
An Infrastructure for the Development of Kernel Network Services.
Proof of Concept: Fast UDP
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Motivation
Performance degradation of HPC applications is caused 

by several factors:
● Host processor overhead due to 

communication processing
● Memory latency on inbound  network data
● Cost of splitting OS functionality between 

host and NIC
● Data placement overhead (memory copies)
● Overhead due to external interrupts

Poor interaction of the NIC with the OS and 
applications, leading to poor performance

  
Goal

Build an infrastructure to:
● Study NIC/OS/Application interaction

● Cache Injection
● OS and Hypervisor bypass
● Protocol Offloading
● Interrupt direction and filtering 

● Develop and evaluate next-generation NICs

   
Network Infrastructure

Framework to create simulated NICs
● Run arbitrary functionality 
● Created as dynamic libraries
● Plug-in to IBM's Mambo full-system simulator
● Interact with host through the Shim Layer:

● Provides the glue between NIC and host
● Simulated NIC is developed without the need of 

Mambo source code
● Entry points explicitly defined by the Shim 
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Shim Interface
● mem_write, cache_write
● mem_read, cache_read
● memmap_define
● memmap_delete
● set_memmap_io_funcs
● schedule_job
● delay_cycles
● raise_interrupt

   
Cache Injection

Fast UDP
● Splinter data from control information

● Application's data bypasses the OS
● Delivery notification provided by the OS

● Matching on the NIC
● NIC has enough information to perform data 

placement directly
● NIC Offload 

● Splintering, Message Matching, UDP/IP 
checksum semantics

Conclusions and Future Work
● Developed an infrastructure to: 

● Better understand the interactions between smart 
NICs, the OS, and applications

● Study recent and future NIC architectures
● Make a case for kernel network services that 

improve application's performance

● Proof of concept: Fast UDP
● 5% improvement on an 80% computation-bound 

application
 

● Future Work
● Study OS services to leverage cache injection for 

HPC applications
● Study functionality placement of these services 

between NIC and OS   
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Test Application

timestamp

while(1)
{

recvfrom(sock, buff+offset, ...);
if (offset >= i++ * chunk_size)
sort_chunk(buff, i);

 if (i == num_chunks)
break; 

}
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