Assessing the Impact of Cache Injection on
Parallel Application Performance

Edgar A. Leén
University of New Mexico
leon@cs.unm.edu

1 Introduction

The memory wall [13], the continuing disparity between
processor and memory speeds, adversely affects the per-
formance of many applications [8], particularly data in-
tensive computations [11]. Cache injection addresses this
disparity by placing incoming network data into a proces-
sor’s cache directly from the I/O bus. The effectiveness
of this technique on application performance is dependent
on several factors including the ratio of processor to mem-
ory speed, the NIC’s injection policy, and the application’s
communication characteristics. In this work, I show that
the performance of cache injection is directly proportional
to the ratio of processor to memory speed, i.e., the higher
the memory wall, the higher the performance. This re-
sult suggests that cache injection can be particularly ef-
fective on multi-core architectures (increasing number of
cores compared to available channels to memory). Un-
like previous work (focused on reducing memory copies
incurred by the network stack) [1, 5], I show that cache
injection improves application performance by leveraging
the application’s temporal and spatial locality in access-
ing incoming network data. In addition, the application’s
communication characteristics are key to cache injection
performance. For example, cache injection can improve
the performance of certain collective operations by 20%.

Cache injection [1, 5, 3] is one of several techniques to
alleviate the memory wall [9, 10, 8]. This technique re-
duces data latency and memory pressure (the number of
requests issued to the memory controller per unit of time)
by placing incoming network data directly into the cache.
In current architectures, incoming network data is written
to the system’s main memory and cached copies are in-
validated. Cache injection replaces invalidate operations
with updates if the corresponding cache lines are present,
or allocate operations if they are not.

In the next section, I describe how cache injection com-
pares to a widely-used technique to reduce data latency,
namely data prefetching. Unlike prefetching, cache in-
jection significantly reduces memory pressure for I/O.
Prefetching is driven by the access patterns of the proces-
sor (consumer of data), while cache injection is driven by
the NIC (producer). This producer-initiated model makes
cache injection prone to cache pollution. In Section 3, 1
show an example of this problem, and describe injection

policies that determine what and when to inject into the
cache to minimize pollution. In Section 4, I character-
ize application sensitivity to cache injection. In particular,
I show that the performance of this technique is depen-
dent on the degree to which systems are affected by the
memory wall, the injection policy, and the application’s
communication characteristics. Finally, I conclude in Sec-
tion 5.

2 Cache injection vs. prefetching

Cache injection and data prefetching strive to reduce data
latency by moving data into the cache before it is needed.
Table 1 compares both techniques. Prefetching has an im-
portant disadvantage: prefetching data from I/O devices
incurs memory bandwidth due to two transactions: (1)
transfer of data from the I/O producer to memory and in-
validating cached copies; and (2) fetching data from mem-
ory to the consumer. With cache injection, the second
transaction is not necessary, decreasing the amount of data
that has to go over the memory bus. Both techniques may
pollute the cache if the fetched/injected data is not used
promptly. For the remainder of this document, I use cache
injection of incoming network messages to provide a spe-
cific example of this technique, even though cache injec-
tion can be used with other DMA devices.

Table 1: Prefetching vs. cache injection.
Prefetching Cache injection
1) write to memory
2) fetch to cache
use memory bw reduce bw usage
reduce data latency

1) write to cache
Resources

Fails when data is not used promptly
general-purpose limited to I/O

consumer-driven producer-driven

Applicability
Type

Using simulation [2, 4] and cache injection to the L3
cache [1], I compare quantitatively the two techniques by
measuring memory bandwidth utilization and execution
time of a micro-benchmark that performs a linear traversal
of incoming network data in calculating a reduction oper-
ation. This micro-benchmark represents a stage of compu-
tation that is limited by memory bandwidth and provides

an optimal case for prefetching (linear traversal of data).
Memory bandwidth utilization is measured using the sim-
ulator’s number of memory reads issued to the memory
controller [2].

As shown in Figure 1, cache injection significantly re-
duces the number of reads to main memory by up to 96%
as all application access to incoming network data hit the
L3 cache. As shown in Figure 2, cache injection and
prefetching outperform the base case as they both reduce
the number of cache misses. Cache injection performs
competitively with prefetching. More details of these ex-
perimental results can be found elsewhere [3].

10

No Op(lm\zéllon =
Prefetch —e—
Cache Injection —¢—

Memory reads (kilo)

O
16K 32K 64K

128K
Message size

256K

Figure 1: Memory bandwidth utilization.

No Oplimizé!ion -
Prefetch —e—
Cache Injection —3¢—

Processor cycles (mega)
N
|

et

o I I I I
16K 32K 64K 128K 256K 512K ™M

Message size

Figure 2: Execution time.

3 Injection policies

Cache injection presents challenges intrinsic to the
producer-driven nature of this technique, namely timely
transfer and identifying the consumer of data. With cache
injection, data may be transferred too early for the con-
sumer to fetch it off the cache, polluting and evicting use-
ful data out of this resource. Consider the following MPI
algorithm based on a Jacobi iteration:

1. MPI_lsend boundary interior cells
2. MPlL_Irecv ghost cells
3. Calculate interior cell values

4. MPI_Wait for ghost cells to arrive
5. Calculate boundary interior cell values

The Jacobi method is an iterative algorithm to compute
the solutions of a system of linear equations and can be
used, for example, to calculate the temperature of a body
represented by a multidimensional grid.

If enough data is written to the cache from the NIC
during step 3, the working set of the application may be
evicted. The working set and incoming network data may
be competing for space in the cache, and ultimately, when
incoming network data does become part of the working
set (step 5), it may not be in the cache anymore. This
suggests that cache injection can decrease application per-
formance if not used properly.

To leverage the performance improvements that can be
provided by cache injection without polluting the cache,
adequate policies are needed. The goal of these policies is
to place incoming network data into the appropriate level
of the memory hierarchy (L2, L3 or main memory). In a
multiprocessor, multi-core system, the consumer proces-
sor/core also has to be identified. I present the following
policies based on information from the OS, the communi-
cation library (MPI), the compiler and the application:

1. Processor-direction. Inject to the processor/core
where the consumer thread is being executed. This
information is provided by the OS and included in the
memory descriptors that reside on the NIC to match
incoming messages. MPI processes on a node are not
expected to migrate.

2. Compiler-driven. Inject to the target cache when
the application and/or compiler explicitly solicits the
data.

3. Headers (hl2). Inject to the L2 cache the envelope of
a user message. This speeds up the communication
library on the host. An envelope is usually small, 128
bytes (cache line size) in my case.

4. Payload. Inject to the L3 cache the data of a user
message. This policy is further divided into pre-
posted (message has a matching receive) and unex-
pected. An application is more likely to use data
sooner from a message matching a preposted receive
than one that is unexpected.

5. Message (hl2p). Inject both headers and payload to
the L2 and L3 caches respectively.

4 Evaluation

To analyze the effect of these policies on application per-
formance, I created a scalable framework to simulate a
cluster of cache injection systems. This framework com-
bines an existing cycle-accurate node simulator (IBM’s

Mambo [2]) with an MPI-based network model [12]. The
resulting parallel simulator can be used to examine the ef-
fects of proposed architectural changes, e.g., cache injec-
tion, on cluster application performance. Also, it can exe-
cute unmodified MPI applications and is scalable to hun-
dreds of simulated machines.

The simulated system configuration for this work is
a cluster of Power5 with cache injection [1] machines
interconnected with a Cray XT-3 Red Storm network.
Each machine runs the K42 operating system and the
MPICH-MIAMI implementation of MPI. This implemen-
tation leverages zero-copy and OS-bypass communica-
tion.

To characterize application sensitivity to cache injec-
tion, I implemented policies 3, 4 and 5 (see Section 3),
and quantified their effect in the performance of AMG
from the ASC Sequoia acceptance suite [6], and FFT from
the HPC challenge benchmark suite [7]. AMG is a solver
for linear systems arising from problems on unstructured
grids. FFT measures the floating point rate of execution of
complex one-dimensional DFTs.

As Figure 3 shows, the performance of cache injection
is directly proportional to the ratio of processor to memory
speed. This figure shows AMG’s execution time as a func-
tion of memory speed slowdown for a variety of processor
speeds. The important factor in the performance of cache
injection is the ratio of processor to memory speed and
not the absolute processor speed. The higher the memory
wall, the higher the improvement on application perfor-
mance. The performance improvements provided by the
three injection policies studied here stem from a reduc-
tion in the number of memory reads served by the memory
unit. In other words, cache injection increases the number
of memory accesses satisfied by the cache. The header
policies (hl2 and hl2p) provide better performance since
37% of the application’s communication time is spent in
MPI_Waitall operations. These operations create requests
to the NIC checking for the result of a particular commu-
nication operation. NIC responses are written into the L2
cache under the header policies.

As shown by the left histogram of Figure 4, the payload
policies (payload and hl2p) improve the performance of
FFT by up to 8%, while the header policy does not pro-
vide any improvement. As shown by the right histogram
in the graph, the performance improvement is inversely
proportional to the number of reads issued to the memory
controller, i.e. the lower pressure to memory, the higher
the performance. For this application, the payload policies
perform better than the header policy since 88% of the ap-
plication’s communication time is spent in MPI_Alltoall
operations. This result also shows that cache injection can
leverage the application’s message temporal and spatial
locality. The performance improvement for this applica-
tion is significant since only 10% of the application’s time
is spent in communication operations.

base mm—
105 hi2

hi2p
payload

100
95 |-

90 |-

85 -
80 |-
75
70 -
65 |-
60

Figure 3: AMG performance normalized to base case as a
function of memory and processor speed, and cache injec-
tion policy for 64 nodes.

Solve phase time normalized

. .0 7. 10 25 50 75
roc. 1200 MHz proc. 1800 MHz proc.
Memory speed slowdown

[base mm hi2 hi2p s payload

Gigaflops improvement (%)
IS
T
Memory reads (kilo)

4 ‘ ‘ ‘ ml N0 NN 60
4 8 16 4 8 16

Number of nodes

Figure 4: FFT performance as a function of injection pol-
icy, and number of nodes.

The different sensitivity shown by AMG and FFT to
cache injection is a result of their different communi-
cation characteristics. As Figure 5 shows, cache injec-
tion improves the performance of collective operations
such as MPI_Allgather, MPI_Allreduce, and MPI_Bcast
by up to 20% as a function of message size. These im-
provements stem from a faster message availability at ev-
ery level of the tree-based algorithms implemented by
MPICH. MPI _Scatter does not provide sustained improve-
ments due to the low number of incoming messages per
node in the tree structure. This suggest that cache injec-
tion can improve the performance of applications using a
significant amount of collective operations of medium to
large sizes (as shown by FFT above).

5 Conclusions

Cache injection is a viable technique to improve the per-
formance of parallel applications bound by the memory
wall. To show this, I created a framework to study clusters
of systems with novel architectural features at scale. Us-
ing this framework, I enabled cache injection to the L2 and
L3 caches, and characterized application sensitivity using

20 [Aligather —— |
Allreduce —3¢—
Bcast —#—
Scatter —g—

Execution time improvement (%)

I
256K M

| | | |
2568 1K 4K 16K
Message size

Figure 5: Effect of cache injection in the performance of
collective operations as a function of message size.

a set of policies tailored for MPI. My results showed that
the performance of cache injection is directly proportional
to the ratio of processor to memory speed. This result
suggests that the memory wall in many-core and multi-
core architectures (increasing number of cores compared
to available channels to memory) can be alleviated with
cache injection.

I also show that the performance of cache injection is a
function of the injection policy and the application’s com-
munication characteristics. Unlike previous work, I show
that cache injection can improve application performance
by leveraging the application’s temporal and spatial local-
ity in accessing incoming network data. In addition, cache
injection improves the performance of collective opera-
tions such as Alltoall, Allgather, Allreduce, and Bcast by
up to 20% as a function of message size. To conclude,
cache injection addresses the memory wall for applica-
tions with low temporal locality and a significant number
of collective operations of medium and large sizes.

References

[1] P. Bohrer, R. Rajamony, and H. Shafi. Method and
apparatus for accelerating Input/Output processing
using cache injections, March 2004. US Patent No.
US 6,711,650 B1.

Patrick Bohrer, Mootaz Elnozahy, Ahmed Gheith,
Charles Lefurgy, Tarun Nakra, James Peterson,
Ram Rajamony, Ron Rockhold, Hazim Shafi, Rick
Simpson, Evan Speight, Kartik Sudeep, Eric Van
Hensbergen, and Lixin Zhang. Mambo — a full
system simulator for the PowerPC architecture.
ACM SIGMETRICS Performance Evaluation Re-
view, 31(4):8—12, March 2004.

Edgar A. Le6n, Kurt B. Ferreira, and Arthur B.
Maccabe. Reducing the impact of the mem-
ory wall for I/O using cache injection. In 15th

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

IEEE Symposium on High-Performance Intercon-
nects (HOTI’07), Palo Alto, CA, August 2007.

Edgar A. Le6n and Michal Ostrowski. An in-
frastructure for the development of kernel network
services. In 20th ACM Symposium on Operat-
ing Systems Principles (SOSP’05). Poster Session,
Brighton, United Kingdom, October 2005. ACM
SIGOPS.

Ram Huggahalli, Ravi Iyer, and Scott Tetrick. Di-
rect cache access for high bandwidth network I/O. In
32nd Annual International Symposium on Computer
Architecture (ISCA’05), pages 50-59, Madison, WI,
June 2005.

Lawrence Livermore National Laboratory. ASC Se-
quoia benchmark codes. https://asc.llnl.gov/
sequoia/benchmarks/, April 2008.

Piotr Luszczek, Jack J. Dongarra, David Koester,
Rolf Rabenseifner, Bob Lucas, Jeremy Kepner, John
McCalpin, David Bailey, and Daisuke Takahashi. In-
troduction to the HPC challenge benchmark suite,
March 2005.

Sally A. McKee, Steven A. Moyer, and Wm. A.
Waulf. Increasing memory bandwidth for vector com-
putations. In International Conference on Program-

ming Languages and System Architectures, pages
87-104, Zurich, Switzerland, March 1994.

Todd Mowry and Anoop Gupta. Tolerating latency
through software-controlled prefetching in shared-
memory multiprocessors. Journal of Parallel and
Distributed Computing, 12(2):87-106, 1991.

Steven A. Moyer. Access Ordering and Effec-
tive Memory Bandwidth. PhD thesis, Department
of Computer Science, University of Virginia, April
1993.

Richard C. Murphy and Peter M. Kogge. On the
memory access patterns of supercomputer applica-
tions: Benchmark selection and its implications.
IEEE Transactions on Computers, 56(7):937-945,
July 2007.

Rolf Riesen. A hybrid MPI simulator. In /EEE In-
ternational Conference on Cluster Computing (Clus-
ter’06), Barcelona, Spain, September 2006.

Wm. A. Wulf and Sally A. McKee. Hitting the
memory wall: Implications of the obvious. ACM
SIGARCH Computer Architecture News, 3(1):20—
24, March 1995.

