
An Infrastructure for the Development of Kernel Network Services.
Proof of Concept: Fast UDP

Mambo
full-system
simulator

Shim Layer

Shim Interface

Pluggable
NIC A

Pluggable
NIC B

RegBuf

AddTokToPort

AddTokToPort

RegTok

PinPages

MMR

User

Kernel

NIC

(buf,size)

ptr

token

(port,token)

(token,ptr)

GenTok

port

Ports

Tokens

PAs

PA
1
 size

1

size

port

PA
1
size

1

PA
2
size

2

PA
2
 size

2

TLB
token -> list of (PA, size) pairs

Motivation
Performance degradation of HPC applications is caused

by several factors:
● Host processor overhead due to

communication processing
● Memory latency on inbound network data
● Cost of splitting OS functionality between

host and NIC
● Data placement overhead (memory copies)
● Overhead due to external interrupts

Poor interaction of the NIC with the OS and
applications, leading to poor performance

Goal

Build an infrastructure to:
● Study NIC/OS/Application interaction

● Cache Injection
● OS and Hypervisor bypass
● Protocol Offloading
● Interrupt direction and filtering

● Develop and evaluate next-generation NICs

Network Infrastructure

Framework to create simulated NICs
● Run arbitrary functionality
● Created as dynamic libraries
● Plug-in to IBM's Mambo full-system simulator
● Interact with host through the Shim Layer:

● Provides the glue between NIC and host
● Simulated NIC is developed without the need of

Mambo source code
● Entry points explicitly defined by the Shim

Interface

The Shim Layer

Yes

Yes
OK

Network NIC

UDP
Packet?

Drop
Packet

No

 Error

Ether
IP

UDP

User Space

Kernel Space
Match
Port?

IPCheck &
UDPCheck?

Splinter

Ether
IP

UDP
token
offset
size

To Kernel
Buffer

No

User / Kernel / NIC Interfaces

NIC Data Structures
and Matching

Shim Interface
● mem_write, cache_write
● mem_read, cache_read
● memmap_define
● memmap_delete
● set_memmap_io_funcs
● schedule_job
● delay_cycles
● raise_interrupt

Cache Injection

Fast UDP
● Splinter data from control information

● Application's data bypasses the OS
● Delivery notification provided by the OS

● Matching on the NIC
● NIC has enough information to perform data

placement directly
● NIC Offload

● Splintering, Message Matching, UDP/IP
checksum semantics

Conclusions and Future Work
● Developed an infrastructure to:

● Better understand the interactions between smart
NICs, the OS, and applications

● Study recent and future NIC architectures
● Make a case for kernel network services that

improve application's performance

● Proof of concept: Fast UDP
● 5% improvement on an 80% computation-bound

application

● Future Work
● Study OS services to leverage cache injection for

HPC applications
● Study functionality placement of these services

between NIC and OS

Edgar A. León
University of New Mexico

Michal Ostrowski
IBM T. J. Watson Research Center

PA
1
 size

1

PA
2
 size

2

Test Application

timestamp

while(1)
{

recvfrom(sock, buff+offset, ...);
if (offset >= i++ * chunk_size)
sort_chunk(buff, i);

 if (i == num_chunks)
break;

}

timestamp

Results

P2P1
Mem

L2/L3 L2/L3

NIC

HBA

2. cache_write(PA, localbuf, len, target)

Network
1

3

4

pkt

pkt
pkt

4

