
An Infrastructure for Network Development. Proof of Concept: Fast UDP

Mambo

Shim Layer

Shim Interface

Pluggable
Module A

Pluggable
Module B

RegBuf

AddTokToPort

AddTokToPort

RegTok

PinPages

MMR

User

Kernel

NIC

(buf,size)

ptr

token

(port,token)

(token,ptr)

GenTok

port

Ports

Tokens

PAs

PA
1
 size

1

size

port

PA
1
size

1

PA
2
size

2

PA
2
 size

2

TLB
token > list of (PA, size) pairs

Motivation
● HPC applications constrained by computational

resources
● Host network bandwidth scales poorly with respect to

processor, bus and link bandwidths
● As network speeds increase, incoming network data

may overwhelm host processor
● Applications may starve under high network loads
● Host overhead due to communication processing

degrades application performance

Goal
Build an infrastructure to:

● Study NIC/OS interaction
● OS bypass
● Cache Injection
● Matching on the NIC
● Protocol Offloading
● Interrupt direction and filtering

● Develop and evaluate next-generation Smart Network
Interface Controllers

Network Infrastructure
Build infrastructure in Mambo architecture simulator

● Problem
Mambo is not open source

● Objective
Allow the creation of pluggable modules

● Can be dynamically loaded in Mambo
● Run as Mambo components
● Do not need access to Mambo source code

The Shim Layer
● Allows module header space to be independent of

internal Mambo headers
● Provides a mambo-independent interface to library

modules
● Export functions, not data structures
● Data Structures encapsulated by Shim Handle

● Handle is opaque to Libraries
● Pluggable Modules

● Dynamically loaded using dlopen
● Mambo entry points explicitly defined by the Shim

Interface

Yes

Yes
OK

Network NIC

UDP
Packet?

Drop
Packet

No

 Error

Ether
IP

UDP

User Space

Kernel Space
Match
Port?

IPCheck &
UDPCheck?

Splinter

Ether
IP

UDP
token
offset
size

To Kernel
Buffer

No

User / Kernel / NIC Interfaces

NIC Data Structures
and Matching

NIC API / Shim Interface
● mem_write
● mem_read
● memmap_define
● memmap_delete
● set_memmap_io_funcs
● schedule_job
● delay_cycles
● raise_interrupt

Fast UDP
● Splinter data from control information

● Application's data bypasses the Kernel
● Make data available to applications fast
● Reduce host overhead due to communication

● Matching on the NIC
● NIC has enough information to perform data

placement directly
● NIC Offload

● Splinter, Message Matching, Data Placement,
UDP/IP checksum semantics

Conclusions and Future Work
● Developed an infrastructure to investigate

communication mechanisms that:
● Improve host scalability
● Reduce host overhead
● Improve overall application performance

● Proof of concept: Fast UDP
● 5% improvement on an 80% computation-bound

application

● Extend Shim Interface to allow cache injection
● Simulated NIC injects data directly into an L2/L3

data cache
● Investigate the scenarios when this optimization

provides positive and negative impact on
applications

Edgar A. León
University of New Mexico

Michal Ostrowski
IBM T. J. Watson Research Center

PA
1
 size

1

PA
2
 size

2

Test Application

timestamp

while(1)
{

recvfrom(sock, buff+offset, ...);
if (offset >= i++ * chunk_size)
sort_chunk(buff, i);

 if (i == num_chunks)
break;

}

timestamp

Results

USENIX'05

