows the transmission of small mes-
sages, even when a receive buffer has not been posted by the
receiver. The receiver temporarily stores the incoming mes-
sage until the message is consumed. This technique allows
low-latency but low-bandwidth due to the extra copy at the
receive side. This protocol is non-blocking since it allows

2gm blocking receive() and gm blocking receive no spin().
3gm send to peer with callback() and gm directed send with-

callback()

2



recv_event_queuedescriptor
put recv

put send
descriptor

RDMA

RECV

recv_queue

gm_provide_receive_buffer() gm_*receive*() gm_*send_*with_callback()

SDMA

SEND

send_queue

m
es

sa
ge

po
st

ed
 b

uf
fe

r

LANai SRAM

User Virtual Memory

Network

staging areas staging areas

br
ea

k 
m

es
sa

ge
 in

to
 c

hu
nk

s

D
M

A
 c

hu
nk

s 
in

to
 r

ec
v 

bu
ff

er

incoming packet outgoing packet

DMA packets DMA chunks

get send descriptor

put event

get recv descriptor

put event

Figure 1. The GM MCP and its interaction with user space in a message transmission and reception.
Dash rectangles refer to buffer space, square rectangles denominate either a state machine or a
queue. Rounded rectangles, identify the areas where the LosorgsgrGP parameters are implemented.

the sender to complete even when there’s no matching re-
ceive.

To avoid significant overhead in memory copies for long
messages, the rendez-vous protocol implements a 3-way
handshaking. The sender transmits a request-to-send to the
receiver, the receiver replies back to the sender with a clear-
to-send, and finally the sender transmits the messages. The
reply from the receiver contains the virtual memory ad-
dress in which the message should be delivered, thus the
sender performs a remote put operation to move the mes-
sage to its destination. In GM, the remote put operation
is implemented via the function gm directed send with-
callback(). Thus, this protocol achieves higher band-

width but lower latency due to the handshake.

An interesting feature of MPICH-GM is the ability to
change the behavior of blocking receive MPI calls. Three
modes are provided: polling, blocking and hybrid. By de-
fault it uses the polling method (through the GM function
gm receive()) in which the network devices is polled un-
til an event is found. This method achieves low latency,
but high CPU utilization. In the blocking method, the MPI
function sleeps in the kernel. Upon each event, the net-
work interface delivers an interrupt to the host to awaken
the sleeping function. This behavior is achieved through
the GM function gm blocking receive no spin(). This
method allows low CPU utilization, but the interrupt and

context switch costs increase the latency. In the hybrid
method, the MPI function polls for 1 millisecond and
then goes to sleep. This method uses the GM function
gm blocking receive().

4 The LosorgsgrGP parameters

Our tool is based on an extension to the LogP commu-
nication parameters [4]. LogP is a model for distributed-
memory multiprocessors and abstracts the parallel architec-
ture into four parameters:

� Latency: an upper bound on the time to transmit a
small message.

� overhead: the time that the host processor is engaged
in sending or receiving a message and cannot do any
other work.

� gap: the minimum time interval between consecutive
message transmissions or consecutive message recep-
tions at a node. The reciprocal of g corresponds to the
available per-node bandwidth

� Processors: the number of nodes in the system.

This model is asynchronous and the latency may vary
(although bounded by the parameter L). It considers that the

3



network has a finite capacity, i.e., at most
�
L � g � messages

may be on the network at any given time.
The model does not differentiate between short and long

messages, thus it does not account for special devices to
support the transmission of long messages. To address
this issue, an extension of this model was created: LogGP
model [1]. The new parameter, G, defines the time per byte
for a long message. As in the LogP model, the reciprocal of
G characterizes the available per processor communication
bandwidth for long messages.

Under this model, the time to transmit a small message
from one process to another in different nodes, takes: o �
L � o cycles. To transmit a long message of k bytes, takes:
o ��� k � 1 � G � L � o. First, the sender processor initiates
the transfer incurring in o, subsequent bytes are sent every G
cycles. The last byte enters the network at time o ��� k � 1 � G
and arrives at the host L � o cycles later.

Note that the send and receive overhead are not distin-
guished. Considering that the send and receive operations
are usually not symmetric, we use two independent param-
eters to model the overhead: the send overhead, os, and the
receive overhead, or.

Another issue arises while considering the instrumenta-
tion of the gap. The gap is the minimum time interval be-
tween consecutive sends or consecutive receives; if we only
control the gap on the send side, in a many-to-one commu-
nication semantics, the receiver may be receiving consec-
utive messages faster than the gap; if we only control the
receive side, in a one-to-many communication semantics,
the sender may send messages faster than the gap. Thus, we
consider the gap as being composed of two parameters: the
send gap, gs, and the receive gap, gr. We consider these two
separately and independent of each other.

In summary, we characterize the communication perfor-
mance of a parallel machine in terms of seven parameters:
L, os, or, gs, gr, G and P. These parameters allow us a high-
degree of flexibility to determine the particular parameter(s)
to which an application may be sensitive to.

5 Implementation

We instrument the communication parameters based on
GM version 1.2.3. Timing measurements are done at two
levels: (1) at the MCP level, using the Real-Time-Clock
(RTC) in the Myrinet interface, and (2) at the host user
level, using the function gettimeofday(). The Myrinet
interfaces used in this work have an RTC reference period
of 1

2 µs.

5.1 Latency (L)

GM maintains a queue of events in host memory (receive
event queue) which is filled by the MCP when an event oc-

curs. The GM user, through the library, polls this queue for
new events such as the completion of a receive. The queue
is accessed through a port.

To increase the latency without modifying other LogP
parameters, we added a delay queue as shown in Figure 2.
The delay queue has the same size as the receive event
queue and it is accessed through the same port. When an
event is inserted in the event queue, the time at which the
event should be delivered (time of arrival + delay) is in-
serted into the delay queue. When the user polls for events,
the delay queue is polled for events ready to be delivered.

From the LogP model,

RTT
2 	 os � L � or 
 (1)

L 	
RT T

2
� os � or (2)

In a message exchange, the delay parameter is set in both
parties to the desired added delay value x and the formula
for the new latency L � becomes:

L � 	
RT T �

2
� os � or by (2)

	
RT T � 2x

2
� os � or

	
RT T

2
� os � or � x

	 L � x by (2) (3)

To implement the added delay, we modified the im-
plementations of two library functions: gm open() and
gm receive(). In gm open() we set the delay value and
allocate and initialize the delay queue. The delay itself was
added in gm receive(). This function returns an event if
there is an event in the event queue or no event if the queue
is empty. When a new event is inserted in the event queue,
the function checks if the event is a receive event, if so, the
delayed delivery time is calculated and inserted in the delay
queue. Once the new time is calculated, the delay queue is
polled for events ready to be delivered. When there are no
events pending in the event queue, the delay queue is polled
to check for events ready to be delivered.

An important issue arises due to the gm unknown() li-
brary function. The user may pass events to this function
to be handled. For example, the user may only be inter-
ested in RECV EVENT (normal receive event), passing all
other events to gm unknown(). If a FAST RECV EVENT
(receive event for small messages) arises, gm unknown()
will convert this event into a RECV EVENT. To perform
the conversion, gm unknown() replaces the type of the
event and rewinds the current event queue pointer to the
previous slot. To avoid adding delay latency twice for
an event such as a FAST RECV EVENT that was passed

4



����������
������������������������

����������������������������
��������������

��������������
��������������	�	�	�		�	�	�	


�
�
�

�
�
�
 ����������
����������

������
����������������������������

�������������� ����������
���������� ����������

���������� ����������
���������� ����������

����������

τ + ∆

τ + ∆

gm_*receive*()

recv event queue delay queue

τ

τ + δ

τ + ∆

time

Or

L

recv event

Figure 2. Implementation of L and or. A new event is inserted in the event queue at time τ, or has
been increased by δ and L has been increased by ∆. If ∆ 	 0, the event will be delivered at time τ � δ.

to gm unknown(), the delay queue implementation checks
for gm unknown() calls by detecting if the current receive
queue pointer gets re-wound, and if so, just delivers the
event to the application without computing the new delay
time.

5.2 Overhead (os or)

In contrast to latency, varying receive overhead re-
quires that we take the processor away from the applica-
tion for the prescribed period of time. The receive overhead
was implemented by adding the following delay loop into
gm receive():

while (time_ready_to_deliver > current_time)
get_current_time(&current_time)

The send overhead was implemented by adding a similar
delay loop in the function gm *send *with callback()
after the user has initiated the send (gm send with-
callback(), gm send to peer with callback() or gm-
directed send with callback()) and before the trans-

fer of the message to the LANai SRAM has been initiated,
see Figure 3.

Modifying the send and receive overhead in this fashion
allows latency to remain unaffected. Consider adding a de-
lay of x µs to os (in both parties) in a message exchange:

L � 	
RTT �

2
� o �s � or by (2)

	
RTT � 2x

2
� � os � x � � or thus,

	
RTT

2
� os � or

	 L by (2)

A similar argument shows that increasing the receive
overhead is independent of the latency. The increase in the

Os

descriptor
put send 

gm_*send_*with_callback()

Figure 3. Implementation of os. Before the
message gets written to LANai SRAM, the
user is delayed by os.

overhead is not independent of the gap. When increasing
the send (or receive) overhead, the gap increases as well
because the time between consecutive message sends (re-
ceives) will be increased by the extra time to execute every
send (receive).

5.3 Gap per message (gs gr)

The gap, or minimum time interval between consecutive
sends or receives, can be more specifically described as a
parameter composed of two sub-parameters: send gap and
receive gap. The send gap was implemented by enforcing a
delay between the sending of consecutive messages. Simi-
larly, the receive gap enforces a delay between the delivery
of consecutive messages.

To implement the receive gap (send gap), we modified
the RDMA (SDMA) state machines. In particular, we intro-
duced the following delay enforcement between the receipt
(delivery) of a message and the delivery of the correspond-
ing event:

5



G1

G2

packet

next_packet

SEND

outgoing packet

Figure 4. Implementation of G. After every
packet send and before the next send, de-
lay the SEND state machine by G � . Note that
G � depends on the size of the packet (G1 for
packet and G2 for next packet.

// time reference is 1/2 us.
while (RTC < ready);
ready = RTC + 2*gap_delay
Deliver or Send

5.4 Gap per byte for long messages (G)

The Gap is implemented by adding a delay, G, after ev-
ery byte sent. To achieve this, we first calculate the number
of bytes in every packet to be sent. Then, we add a delay,
according to the length of the packet, after the packet has
been sent. If the length of the packet is n bytes, then the
delay is:

n � G 	 G � (4)

G � can be calculated using the LogP signature for bursts
of bulk messages. If a message exceed 256 bytes, meaning
that a packet exceed 256 bytes, then it is considered a bulk
message and the SEND state machine is delayed after the
packet was sent, see Figure 4. It is interesting to note that
GM partition the message data in similar chunks, each fit-
ting in one packet without exceeding the minimum number
of packets that the message comprises. For example if 4097
bytes are sent, then one packet will have � 2048 bytes and
the other � 2049 bytes, instead of 4096 and 1 respectively.

In order to calculate G � , we use the LogP signature for
bursts of bulk messages. At the steady state, we calculate
G � as the average time to send a message (just as in the LogP
model for g). Thus,

BW 	
1
G

(5)

BW 	
n
G � by (4) (6)

We increase the size of the message, n, up to a point
where the bandwidth does not increase anymore. This point
is exactly the packet size, GM MTU = 4096 bytes.

The implementation of the Gap, has to take into account
the fact that the MCP does not support division operations,
thus we used bit shifting.

The delay of a packet of size n is:

G � 	 � n
�

x � µs 	 � n � 2
x � µs thus,

BW 	
n
G � 	

nbytes
n
2x µs 	 2xMB/s

Therefore, a delay of key x, would modified the bandwidth
to 2x MB/s.

The implementation of this parameter resides in the
SEND state machine in the MCP. Here’s the pseudo code:

// sml=send-message limit,
// smp=send-message pointer
// these vars are not the actual registers
packet_length = sml - smp - header_size
// RTC=Real-Time Clock
if (packet_length > 256)
while (RTC < ready_to_send);

// send the packet by writing to register SMLT
// (Send-Message Limit, with the Tail)
SMLT = sml;

// (time reference is equal to 1/2 us.)
if (packet_length > 256)
ready_to_send = RTC + 2*(packet_length >> x)

6 Validation and Calibration

Each node contained a 500 MHz Intel Pentium III pro-
cessor with 256 MB of main memory and a Myrinet LANai
7.2 network interface card with 2 MB of memory. Nodes
were connected using a Myrinet 8-port SAN switch. Our
results were gathered using GM version 1.2.3 and a Linux
2.2.14 kernel.

6.1 Measurement Methodology

To extract the communication parameters of a given par-
allel machine, we use a micro-benchmark based on [5]. It
was implemented on GM and it is based on the Myricom’s
logp test program. A brief description of this micro-
benchmark follows.

The micro-benchmark issues a sequence of M request
messages of a fixed length, and measures the average time
per issue, message cost. The receiving node sends a reply
(of the same length as the request) to the sender for every
message received. Here’s the sender’s pseudo code:

6



start timer
repeat M times
issue request

stop timer
... handle remaining replies

For small M (initial phase) no replies are handled (and
hopefully the network has not reached its capacity), there-
fore the message cost is only the send overhead, os. For big-
ger M, the sender begins to receive replies (transition phase)
and therefore the message cost increases due to the receive
overhead, or. This cost keeps increasing up the point where
the network has reached its capacity (steady phase). At this
point, the sender cannot inject one message, before drain-
ing a reply from the network. Thus, after sending a mes-
sage, the sender waits a period of time, idle, then receives
a reply from the network, and then sends the next message.
Therefore, the gap, g, is comprised of:

g 	 os � idle � or (7)

which is just the time interval between consecutive sends.
As Figure 5 shows, three stages or phases can be iden-

tified. In the initial phase the message cost is just os.
The transition phase begins either at the reception of the
first reply or when the network capacity has been reached,
whichever comes first. The reception of the first reply
should occur after the Round-Trip-Time, RTT , of the first
request, i.e., after the transmission of RTT

os
number of mes-

sages. The steady phase is reached when the network is full
and the message cost is just the gap.

In GM the transition phase is reached earlier than ex-
pected (M = GM NUM SEND TOKENS), due to the limi-
tation on the number of sends imposed by the tokens mech-
anism.

It is easy to measure g and os using the signature graph
shown in Figure 5: g is measured as the average message
cost at the steady phase; os is measured as the average mes-
sage cost in the initial phase. To calculate or from equa-
tion 7, it is necessary to determine the value of idle. Since
this value is not known, a delay ∆ between message sends
is added. As Figure 5 shows, for ∆ � idle, equation 7 be-
comes:

g � 	 os � ∆ � or (8)

Having or, is easy to calculate the latency, L, from:

RT T
2 	 os � L � or (9)

RTT is easily measured by taking the average of a number
(100) of ping-pong trials with the same message size used
in the micro-benchmark.

The resulting micro-benchmark follows:

start timer
repeat M times
issue request
compute for Delta time

stop timer
... handle remaining replies

The parameters measured depend on the message size
used by this micro-benchmark; for example, to get the la-
tency, we use a small message size as defined in the LogP
model. However, we can also measure the “latency” for
bulk messages although not defined in the original model.
Thus, the parameters L, os, or and g are functions of the
message size n: L � n � , os � n � , or � n � and g � n � .

To measure G (gap per byte), we first measure g � k � ,
where k is the number of bytes at which the maximum band-
width is reached (4KB in GM); then, G is calculated using
equation 4 where G � 	 g � k � (see section 5.4). Therefore,
with this micro-benchmark, and a ping-pong test to get the
round-trip-time, we are able to obtain the values of the LogP
parameters.

6.2 Results

To empirically validate and calibrate the LogP parame-
ters, we vary each one of them to a fixed-value letting the re-
maining parameters to be unmodified. By using the micro-
benchmark described in the previous section, we measure
the value of all the parameters and verify that the desired
value of the varied parameter is (in average) no more than
9% different from the observed value. We also verify that
the remaining parameters remain constant and with low
standard deviation (std).

Tables 1, 2 and 3 show the results of varying L, os and or

respectively for messages of size 8 bytes (see Sections 5.1
and 5.2). The In

�
label represents the desired added value

of the varied parameter to the system, for example if the in-
herent system’s os 	 1 � 34, then an added value of 20 gives
us a desired value of 21 � 34. The Out label represents the
measured values using the micro-benchmark. The arbitrary
increase on the overhead in Tables 2 and 3 is not indepen-
dent of the gap. When increasing the send overhead, the
gap increases as well because the time between consecutive
message sends will be increased by the extra time to execute
every send. The same argument is true for receive overhead.

Tables 4 and 5 show the results of varying gs and gr re-
spectively for messages of size 8 bytes (see Section 5.3).
The In � label represents the desired value of the varied pa-
rameter, naturally a desired value less than the inherent sys-
tem’s value cannot be achieved. The values in column RT T1

differ from RT T in the number of trials of the ping-pong
test: 1 in the former, and 100 in the latter. The reason of
having RTT1 for these tables is to avoid the appearance of
gap in the round-trip-time and so the latency should remain

7



steady phase

Or

Os

initial phase

Burst size (# of messages)

A
ve

ra
ge

 ti
m

e 
pe

r 
m

es
sa

ge
 

transition phase

<= RTT / Os

g g’L = (RTT / 2) − Os − Or

∆ = δ2

∆ = δ1

∆ = 0

δ2

Figure 5. Expected micro-benchmark signature of the LogP parameters.

Table 1. Varying L for messages of length 8
bytes.

In � Out

%err L L os or g RTT
0 18.72 1.38 4.31 23.91 48.84

6.90 10 29.41 1.39 4.28 24.11 70.19
5.60 20 39.84 1.39 4.30 24.03 91.08
9.53 30 51.58 1.39 4.29 23.94 114.54
9.38 40 62.47 1.39 4.30 24.19 136.33
5.16 50 71.30 1.36 4.36 24.06 154.07
7.13 60 83.00 1.34 4.35 24.13 177.40
6.99 70 93.61 1.39 4.30 23.90 198.64
5.94 80 103.47 1.39 5.01 23.94 219.77
6.63 90 114.69 1.33 4.37 23.86 240.81
6.17 100 124.89 1.40 4.28 24.00 261.16
6.32 110 135.67 1.39 4.31 23.94 282.76
5.74 120 145.61 1.40 4.30 23.97 302.64

avg 6.79 1.38 4.36 23.99
std 1.37 0.02 0.19 0.09

Table 2. Varying os for messages of length 8
bytes.

In � Out

%err os os or g RTT L
0 1.34 4.33 23.92 48.82 18.73

2.40 10 11.58 4.12 25.39 68.42 18.49
0.15 20 21.31 3.82 31.22 88.72 19.21
0.57 30 31.51 4.18 41.39 108.65 18.62
3.50 40 42.74 3.07 51.29 128.48 18.41
0.02 50 51.33 4.19 61.23 151.54 20.24
0.43 60 61.60 4.09 71.21 169.05 18.83
0.16 70 71.23 4.17 81.19 191.97 20.57
0.00 80 81.34 4.34 91.26 212.04 20.32
0.33 90 91.04 4.67 101.28 232.01 20.28
0.01 100 101.35 4.18 111.24 252.01 20.46
0.09 110 111.44 4.35 121.27 271.38 19.90
0.13 120 121.18 4.63 131.14 290.76 19.55

avg 0.64 4.16 19.50
std 1.11 0.39 0.82

Table 3. Varying or for messages of length 8
bytes.

In � Out

%err or or os g RTT L
0 4.29 1.38 24.20 48.82 18.73

2.10 10 14.08 1.40 25.19 68.39 18.71
2.10 20 23.87 1.38 27.62 89.00 19.24
3.17 30 33.34 1.38 36.64 108.77 19.66
2.83 40 43.16 1.41 45.84 129.11 19.97
2.50 50 53.04 1.41 55.25 149.09 20.09
2.88 60 62.56 1.41 64.49 168.52 20.27
2.59 70 72.48 1.35 73.67 191.41 21.87
3.96 80 81.12 1.40 82.83 212.28 23.61
3.20 90 91.41 1.36 92.29 232.47 23.45
3.39 100 100.90 1.38 101.66 252.20 23.81
0.73 110 113.49 1.37 110.83 271.51 20.87
2.24 120 121.60 1.41 120.13 292.47 23.21

avg 2.64 1.38 21.03
std 0.82 0.02 1.91

constant. Since just one trial is considered, the value of the
latency is bigger than in RT T columns due to “warm-up
issues”.

Table 6 shows the results of varying G � for messages of
size 4088 bytes (see Section 5.4). Column κ represents the
input key values, in which a system with key x has a band-
width (BW) of 2x MB/s. The RTT is not independent of G,
because of the size of the message.

The units in which the parameters are measured are:
L � µs � , os � µs � , or � µs � , gs � µs � , gr � µs � , G � (µs), RTT(µs),
BW(MB/s). The %err label in the tables represents the per-
centage error difference between the desired value, vi, and
the observed value, vo, and it is calculated as follows:

%err 	
�
vi � vo

�

v
� 100 (10)

where v is the desired or added value (column In � ), depend-
ing on the table.

8



Table 6. Varying G for messages of length 4088 bytes.

In � Out

%err κ BW G
�

G
�

os or BW RTT L
7 128 31.93 76.29 1.55 3.27 53.57 290.06 140.21
6 64 63.87 77.22 1.53 4.00 52.93 290.23 139.57

9.22 5 32 127.75 115.97 1.57 4.21 35.24 291.65 140.03
9.38 4 16 255.50 231.54 1.53 4.09 17.65 304.25 146.49
9.47 3 8 511.00 462.62 1.59 3.80 8.83 514.17 251.68
8.01 2 4 1022.00 940.16 1.58 3.92 4.34 1033.59 511.28
6.94 1 2 2044.00 1902.16 1.60 3.88 2.14 2088.05 1038.53

avg 8.60 1.56 3.88
std 1.10 0.02 0.30

Table 4. Varying gs for messages of length 8
bytes.

In
�

Out

%err gs g os or RTT1 L
0 23.91 1.36 4.33 125.07 56.84

10 24.18 1.36 4.30 125.06 56.85
20 27.70 1.35 4.33 125.06 56.84

10.83 30 33.25 1.41 4.25 126.06 57.36
1.95 40 40.78 1.38 4.28 125.06 56.86
0.72 50 50.36 1.40 4.26 124.07 56.36
0.52 60 60.31 1.52 4.15 124.06 56.35
0.17 70 70.12 1.50 4.17 124.06 56.34
0.23 80 80.18 1.39 4.27 125.05 56.85
0.20 90 90.18 1.36 4.33 126.06 57.33
0.29 100 100.29 1.41 4.27 125.06 56.85
0.21 110 110.23 1.40 4.31 125.06 56.81
0.15 120 120.18 1.37 4.37 125.06 56.78

avg 1.52 1.40 4.27 124.98 56.80
std 3.31 0.05 0.06 0.63 0.31

Table 5. Varying gr for messages of length 8
bytes.

In
�

Out

%err gr g os or RTT1 L
0 24.13 1.36 4.32 125.06 56.84

10 23.92 1.39 4.29 126.06 57.34
20 23.79 1.38 4.94 125.06 56.19

1.27 30 29.62 1.41 4.28 125.06 56.83
2.43 40 39.03 1.37 4.31 125.06 56.84
3.08 50 48.46 1.41 4.26 125.06 56.85
3.30 60 58.02 1.39 4.29 125.06 56.84
3.31 70 67.68 1.41 4.24 126.06 57.37
3.33 80 77.34 1.39 4.29 125.06 56.84
3.33 90 87.00 1.39 4.28 125.06 56.85
3.34 100 96.66 1.40 4.27 125.06 56.84
3.33 110 106.34 1.41 4.26 126.06 57.35
3.26 120 116.09 1.37 4.31 127.06 57.84

avg 2.99 1.39 4.33 125.44 56.98
std 0.66 0.01 0.18 0.65 0.40

7 Related Work

This work provides an apparatus to instrument LogP
communication parameters in high-performance commod-
ity clusters. We consider the send and receive overhead sep-
arately as well as the gap (os, or, gs, gr), to provide greater
flexibility in analyzing the sensitivity of applications to each
one independently. We use a micro-benchmark based on [5]
to measure the communication parameters. The related
work can be classified in two groups: (1) work focused on
the sensitivity of applications to certain communication pa-
rameters, and (2) work focused on the analysis and mea-
surement of communication parameters.

The first group is comprised by [7, 11, 2, 9] and their
goals are similar in spirit to ours, but in different contexts.
In [7], the authors study the performance of network inter-
face controllers in cache coherent DSM (Distributed Shared
Memory) machines. They found that the controller occu-
pancy is critical to the performance of these machines. The
occupancy is the time in which the controller is busy with
one action and cannot perform another, and partially corre-
sponds to the latency and gap in the LogP model.

In [11], the authors study the impact of communication
parameters on parallel applications. The applications they
used were written in Split-C on top of Generic Active Mes-
sages. They found the host overhead to be critical to appli-
cation performance. Our work uses GM as the communi-
cation layer and will focus on applications written in MPI,
although could be used by any library that uses GM under-
neath.

In [2], the authors examine the impact of communica-
tion parameters in SVM (Shared Virtual Memory) systems.
They found that the overhead of generating and delivering
interrupts is critical in a SVM system. In [9], the authors
artificially increase latency and bandwidth simulating com-
munication performance of WANs (Wide Area Networks),
to analyze collective communication operations on this type
of network.

The second group comprised by [8, 9, 10] provide differ-

9



ent micro-benchmarks to measure communication parame-
ters based on the LogP model. In [8], the authors consider
the send and receive overhead separately, and the latency,
overhead and gap for bulk data transfers are dependent on
the message size. They use two micro-benchmarks similar
to [5], one measures the os and g, and the other, os � or. The
goal of this study is to analyze the performance of the FM
(Fast Messages) library in different platforms.

In [9], the authors introduce another extension to the
LogP model, the parameterized LogP, suitable for WANs.
In this model, the overhead and gap are also considered as
functions of the message size, and the overhead is also split
in send and receive overhead. The latency is defined as an
end-to-end latency from process to process, which differs
from the original model. This work presents improved al-
gorithms for collective communication on WANs.

In [10], the authors provide a micro-benchmark to
measure the parameterized LogP. The aim of this micro-
benchmark is the ability to measure the communication pa-
rameters without saturating the communication links (ex-
cept for measuring the gap for a message of size 0), i.e., use
fewer messages than in [5]. This micro-benchmark called
MPI LogP benchmark was implemented in MPI.

8 Conclusions and Future Work

This work provides an apparatus to vary communication
performance based on the LogP model on high-performance
commodity clusters. It is intended to help parallel applica-
tion developers and users to identify the source of perfor-
mance degradation of an application on parallel architec-
tures.

We have empirically calibrated and validated our appara-
tus to show that we can control the communication parame-
ters within a percentage error of no more than 9%. We have
also shown that the parameters can be varied independently
of each other.

We are going to extend our apparatus to allow the vari-
ation of communication parameters in terms of functions
that may simulate events such as interrupt coalescing, slow
start and others. Also, we plan to use our apparatus in sev-
eral MPI applications available from Sandia National Labs
and others, to determine their sensitivity to communication
performance.

References

[1] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and
C. Scheiman. LogGP: Incorporating long messages into
the LogP model – one step closer towards a realistic model
for parallel computation. In 7th Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA ’95), pages
95–105, June 1995.

[2] A. Bilas and J. P. Singh. The effects of communication pa-
rameters on end performance of shared virtual memory clus-
ters. In Proceedings of the ACM/IEEE SuperComputing (SC
’97) Conference, San Jose, CA, Nov. 1997.

[3] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet:
A gigabit-per-second local area network. IEEE Micro,
15(1):29–36, 1995.

[4] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser,
E. Santos, R. Subramonian, and T. von Eicken. LogP: To-
wards a realistic model of parallel computation. In Proceed-
ings of the 4th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP ’93), pages 1–12,
San Diego, CA, May 1993.

[5] D. E. Culler, L. T. Liu, R. P. Martin, and C. O. Yoshikawa.
Assessing fast network interfaces. IEEE Micro, 16(1):35–
43, 1996.

[6] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI message
passing interface standard. Parallel Computing, 22(6):789–
828, Sept. 1996.

[7] C. Holt, M. Heinrich, J. P. Singh, E. Rothberg, and J. Hen-
nessy. The effects of latency, occupancy, and bandwidth in
distributed shared memory multiprocessors. Technical Re-
port CSL-TR-95-660, Stanford University, Jan. 1995.

[8] G. Iannello, M. Lauria, and S. Mercolino. Cross-platform
analysis of Fast Messages for Myrinet. In D. K. Panda and
C. B. Stunkel, editors, Proceedings of the 2nd International
Workshop on Network-Based Parallel Computing: Commu-
nication, Architecture, and Applications (CANPC ’98), vol-
ume 1362 of Lecture Notes in Computer Science, pages 217–
231, Las Vegas, NV, Feb. 1998. Springer.

[9] T. Kielmann, H. E. Bal, and S. Gorlatch. Bandwidth-
efficient collective communication for clustered wide area
systems. In Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS ’00) Confer-
ence, Cancun, Mexico, May 2000.

[10] T. Kielmann, H. E. Bal, and K. Verstoep. Fast measure-
ment of LogP parameters for message passing platforms.
In 4th Workshop on Runtime Systems for Parallel Program-
ming (RTSPP ’00), Cancun, Mexico, May 2000.

[11] R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. Anderson.
Effects of communication latency, overhead, and bandwidth
in a cluster architecture. In Proceedings of the 24th Inter-
national Symposium on Computer Architecture (ISCA ’97),
pages 85–97, Denver, CO, June 1997.

[12] Myricom, Inc. The GM API, Oct. 1999. http://www.myri.
com/scs/GM/doc/gm_toc.html.

[13] Myricom, Inc. LANai 7, June 1999. http://www.myri.
com/vlsi/LANai7.pdf.

10


