
An Infrastructure for the Development of Kernel Network Services.
Proof of Concept: Fast UDP.

Edgar A. León
University of New Mexico

Michal Ostrowski
IBM T. J. Watson Research Center

Scientific applications demand tremendous amounts of
computational capabilities. In the last few years, the com-
putational power provided by clusters of workstations and
SMPs has become popular as a cost-effective alternative
to supercomputers. Nodes in these systems are intercon-
nected using high-speed networks via “smart” Network
Interface Controllers (NIC). These controllers allow the
overlap of computation and communication by process-
ing communication tasks on the NIC and computational
tasks on the host processor(s).

Parallel applications running on these clusters suffer
from a variety of performance and scalability problems:
host processor overhead due to communication process-
ing, data placement overhead (memory copies), overhead
due to external interrupts, cost of splitting OS functional-
ity between host and NIC, etc. These problems are caused
by the poor integration of the NIC with the Operating
System (OS) and applications. The interactions between
these entities are complex and are key to an application’s
performance.

To investigate these interactions as well as to propose
and study next generation NICs, we have created an in-
frastructure in which network interface controllers can
be simulated. Simulated NICs are based on a functional
model which can run arbitrary functionality and may in-
teract with the host in novel ways such as injecting data
directly into a processor’s cache. As a proof of concept,
we extended the implementation of a simple unreliable
communication protocol, UDP, by applying three network
optimizations. This new implementation of UDP, which
we have called Fast UDP, provides significant perfor-
mance advantages over traditional UDP.

Our network infrastructure has been implemented
in Mambo, the IBM PowerPC full-system simulator,
through a shim layer. This layer allows the creation and
dynamic loading of simulated network devices into the
Mambo system simulator. Simulated NICs can be written
in C and can be developed without Mambo source code.
These controllers interact with Mambo through a well-
defined interface which provides a functional abstraction
of the NIC’s hardware/firmware. By explicitly defining
this API, NIC independent code can be developed and
potentially run in any NIC that implements this abstrac-
tion. The shim interface provides control and data paths
to the host, as well as functions to inject data into a pro-
cessor’s cache directly. Our simulated NIC is accessed
by the host through memory mapped registers. Using this
mechanism, a user process can interact with the NIC di-
rectly, allowing OS and Hypervisor bypass. Access to
these registers is controlled by the OS and/or Hypervisor.

Fast UDP, a high-performance implementation of UDP,
is divided into code running on the host and code running

on the NIC. The code running on the host is the Linux
UDP/IP stack unmodified. The code running on the NIC
implements three network optimizations: message match-
ing on the NIC; splintering data and control information
from network packets; and NIC offloading.

In commodity UDP implementations, when a packet
arrives from the network, the NIC copies the message to
a kernel buffer and raises an interrupt for the host OS to
handle this packet. The OS processes the packet through
the UDP/IP stack and finally copies the payload to user
space. In our approach, the NIC has been instrumented
to partially process UDP packets so that the payload is
transfered directly from the NIC to user space, while the
header (control information) is copied to a kernel buffer.
Thus the kernel remains aware of incoming network pack-
ets but does not incur in the overhead of processing appli-
cation’s data (including an extra copy to user space).

Message matching semantics of UDP are based on an
IP address and a Port. Message matching in Fast UDP is
also performed on the NIC. The information about receive
UDP buffers is shared by the OS with the NIC when a
user posts a UDP receive. When a UDP packet arrives
from the network, the NIC matches the packet using its
destination port, and if a user has posted a receive for that
port, the payload will be delivered to the user buffer. UDP
checksum on the packet is performed (offloaded) on the
NIC to avoid the transfer of erroneous data to the user.

To compare a traditional UDP implementation with
Fast UDP, we created a simple UDP application in K42
(a high-performance research OS) and measured its run-
time. The application consists of two phases: the recep-
tion of a number of packets; and performing computation
on the data. Fast UDP performed 5% better than UDP
when the application spends 80% of its time computing.
This performance improvement is expected to increase as
the application’s communication to computation ratio in-
creases.

In conclusion, we have created an infrastructure to sim-
ulate network interfaces which allow us to: (a) Better un-
derstand recent and future network architectures to fully
take advantage of their capabilities; (b) Make a case for
optimizations that improve application performance and
scalability and provide arguments for those ones who do
not; (c) Better understand the interactions between the
Operating System, Applications and smart NICs to avoid
bottlenecks in the data path from the network all the way
to the application. As a proof of concept, we applied
three network optimizations techniques to improve ap-
plication performance: matching on the NIC, NIC of-
floading, and splintering of control and data. We ob-
tained significant performance improvements even for a
computation-bound application.


