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ABSTRACT
Instruction-level simulation is necessary to evaluate new ar-
chitectures. However, single-node simulation cannot predict
the behavior of a parallel application on a supercomputer.
We present a scalable simulator that couples a cycle-accurate
node simulator with a supercomputer network model. Our
simulator executes individual instances of IBM’s Mambo
PowerPC simulator on hundreds of cores. We integrated
a NIC emulator into Mambo and model the network instead
of fully simulating it. This decouples the individual node
simulators and makes our design scalable.

Our simulator runs unmodified parallel message-passing
applications on hundreds of nodes. We can change network
and detailed node parameters, inject network traffic directly
into caches, and use different policies to decide when that is
an advantage.

This paper describes our simulator in detail, evaluates it,
and demonstrates its scalability. We show its suitability
for architecture research by evaluating the impact of cache
injection on parallel application performance.

1. INTRODUCTION
Future clusters and supercomputers require architectural

changes in order to grow to the enormous sizes and speeds re-
quired by high-end parallel applications. Proposed changes
include techniques for injecting incoming messages directly
into processor caches [4, 18, 21]. Unfortunately, the im-
pact of such changes on application performance is difficult
to predict analytically due to the complex interactions be-
tween the architecture, operating system, system libraries,
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and the applications.
Architectural simulators that examine the impact of low-

level system changes on application performance have not
historically scaled well [11, 12]. For example, coarse-grained
simulators skew dramatically when these changes are scaled
up over tens or hundreds of systems. On the other hand,
cycle-accurate simulators, which can accurately simulate ev-
ery event to nanosecond accuracy in a single system, scale up
poorly. Their running time increases dramatically even for
a small number of processors. This limits designers in their
ability to study how architectural changes affect scientific
application performance as a cluster grows in scale.

To address this problem, we present an MPI-based cluster
simulator designed to enable studies of architecture, oper-
ating system, and application interactions for current and
future architectures. Unlike previous work, our cluster sim-
ulator is a parallel program that uses existing clusters to
simulate future clusters. It does that by coupling a cycle-
accurate node simulator with a network model.

The contribution of this paper is the design and imple-
mentation of a scalable cluster simulator that can be used to
analyze the impact of novel architectural features on paral-
lel application performance. We describe the node simulator
and the design of our network and NIC model in Section 2
and evaluate the resulting cluster simulator in Sections 3
and 4. We analyze three cache injection policies to demon-
strate the capabilities of our simulator in Section 5.

2. CLUSTER SIMULATOR
To study the performance impact of future architectures

on scientific applications at scale, we built a flexible appara-
tus to simulate an entire cluster. The apparatus is based on
an existing cycle-accurate simulator and leverages the paral-
lel computation capabilities of in-house clusters to simulate
future parallel architectures; or existing systems with differ-
ent performance characteristics.

Our cluster simulation infrastructure consists of the fol-
lowing components: a multiprocessor simulator on each node
of the host cluster, an OS and communication libraries for
the simulator, a modeled NIC, a modeled network, a shim
layer to connect the NIC model to the node simulator, and a
runtime environment to launch applications inside the sim-
ulated (target) cluster. Figure ?? shows all of the compo-
nents.

We will use host node when we refer to a physical host
within the real cluster, and target node when we refer to a
simulated node. NIC refers to a modeled NIC that connects



target nodes within the simulated cluster. In a similar vein,
simulation or simulated time refers to the time frame an ap-
plication experiences when it runs inside the simulator. This
is the time frame an application uses to report performance
results. Wall-clock time is the time observed outside the
simulation; i.e., the actual time it takes to run a simulation
experiment.

Our simulated cluster is launched on a host cluster by
executing one instance of a target node per available core.
The target nodes communicate with each other over a mod-
eled network through a modeled NIC. The NIC serves as a
bridge between a simulated target node and a host node.
The NIC model uses the existing MPI implementation on
the host cluster to communicate with NICs running on other
host nodes or cores. We chose MPI instead of TCP/IP as
the transport layer for two reasons. MPI is available on all
clusters and on massively parallel systems, such as the Cray
XT-3 Red Storm running the Catamount compute node OS,
where TCP/IP is not available, or does not scale. Addi-
tionally, the MIAMI API described below maps particularly
well onto the MPI API. The TCP/IP API has no message
matching capability and would be harder to use.

Figure 1 illustrates the architecture of our apparatus. On
each host node of a cluster we launch one or more instances
of IBM’s Mambo simulator. Each Mambo instance runs the
K42 operating system. The application under test uses the
MPICH [15] implementation of MPI to communicate with
the simulated target system. This version of MPICH uses
a device layer we call MIAMI to interact with its peers on
other nodes. It does that by interacting with the local NIC
model which, in turn, uses the host system’s OpenMPI [13]
layer to exchange messages with other nodes on behalf of
the simulated application.

Using a full-featured, cycle-accurate simulator to simulate
a multiprocessor target node provides us with a platform
to study architectural features and configurations not yet
available. Our goal in developing this cluster simulation
infrastructure is to leverage existing single-node simulators
in a cluster setting.

2.1 Mambo
Our cluster simulator uses an augmented version of IBM’s

Mambo full-system simulator [22] that provides cache injec-
tion of incoming network messages [4]. Mambo is called
a full-system simulator because it simulates all the compo-
nents of a node: CPU, caches, memory, and the buses that
connect them. Each simulated target node is a multi-core,
cache-coherent, distributed shared memory system [27]. We
run the K42 research operating system [1] on Mambo.

We launch one instance of Mambo per available core on
our host cluster. Simulation of systems larger than that is
possible, as long as enough physical memory is available. Of
course, the time to run an experiment increases with each
additional instance of Mambo that we run on a core.

One of the key features of a cycle-accurate simulator is
that many of its configuration parameters can be changed.
Mambo is no exception and we chose the values in Table 1
for the experiments presented in this paper.

2.1.1 Fast-forward mode
Cycle-accurate simulation is expensive in terms of time.

Slowdown factors of several orders of magnitude are com-
mon. Mambo spends a significant portion of its time sim-

Table 1: Simulated system configuration.

Feature Configuration

Simulator Mambo PowerPC full-system simulator
Architecture Power5 with cache injection to L2/L3
Processor 1.65 GHz frequency
L1 I/D cache 64 kB/32 kB, 2-way/4-way
L2 cache 1.875 MB, 3-slice, 10-way, 10 cycle latency
L3 cache 36 MB, 3-slice, 12-way, 80 cycle latency
Cache line 128 B
Main memory 1,024 MB, 230 cycle latency
OS K42
Comm. Lib. MPICH-MIAMI w/OS-bypass & 0-copy
Network Cray XT-3 Red Storm

ulating the operation of caches. Cache simulation can be
turned off in Mambo to make it run faster. The simulated
target node then behaves as if no caches were present and it
accesses main memory at L1 cache speeds. For many exper-
iments that is a useful feature that does not impact the end
result. For example, in studies that focus on network char-
acteristics, it may not be important how fast the application
executes an inner compute kernel.

However, for accurate simulations, cache simulation needs
to be on. We have added the ability to fast-forward in
our cluster simulation infrastructure. During application
startup, for example, we would like the simulation to pro-
ceed as quickly as possible. When execution reaches the in-
ner kernel, we activate the cache simulation. In Section 4.3
we will demonstrate this feature. We run through the appli-
cation setup phase with cache simulation disabled and turn
it on before we reach the computational kernel we are in-
terested in evaluating. We turn on cache simulation early
enough to let the caches warm up.

Fast-forward can also be used while an application restarts
from an earlier checkpoint. While reading the restart data
and initializing, cache simulation is off. Once the calculation
resumes, we enable cache simulation. This feature enables
us to simulate longer application runs in less time.

For many of the experiments in Section 4 we ran with
cache simulation turned off, since for those experiments we
were not interested in the actual simulation results from
Mambo. The experiments in Section 5 were done with cache
simulation turned on. We have implemented fast-forward
mode for the AMG application and use it for all AMG ex-
periments in this paper.

2.1.2 Interfacing Mambo with the NIC
A target node and its associated NIC interact through

a shim layer. This layer provides a bidirectional path be-
tween the simulated target node and the NIC. On one side
of the shim layer, a target node communicates with its NIC
through memory mapped registers. Using this mechanism,
a user-level process can interact with the NIC directly, by-
passing the OS. Access to these registers is controlled by the
OS. On the other side of the shim layer, a NIC communicates
with its target node through a well-defined shim interface.
The operations provided by the shim interface allow reads
and writes from the NIC to main memory and the L2 and
L3 caches. The interface also allows the NIC to raise inter-
rupts, delay cycles on the host, and launch processes on the
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Figure 1: Two simulated target nodes communicating with each other through the host cluster’s network.

host. In addition, the shim layer provides functions to load
and unload NICs and other devices at run time.

2.2 The network and NIC model
A NIC connects a local target node with the rest of the

target nodes running on the host cluster. It acts as a bridge
between its target node and the host node on which it is run-
ning. The NIC uses the host node’s transport layer (Open-
MPI in our case) to communicate with NICs running on
other nodes or cores of the host system.

Each message sent between simulated target nodes is aug-
mented by the NIC with a time stamp and delay informa-
tion about the modeled network. The NIC then sends that
information with the actual data using the transport layer
provided by the host cluster. The receiving NIC waits to
deliver the message to the simulated target node until its
simulation clock reaches the message’s time stamp plus the
modeled network delay.

This is possible because the network of the host cluster ap-
pears lightning fast in comparison to the slow-running simu-
lated target nodes. The NICs can deliver messages at prac-
tically any latency and bandwidth in simulated time. This
allows us to present the simulated target nodes with any
type of network (physically possible or not) of our choice.

2.2.1 Synchronization
The clocks on the nodes of a typical cluster are not syn-

chronized and drift over time. Furthermore, node perfor-
mance in a cluster varies and impacts the performance of
the simulator. Therefore, we need to synchronize the simu-
lated target nodes occasionally so that none of them get too
far ahead of the others in the system.

We accomplish this synchronization by executing a barrier
operation at specific intervals of the simulation clock. For
example, if the synchronization interval is set at 50,000, then
the simulated target nodes will execute the barrier every
time they have executed another 50,000 cycles. While the
target nodes wait for each other in the barrier, the local
simulation clocks are stopped.

The delay caused by the barrier is not visible to the sim-
ulated application. However, the barrier has externally vis-
ible effects. If one of the target node simulators is slow in
reaching the barrier, because it writes a lengthy trace file to
an external disk for example, then all the simulated target

nodes are delayed. In other words, the overall execution time
of our cluster simulator represents the slowest path through
all instances of the individual target node simulators. We
will evaluate the impact of synchronization in Section 4.

2.2.2 Network model
We use the network model that is part of Seshat [24] and

has the characteristics of a Cray XT-3 Red Storm network
to decide when to deliver messages. Seshat is an execution-
driven discrete-event simulator to study application behav-
ior under varying network characteristics.

The current network model does not take topology into
consideration. In essence, we are modeling a fully connected
network graph. Therefore it is not capable of emulating
congestion. Two configuration parameters allow us to vary
the bandwidth and latency of the model which enables us
to simulate faster or slower networks.

A slightly more sophisticated model would take the bisec-
tion bandwidth of the network into consideration and de-
lay messages that are injected into a “full” network. The
next level up would be a model that incorporates knowl-
edge about the network topology. Up to that level of detail,
the network model could still be distributed and run suf-
ficiently fast for our simulator to scale. A fully simulated
network would require more frequent synchronization and
would slow down simulator performance by orders of mag-
nitude. The tradeoffs between accuracy and performance of
network models have been studied in [5].

2.2.3 NIC model
To run message-passing applications on our simulated clus-

ter, we developed a minimal API to support MPI: MIAMI
– Minimal Interface for An MPI Implementation. The asyn-
chronous MIAMI API is shown in Table 2. It supports OS-
bypass and allows for zero-copy MPI transfers.

We implemented a driver in our modeled NIC for the
eleven-function MIAMI API. We also created a correspond-
ing device layer in the MPICH implementation of MPI that
runs inside the simulator. Figure 2 shows how a simulated
application interacts with the local NIC. The application
makes calls into the MPICH library which uses the MIAMI
API to interact with the NIC model. Most MIAMI func-
tions in the NIC are implemented as straight forward calls
into the host system’s transport layer. In our case, that layer



Table 2: MIAMI API

Function Description

int init(void); initialize
int finalize(void); clean up
int size(void); number of processes in job
int rank(void); my rank in job
double clock(void); time in seconds
int tx start(void *buf, int len, int cntxt, int tag, int dst, int lsrc); start a send
int stx start(void *buf, int len, int cntxt, int tag, int dst, int lsrc); synchronous send
int tx done(int handle); check send completion
int rx start(void *buf, int len, int cntxt, int tag, int src); post a receive
int rx done(int handle, int *len, int *tag, int *src); check receive completion
int rx probe(int *flag, int *len, int cntxt, int *tag, int *src); probe for message arrival

is OpenMPI running on the host cluster.
Several factors complicate the implementation of MIAMI

in our NIC. Our simulation infrastructure is in itself a com-
plete parallel application and its behavior must conform to
the MPI standard. For example, the infrastructure might
be in the middle of a point-to-point transfer on behalf of the
simulated application when Mambo’s clock reaches a syn-
chronization point and forces a barrier. Other nodes may
still be sending or waiting for messages before they reach
their barriers. It is important not to cause deadlock or
violate the rules of the MPI standard in such situations.
For that reason, we implemented our synchronization bar-
rier as a series of point-to-point messages and make sure
that synchronizations continue until all nodes have reached
MPI_Finalize().

Mambo Simulator

Shim
Layer

MIAMI

NIC

Shim Interface

K42

Application

MPI-MIAMI

Figure 2: An application on a simulated target node

interacting with the local NIC.

Another complicating factor is that we have to send enve-
lope information along with each application message. We
use information inside that envelope to decide when, in sim-
ulated time, to deliver a particular message. To examine the
envelope information, we have to receive the message into
a buffer. This is difficult when messages arrive unexpect-
edly and the simulated application does not post a receive
until much later. The NIC has to perform careful buffer
management and message matching while maintaining good
performance and scalability.

3. EXPERIMENTAL SETUP
We ran our experiments on two large clusters at Sandia

National Laboratories. In this section we briefly describe the
characteristics of these machines, and list the benchmarks
and applications we used to evaluate our infrastructure.

3.1 Test platforms
Thunderbird is comprised of 4,480 compute nodes. They

are dual 3.6 GHz Intel EM64T processors with 6 GB of
RAM. The network is an Infiniband with a two level Clos
topology. The nodes run Red Hat Enterprise Linux with a
2.6.9 kernel and use Lustre as the parallel file system. We
use the version 1.2.7 OpenMPI library and the version 1.3.1
OFED library to connect to the Infiniband fabric.

Spirit has 512 nodes and each has dual 3.4 GHz Intel
EM64T processors with 2 GB of RAM and it uses a Myrinet
network. It runs Red Hat Enterprise Linux with a 2.6.9
kernel and OpenMPI version 1.2.2, which uses version 1.2.7
of the MX library for the Myrinet.

Both of these systems have dual 64-bit CPU nodes. We
run the 32-bit versions of the above mentioned libraries so
we can link them with the 32-bit executable of the Mambo
simulator. We do not have access to the Mambo source code.

To achieve the best performance, we run one instance of
Mambo per core of the host machine. For smaller problem
sizes that do not require too much memory, it would be
possible to run multiple instances of Mambo on each core,
thereby simulating a much larger cluster than the size of our
host machines. However, wall-clock time would increase due
to context switch overheads and the additional workload on
each core.

3.2 Benchmarks and applications
We chose five different benchmarks and applications to

test and evaluate our simulator.

3.2.1 IS from the NAS parallel benchmark suite
IS is the well-known integer sort benchmark from the NAS

parallel benchmark suite [8]. We used version 2.4 for our ex-
periments and chose IS because it has a very short run time.
This makes IS very suitable for cycle-accurate simulations
which take many hundreds to thousands of times longer to
finish when being simulated.

The second reason we chose IS is that it is a C code. We
currently do not have a Fortran cross compiler available for
our test environment. This prevents us from running the
remaining NAS parallel benchmarks which are written in
Fortran. IS is a strong-scaling benchmark; i.e., the aggregate



work load is fixed, independent of the number of nodes used
to solve the problem.

3.2.2 AMG from the Sequoia acceptance suite
AMG is an “algebraic multigrid solver for linear systems

arising from problems on unstructured grids” [20]. It is one
of several benchmarks used by Lawrence Livermore National
Laboratory (LLNL) in its request for proposals and accep-
tance of the Sequoia supercomputer.

We chose AMG because it is a communication intensive
application which can, for large problem sizes, spend 90%
of its execution time inside MPI. AMG uses mostly MPI
collective operations. A small percentage of communications
are point-to-point messages of relatively small size (2 – 10
kB) [20].

AMG contains different solvers which can be selected from
the command line. The data presented in this paper is from
solver 0 (the default) and solver 1 runs. We chose these
two solvers because they seem to place more demand on the
memory subsystem than the other solvers. Cache injection
should benefit these solvers more than the others available
in AMG.

AMG operates in three distinct phases. The solver runs
in the third phase, while the first two phases are used for
problem setup. We augmented AMG so it runs in fast for-
ward mode during most of its setup and initialization and
turn on cache simulation before we enter the solve phase.
Turning cache simulation on a little early is necessary to let
the caches warm up before we enter the solve phase. We
ran AMG in weak-scaling mode where the problem size in-
creases with additional nodes used; i.e. the work per node
remains constant.

3.2.3 LAMMPS from the Sequoia acceptance suite
LAMMPS [23] is a classical molecular dynamics code de-

veloped at Sandia. For our experiments we use the embed-
ded atom method (EAM) metallic solid input script which
is used by the Sequoia benchmark suite. The LAMMPS
code and input scripts are provided on the LAMMPS web
site [25]. For each experiment we mention whether we ran
LAMMPS in weak or strong-scaling mode.

3.2.4 FFTW
FFTW (Fastest Fourier Transform in the West) is a C li-

brary for computing the discrete Fourier transform (DFT)
in one or more dimensions [10]. We use the MPI parallel
FFTW version 2.1.5 (MPI transforms are available only in
this version). FFTW allows the computation of different
types of transforms, including normal and transpose order,
and with and without work space. The output data com-
puted by these transforms maintain the same ordering as the
input data for normal, and transpose order for the transpose
transform. The “work” parameter uses MPI_Alltoall com-
munication at the expense of extra storage space, while “no
work” uses point-to-point communication.

We use the speed test provided by the parallel FFTW to
benchmark complex multi-dimensional transforms on sev-
eral processors. The results reported in this paper use nor-
mal and transpose order without work space. We ran FFTW
in weak-scaling mode.

3.2.5 HPCCG
HPCCG is one of the micro-applications of the Mantevo

project [26]. Micro-applications are “small, self-contained
programs that embody essential performance characteristics
of key applications.” HPCCG is intended to be the “best
approximation to an unstructured implicit finite element or
finite volume application in 800 lines or fewer.” These char-
acteristics make HPCCG ideal for our purposes. HPCCG is
weak-scaling.

4. CLUSTER SIMULATOR EVALUATION
In this section we evaluate several characteristics of our

cluster simulation infrastructure. In the next section we
demonstrate, using this infrastructure, the successful evalu-
ation of a novel architectural feature. Here we evaluate the
simulator itself.

4.1 Repeatability
Since cycle accurate simulation is time consuming, it is not

always possible to repeat a single experiment many times
to detect measurement errors. It is therefore important to
know how repeatable individual results are and how often
outliers occur.

Table 3 shows the execution times reported by several of
our application. Since we are running on production clus-
ters, an important consideration is whether running on the
same set of nodes produces different results than running on
whichever nodes the batch system allocates to us. We ran
two different experiments. In “batch” mode we repeatedly
submit the job and let the system determine which nodes are
available for each subsequent run. In “same nodes”mode we
submit a single batch script that runs the same benchmark
several times. Each of the runs uses the same set of nodes
allocated for the duration of the job.

For each application and mode we calculate the minimum,
median, average, maximum, and standard deviation of the
running time each benchmark reports. The minimum and
maximum are expressed as a percentage of the median.

There is no significant difference between runs on the same
set of nodes and letting the batch system allocate nodes for
us. However, there is a difference in the behavior of the
benchmarks. While IS and LAMMPS show almost no varia-
tion from one run to the next, HPCCG and AMG fluctuate
more. Figures 3 and 4 show the difference between run-
ning AMG and LAMMPS several times in a row. AMG
is much less deterministic. Indeed, in many of our experi-
ments we noticed AMG producing outliers, requiring more
runs to observe trends in a given experiment. The second
row in Table 3 shows the results of 19 native runs using the
same parameters as the simulated AMG runs. The reported
times are different because we are running on a faster system
natively than the one we are simulating, but the run time
fluctuations are similar between simulated and native runs.
Figure 3 shows this graphically.

4.2 Impact of synchronization interval
In Section 2.2.1 we explained how our simulation infras-

tructure keeps the individual target nodes synchronized. The
choice of synchronization interval has an impact on how
long a simulation takes and the accuracy of the simulation.
Figures 5, 6, and 7 show results for LAMMPS simulating
4,000 atoms (strong scaling), HPCCG with a problem size
of 10×10×10, and AMG with solver 0 and problem size r1.
Since we are only interested in the synchronization impact,
we turned cache simulation off for LAMMPS and HPCCG.



Table 3: Variations in reported simulation time.

Program Minimum Median Average Maximum SD Runs

AMG, 8 nodes, same nodes -0.92% 33.2 ms 35.2 ms +18.17% 3.4 ms 7
AMG, 8 nodes, same nodes, native -25.0% 12.7 ms 12.3 ms +15.26% 1.4 ms 19
AMG, 8 nodes, batch -7.70% 36.0 ms 36.5 ms +14.24% 2.9 ms 19
HPCCG, 64 nodes, same nodes -0.66% 80.6 ms 81.2 ms +4.06% 1.3 ms 2 × 7
HPCCG, 64 nodes, batch -1.34% 80.9 ms 81.2 ms +3.72% 1.1 ms 58
LAMMPS, 16 nodes, same nodes -0.78% 480.2 ms 480.1 ms +0.63% 2.7 ms 7
LAMMPS, 16 nodes, batch -0.85% 480.4 ms 480.2 ms +0.75% 2.4 ms 24
IS, 64 nodes, same nodes -0.00% 750.0 ms 750.0 ms +0.00% 0.0 ms 6 × 7
IS, 64 nodes, batch -0.00% 750.0 ms 750.0 ms +0.00% 0.0 ms 9
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runs on 16 nodes.

We ran AMG in fast-forward mode (see Section 2.1.1).
In Figure 5, we increase the synchronization interval along

the x-axis and plot the reported simulation time. The graph
shows that if we increase the interval beyond about 106 clock
cycles, the simulation results start to deviate from the results
obtained when the nodes are more tightly synchronized.
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We calculate slowdown by dividing the simulation time be-
tween MPI_Init and MPI_Finalize into the wall-clock time



between these two functions. Figure 6 shows that increas-
ing the interval between node synchronizations lowers the
slowdown factor because the wall-clock time required to run
the simulation decreases. Our simulation infrastructure is in
itself a parallel application. By increasing the synchroniza-
tion interval, we reduce the synchronization overhead and,
therefore, increase performance.

Since we should not increase the synchronization inter-
val beyond 106 clock cycles, and want to keep it as high as
possible for performance reasons, a range of 105 to 106 clock
cycles seems appropriate. We chose 50,000 for all the results
reported in this paper. Given the target configuration from
Table 1 this corresponds to a simulated time of ≈ 30µs. If
we assume a simulation slowdown of 6,000 for cache-enabled
simulations, this corresponds to about 200ms of wall-clock
time between synchronizations of the host nodes. The slow-
down factor, and whence the time between host node syn-
chronizations, depends on the application and the cache sim-
ulation mode (see next section).

Before each synchronization we read the local wall-clocks.
After the synchronization we find the lowest time value and
subtract it from the highest time value. This measures how
much these two extreme nodes have drifted from each other
during the previous interval. We keep a running total and
report the average drift at the end of the simulation. Fig-
ure 7 shows the impact the synchronization interval has on
drift. Some applications are more prone to drift than others,
with drift becoming a problem at an interval of about 106

clock cycles.
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Synchronizations occur at specific simulation time inter-
vals. If the nodes drift too much from each other, fast nodes
will have to wait longer for others to reach their synchroniza-
tion points. The simulation clock is stopped during these
waits.

Drift is caused by the environment outside our simulation.
Different nodes run at slightly different speeds, but a bigger
factor is OS noise and I/O when writing logging information,
for example. While a node is busy writing to an external
file system, or doing OS housekeeping tasks, the simulation
clock is not advancing. When that node joins the others in
the next synchronization it will show up late, and we can
measure that delay.

When the synchronization intervals are high (greater than
106 clock cycles), faster nodes can get too far ahead. That

means our network model may deliver some messages late
in simulation time. This leads to delays in simulation time
at the receiving node. That is why drift in wall-clock time
has an impact on simulation time. By choosing a good syn-
chronization interval we can keep drift to a minimum and
prevent artificial delays in simulation time. Another way to
look at this is that our simulator gang schedules the simu-
lated nodes. It can only do that if we keep the synchroniza-
tion interval sufficiently small; i.e., below 106 clock cycles.

4.3 Fast-forward evaluation
In Section 2.1.1 we described the ability of our infras-

tructure to disable cache simulation and let the simulation
proceed faster. At a strategic point in the application, we
turn cache simulation back on to properly evaluate an in-
ner kernel or continue a calculation after restarting from a
checkpoint.

When turning cache simulation on, the caches will be
empty and need some time to warm up. To avoid inaccurate
results, it is necessary to turn cache simulation on a little
before the program section of interest. That is accomplished
with a statement inserted into the source code of the appli-
cation. We ran AMG on 8 nodes with solver 0 and different
workloads with cache simulation turned off, always on, and
only on during the solve phase. We obtained the results
shown in Table 4. For fast-forward mode we turned cache
simulation on during the setup phase to allow the caches to
warm up before entering the solve phase.

Both wall-clock and simulation time are measured be-
tween MPI_Init() and MPI_Finalize(). The slowdown fac-
tor is the wall-clock time divided by the simulation time.
The results in Table 4 are the average of three runs each
(problem size r3 is six runs for each simulation).

The solver-only column is the time AMG reports being
in the solve phase. During that phase, cache simulation is
turned on in the always-on and fast-forward mode. There-
fore, the solver times reported for those two modes should
be the same. The difference for each problem size in Ta-
ble 4 is less than 1%, which is well within the running time
variations of AMG.

Using fast-forward mode to advance a simulation to the
point of interest should help us get the same simulation re-
sults as running the entire simulation with cache simulation
turned on. The saving column shows how much faster the
AMG simulation runs when cache simulation is turned on
only during the solve phase.

4.4 Scaling
We have mentioned before that our infrastructure is itself

a parallel application. Due to the tight synchronization of
the simulated nodes, the parallel performance of the infras-
tructure is directly tied to the speedup and parallel efficiency
of the simulated application.

LAMMPS scales very well as can be seen in Figure 8.
The graph plots the reported LAMMPS time against the
number of nodes. In weak-scaling mode we increase the
overall problem size with the number of nodes available for
the computation. This keeps the problem size on each node
constant. The flatness of the curve is due to the fact that
LAMMPS has very little communication overhead as more
nodes are added. We ran with cache simulation turned off
for this experiment.

In Figure 9 we show the wall-clock time of our simulation



Table 4: Cost of cache simulation for 8-node AMG

Problem size Cache simula-
tion

Wall-clock Saving Simulation Solver only Slowdown
factor

1 1 1
Always off 0:00:19 123.465 ms 29.209 ms 158
Always on 0:14:32 ¯

30%
137.560 ms 33.258 ms 6,340

On during solve 0:10:13 137.880 ms 33.626 ms 4,447

3 3 3
Always off 0:02:48 535.781 ms 233.962 ms 313
Always on 1:40:32 ¯

15%
786.404 ms 264.944 ms 7,671

On during solve 1:25:43 753.849 ms 264.116 ms 6,822

4 4 4
Always off 0:06:15 1.118 s 522.955 ms 336
Always on 3:58:37 ¯

12%
1.854 s 614.203 ms 7,721

On during solve 3:31:09 1.780 s 610.965 ms 7,118

infrastructure for the LAMMPS runs from Figure 8 (from
MPI_Init to MPI_Finalize). Our simulator has some over-
head due to the frequent synchronizations that occur every
50,000 clock cycles. Nevertheless, it scales very well and
is suitable for simulating well-scaling applications, such as
LAMMPS, to several hundreds and thousands of nodes.
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Figure 8: LAMMPS simulation time.
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Figure 9: LAMMPS wall-clock time.

Figures 10 and 11 show the running time of the simulated
HPCCG micro-application and the behavior of our simu-

lation infrastructure in wall-clock time. Each plot point
represents a single run of HPCCG with cache simulation
turned off. The simulated HPCCG does not scale quite as
well as LAMMPS due to the small problem size used for
HPCCG. Comparing Figures 10 and 11, we can see that the
inefficiencies of our simulation infrastructure are masked by
HPCCG’s parallel performance characteristics. Despite this,
our infrastructure scales well enough to run HPCCG on sev-
eral hundred nodes. The relatively poor scaling of HPCCG
in our experiments is due to the very small problem size
we were able to run within a reasonable time interval when
doing cycle-accurate simulations.
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Figure 10: HPCCG simulation time.
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5. CACHE INJECTION
We created our simulation infrastructure to conduct ex-

periments where cycle-accurate node simulation is impor-
tant when evaluating message-passing parallel applications.
To demonstrate the capabilities of our simulator, we investi-
gate cache injection and its impact on parallel applications
performance.

Our version of Mambo has the capability of letting the
NIC inject data directly into the L2 or L3 caches. Writing to
memory is performed by issuing write-invalidate bus trans-
actions. Writing to a cache is performed in chunks of one
cache block and the state of the resulting block is set to clean
exclusive [28]. Writes of less than one block are handled by
a write with flush operation (flush the cache line first and
then write the data into memory). Writes to a cache require
the physical address of the destination to be block-aligned.
Thus, writing incoming network data to a cache may involve
writing the first few words using write with flush until the
destination address is cache aligned, then writing full blocks
to the cache. Currently, all writes to a cache also update
main memory.

If the NIC injects network data before it is needed, it will
displace current data, forcing a reload of that data plus a
reload of the network data later on. Therefore, determining
which network data to inject is an interesting question. We
can inject entire messages with the risk of displacing too
much data of the current working set. We can inject only
MPI envelope information from the message header; such as
source, tag, and length information about the message; or
we can inject both the payload and the header.

We will look at four different injection policies. “None”
is no cache injection at all, which is the base case to which
we will make comparisons. “Hl2” injects the message headers
into the L2 cache. “Payload” injects the body of the message
into the L3 cache as long as the payload is at least 128 bytes
(a cache line) but not more than half the L3 cache size. The
fourth policy, “Hl2p”, combines header injection into the L2
cache with payload injection into the L3 cache.

The version of the NIC we used for these experiments in-
jects data at the time of a successful return from a user-level
call to rx_done (see Section 2.2.3). That is, the data has
arrived at the destination, and the network model has de-
termined that the (simulated) time for delivery has arrived.
The next time after that, when the application asks whether
a particular message has arrived (using rx_done), the NIC
injects the data and returns success to the application query.
This approach should increase the likelihood that injected
data will be used right away, since the application has just
asked whether it was available.

Cache injection differs from pre-fetching because cache in-
jection allows the NIC to deposit data directly into the cache
(and simultaneously memory). The network data traverses
the memory bus once. In pre-fetching the NIC deposit the
data and then the CPU pre-fetches it. This requires the
network data to traverse the memory bus twice.

Pre-fetching network data may incur additional overhead
because the CPU cannot know when new data has arrived
and a pre-fetch makes sense. Pre-fetching network data too
early will result in old data traversing the memory bus until
the NIC deposits the new data from the network in mem-
ory. Pre-fetching network data compared to cache injection
increases memory bus use and latency.

Although cache injection is not available yet, it is a good

example of an architectural innovation that high-end future
parallel machines may incorporate into their designs. Before
a manufacturer commits to such a design, its utility must be
evaluated with simulators like the one we describe here.

5.1 Memory pressure
One of the goals for cache injection is to reduce the num-

ber of times data has to travel across the memory bus be-
tween arrival at the NIC and consumption by the CPU. In
other words, we hope that cache injection relieves pressure
on memory by serving more of the data directly from cache.
We can measure memory pressure by counting the number
of read requests to the memory unit. Only reads that cannot
be satisfied from one of the cache levels result in a count-
able event. In Figures 12 and 13 we show the number of
reads issued for the four cache injection policies on increas-
ing number of nodes.
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Figure 12: Memory pressure for AMG solve phase.

R
ea

ds
 is

su
ed

 to
 m

em
or

y 
un

it

Node count

Cache injection policy

none trend
hl2 trend

0.0 

500.0 

1.0 k

1.5 k

2.0 k

2.5 k

3.0 k

8 16 32 64 128

no
ne

hl
2

pa
yl

oa
d

hl
2p

no
ne

hl
2

pa
yl

oa
d

hl
2p

no
ne

hl
2

pa
yl

oa
d

hl
2p

no
ne

hl
2

pa
yl

oa
d

hl
2p

no
ne

hl
2

pa
yl

oa
d

hl
2p

Figure 13: Memory pressure for FFTW transpose

phase.

We ran both AMG (solver 0, problem size r1) and FFTW
in weak-scaling mode where the problem size per node is
kept constant. The number of reads we report are for the
transpose portion of FFTW and the solve phase of AMG.
Each bar in Figure 12 is the result of at least nine runs.
Figure 13 shows five or more runs. We show the median as
a colored box and the minimum and maximum as error bars.



One of the outliers we mentioned in Section 4.1 can be seen
in Figure 13 on 128 nodes using no cache injection (none).

Analyzing Figure 12 we observe that, without cache injec-
tion, the number of reads to main memory increases expo-
nentially as the node count goes up. The upper trend line
plots a smooth curve between the no-cache injection data
points. The lower trend line follows the hl2 data points. It
is clear that injecting header information into the L2 cache
greatly reduces memory pressure as the node count goes up.
The reason the payload-only injection policy shows no ben-
efit is due to the small problem size we use here, most of the
messages are smaller than 128 bytes and will not be injected.
The hl2p policy shows the same benefit as hl2 because the
headers are injected as in hl2, but the payload is not, since
it is too small. Figure 13 shows a similar benefit for FFTW.

5.2 Performance
Reduced memory pressure should lead to better applica-

tion performance. As Figures 14 and 15 show, this is not
really the case for our experimental runs. Median AMG and
FFTW run times improved by less than 2%; again due to
the small problem size. The memory subsystem has plenty
of capacity to support the additional reads that become nec-
essary as we increase the node count. Other work currently
in progress shows that the reduced memory pressure enabled
by cache injection does reduce run time for larger problem
sizes and other applications.
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Figure 14: Performance of AMG solve phase.

5.3 Validation
Since we are simulating a system that does not exist –

a Cray XT-3 network with PowerPC processor nodes and
cache injection – direct comparison is impossible. Mambo
on its own has been verified by IBM [22] and we have veri-
fied our network model, using bandwidth and latency bench-
marks, against our Cray XT-3 [24]. This leaves the question
of whether the combination of these two components yields
an accurate simulator.

One way to evaluate whether our simulator accurately
simulates a scalable machine, is to look at an application
and see whether it continues to scale when it is run inside
our environment. Figure 8 shows LAMMPS scaling when
run inside the simulator. Calculating the parallel efficiency
for the data contained in that plot we get 96.6% for 64 nodes
and up. This compares favorably to the above 90% parallel
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Figure 15: Performance of FFTW transpose phase.

efficiency reported on the LAMMPS web site [25] for the
scaled-size metallic solid EAM problem run in our tests. We
get better parallel efficiency because we run a smaller prob-
lem size and our bandwidth to flops ratio is different than
the systems used for the native LAMMPS runs on the web
page.

Another approach to validation is the one taken by Falcon
et al. [9]. There, the tightly synchronized simulation is taken
as the base. As they increase the synchronization interval,
the times reported by the benchmark start to diverge. We
see the same behavior in our simulator in Figure 5. As long
as our synchronization interval does not exceed 105 clock
ticks, the applications perform deterministically. These, and
other experiments, indicate that our simulator is accurate.
Nonetheless, until we can simulate an existing system, direct
validation cannot be done.

6. RELATED WORK
Our cluster simulator combines a discrete event multipro-

cessor full-system simulator with a NIC and a network model
implementation. Discrete event simulation has been a topic
of study for many years. We refer the reader to the chapter
on systems simulation in [3]. Parallel discrete event simula-
tion has also been explored extensively and many techniques
are in use to limit interactions between distant parts of a
system. These interactions are necessary to coordinate the
distributed event queues, which are needed for a simulator to
scale. This, however, increases the need for additional syn-
chronization. Fujimoto [11] provides a very nice description
of the problems involved in parallel discrete event simula-
tion.

Asynchronous distributed simulation [6, 14] is one way to
address the problem of synchronizing distributed parts of
the same simulator. Work on simulating large-scale systems
is summarized in [12]. However, the problem of scalability
remains. Some researchers turn to modeling instead [17, 16,
19]. While this is more efficient, it is also less accurate and
less likely to predict future systems’ performance precisely
when compared to detailed discrete event simulation.

The work most closely related to ours is COTSon [9, 2].
These papers point out that synchronization is a critical as-
pect of parallel discrete event simulation. If synchronization
is too frequent, the simulation will slow down and cannot
scale. If it is too infrequent, messages may arrive in the



past. Compared to their approach, we prevent stragglers by
synchronizing at a fixed interval. Additionally, our simulator
scales to hundreds of nodes and can run on distributed mem-
ory machines. Our NIC and network model is distributed
and does not become a centralized bottleneck.

In [5], Burger and Wood evaluate the cost of simulating
increasingly accurate network models versus the accuracy
they provide. Their target is a 32-node shared-memory ma-
chine with three different cache coherency protocols. They
find that for message intense applications only the more ac-
curate network models provide enough accuracy. Of course,
the cost for more accuracy is more frequent synchronization
which limits scalability and performance. We are simulating
a distributed-memory target which allows us to use larger
synchronization intervals. Because our network model is dis-
tributed we also have the luxury of more compute time for
future, more accurate network models than the simple one
presented in this paper. Nevertheless, the fundamental link
between accuracy and performance shown in [5] is true for
our simulator as well.

Other projects are attempting to solve the problem of sim-
ulating a large-scale HPC system. The MARS simulation
framework [7] focuses on the network. It uses Mambo to gen-
erate traces that are fed into a network simulator (instead
of a model). That approach scales well, but has the disad-
vantage that detailed analysis of network traffic impact on
node architecture, such as cache injection, cannot be done.
BigSim [29] uses optimistic synchronization which requires
a rollback mechanism when causality errors occur. This ap-
proach is useful for fine-grained tasks to exploit parallelism
more efficiently. Mambo, as an individual parallel task, is
coarse grained. Therefore, optimistic synchronization would
not be a benefit for our cluster simulator. Just like MARS,
BigSim is not capable of detailed node simulation.

7. SUMMARY AND FUTURE WORK
In this paper we describe an infrastructure that allows

systems researchers to study the impact of architectural
changes on scientific parallel application performance. This
infrastructure is designed to:

• leverage current single-node simulators;
• enable simulation of recent and future cluster architec-

tures, including techniques to improve application per-
formance and scalability;

• allow system designers to better understand the inter-
actions between the OS, parallel applications and the
NIC, as well as between nodes; and, finally,

• accurately simulate a cluster at scale.
The results presented in this paper indicate that our in-

frastructure can indeed meet these goals. We will continue
making improvements to the simulation infrastructure itself.
For example, we would like to replace K42 with Linux.

Many opportunities exist for future work with the simu-
lator described in this paper. We have only scratched the
surface of exploring the potential benefits of cache injection,
and plan to explore cache injection policies for multi-core
architectures. We also intend to assess the impact of differ-
ent network characteristics, such as different latencies and
bandwidths, on applications and their interactions with the
memory system.

Mambo is able to simulate a multi-processor multi-core
machine. This kind of architecture will become prevalent
in the next-generation supercomputers and will significantly

change the flops to network bandwidth ratio. We want to
evaluate the impact of such an architecture on parallel ap-
plication performance.
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Kalé. Simulation-based performance prediction for
large parallel machines. Int. J. Parallel Program.,
33(2):183–207, 2005.


