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The memory wall, the continuing disparity between
processor and memory speeds, adversely affects the per-
formance of memory bound applications, particularly par-
allel scientific computations. Cache injection addresses
this disparity by placing data into a processor’s cache di-
rectly from the I/O bus. The effectiveness of cache injec-
tion on application performance is dependent on several
factors including timely usage of data, the amount of data,
and the application’s data usage patterns. To improve ap-
plication performance, I present policies to place incom-
ing network data into the appropriate level of the memory
hierarchy (L2, L3 or main memory). Preliminary results
from a set of policies tailored for MPI, show an overall
improvement of 5% in the execution time of an actual ap-
plication (AMG from the ASC Sequoia suite), and up to
15% improvement on specific stages of this code.

Cache injection and data prefetching strive to reduce
memory latency by moving data into the cache before it
is needed. Table 1 compares both techniques. Prefetch-
ing has an important disadvantage: prefetching data from
I/O devices incurs memory bandwidth due to two transac-
tions: (1) transfer of data from the I/O producer to memory
and invalidating cached copies; and (2) fetching data from
memory to the consumer. With cache injection, the sec-
ond transaction is not necessary, decreasing the amount of
data that has to go over the memory bus. Both techniques
may pollute the cache if the fetched/injected data is not
used promptly.

Table 1: Prefetching vs. cache injection.
Prefetching Cache injection

Resources

1) write to memory
1) write to cache

2) fetch to cache
incurs memory la-
tency and bw usage

reduces memory la-
tency and bw usage

Applicability general-purpose limited to I/O
Type consumer-driven producer-driven

Fails when data is not used promptly

I compare quantitatively the two techniques by measur-
ing memory bandwidth and execution time of a micro-
benchmark using cache injection to the L3 cache [1]. The
micro-benchmark performs a linear traversal of incoming
network data in calculating a reduction operation. This
micro-benchmark represents a stage of computation that
is limited by memory bandwidth and provides an optimal

case for prefetching (linear traversal of data).
As shown in Figure 1, cache injection significantly re-

duces the number of memory reads by up to 96% as all
application access to incoming network data hit the L3
cache. As shown in Figure 2, cache injection and prefetch-
ing outperform the base case as they both reduce the num-
ber of cache misses. Cache injection performs competi-
tively with prefetching.
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Figure 1: Memory bandwidth utilization.
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Figure 2: Execution time.

Cache injection presents challenges intrinsic to the ex-
plicit producer-driven nature of this technique, namely
timely transfer and identifying the consumer of data. With
cache injection, data may be transferred too early for the
consumer to fetch it off the cache, polluting and evicting
useful data out of this resource. Consider the following
algorithm based on a Jacobi1 iteration:

1The Jacobi method is an iterative algorithm to compute the solutions



1. MPI Isend boundary data
2. MPI Irecv boundary data
3. Perform local computation
4. MPI Wait for remote data to arrive
5. Perform remote data computation

If enough data is written to the cache from the NIC
during step 3, the working set of the application may be
evicted. The working set and incoming network data may
be competing for space in the cache, and ultimately, when
incoming network data does become part of the working
set (step 5), it may not be in the cache anymore. This
suggests that cache injection can decrease application per-
formance if not used properly.

To leverage the performance improvements that can be
provided by cache injection without polluting the cache,
adequate policies are needed. The goal of these policies is
to place incoming network data into the appropriate level
of the memory hierarchy (L2, L3 or main memory). In a
multiprocessor, multi-core system, the consumer proces-
sor/core also has to be identified. I present the following
policies based on information from the OS, the communi-
cation library (MPI), the compiler and the application:

1. Processor-direction. Inject to the processor/core
where the consumer thread is being executed. This
information is provided by the OS and included in the
memory descriptors that reside on the NIC to match
incoming messages. MPI processes on a node are not
expected to migrate.

2. Compiler-driven. Inject to the target cache when
the application and/or compiler explicitly solicits the
data.

3. Headers. Inject to the L2 cache the envelope of a
user message. This speeds up the communication li-
brary on the host. An envelope is usually small, 128
bytes (cache line size) in my case.

4. Payload. Inject to the L3 cache the data of a user
message. This policy is further divided into pre-
posted (message has a matching receive) and unex-
pected. An application is more likely to use data
sooner from a message matching a preposted receive
than one that is unexpected.

5. Message. Inject both headers and payload to the L2
and L3 caches respectively.

To analyze the effect of these policies on application
performance, I created a scalable parallel cluster simula-
tor by combining a cycle-accurate CPU simulator (IBM’s
Mambo) with an MPI-based network model. This simula-
tor can be used to examine the effects of proposed archi-
tectural changes such as cache injection on cluster appli-
cation performance.

of a system of linear equations.

The cluster simulator parameters for this work are:
IBM’s K42 research OS; Power5 node architecture with
cache injection; Cray XT-3 Red Storm network between
nodes; and MPICH-MIAMI with OS-bypass and zero-
copy.

To provide initial evidence of the impact of these poli-
cies, I implemented policies 3, 4 and 5, and measured their
effect in the execution time of AMG, a parallel algebraic
multigrid solver, on 4 nodes. AMG’s running time is di-
vided into three phases: SStruct, Setup and Solve.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

base headers prepost unexp payload message
 0

1e5

2e5

3e5

4e5

5e5

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

on
ds

)

Fi
gu

re
 o

f M
er

it 
(F

O
M

)

SStruct Setup Solve FOM

0.0%
15.1% 13.8% 7.3% 13.8% 15.1%

0.0% -0.6% -0.0% -0.1% 0.1% 0.3%

0.0%
6.1% 5.2% 4.9% 5.5% 6.2%

0.0%
4.9% 4.7% 3.0% 4.8% 5.4%

Figure 3: Performance of AMG with proposed policies.

As Figure 3 shows, the effectiveness of cache injection
in reducing execution time varies from 0 to 15.1% depend-
ing on the phase of the computation and policy. In stages
with no communication, cache injection cannot provide
any benefit. The performance of cache injection is de-
pendent on several factors including the computation to
communication ratio. From the different policies, headers
performs well as the MPI library uses a message envelope
right after it is written into the cache. Overall application
performance improvement varies from 3 to 5.4%. This
figure also shows AMG’s figure of merit which represents
how fast a system performs under this benchmark (higher
is better). All the policies presented here increase this fig-
ure.

These preliminary results are encouraging in showing
that cache injection can improve the performance of par-
allel scientific applications with an appropriate policy.
More work remains to be done including characterizing
the types of applications that benefit from cache injection,
and applying this technique to a variety of applications at
scale under all of the proposed policies.
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