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AI: EARLY HISTORY 
AND APPLICATIONS

 

All men by nature desire to know...

 

—A

 

RISTOTLE

 

, 

 

Opening sentence of the

 

 Metaphysics

Hear the rest, and you will marvel even more at the crafts and resources I have contrived. 
Greatest was this: in the former times if a man fell sick he had no defense against the 
sickness, neither healing food nor drink, nor unguent; but through the lack of drugs men 
wasted away, until I showed them the blending of mild simples wherewith they drive out 
all manner of diseases. . . .

It was I who made visible to men’s eyes the flaming signs of the sky that were before dim. 
So much for these. Beneath the earth, man’s hidden blessing, copper, iron, silver, and 
gold—will anyone claim to have discovered these before I did? No one, I am very sure, 
who wants to speak truly and to the purpose. One brief word will tell the whole story: all 
arts that mortals have come from Prometheus. 

 

—A

 

ESCHYLUS

 

, 

 

Prometheus Bound

 

1.1

 

From Eden to ENIAC: Attitudes toward
Intelligence, Knowledge, and Human Artifice

 

Prometheus speaks of the fruits of his transgression against the gods of Olympus: his
purpose was not merely to steal fire for the human race but also to enlighten humanity
through the gift of intelligence or 

 

nous

 

: the 

 

rational mind

 

. This intelligence forms the
foundation for all of human technology and ultimately all human civilization. The work of
Aeschylus, the classical Greek dramatist, illustrates a deep and ancient awareness of the
extraordinary power of knowledge. Artificial intelligence, in its very direct concern for
Prometheus’s gift, has been applied to all the areas of his legacy—medicine, psychology,
biology, astronomy, geology—and many areas of scientific endeavor that Aeschylus could
not have imagined. 
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Though Prometheus’s action freed humanity from the sickness of ignorance, it also

earned him the wrath of Zeus. Outraged over this theft of knowledge that previously
belonged only to the gods of Olympus, Zeus commanded that Prometheus be chained to a
barren rock to suffer the ravages of the elements for eternity. The notion that human efforts
to gain knowledge constitute a transgression against the laws of God or nature is deeply
ingrained in Western thought. It is the basis of the story of Eden and appears in the work of
Dante and Milton. Both Shakespeare and the ancient Greek tragedians portrayed
intellectual ambition as the cause of disaster. The belief that the desire for knowledge must
ultimately lead to disaster has persisted throughout history, enduring the Renaissance, the
Age of Enlightenment, and even the scientific and philosophical advances of the nine-
teenth and twentieth centuries. Thus, we should not be surprised that artificial intelligence
inspires so much controversy in both academic and popular circles. 

Indeed, rather than dispelling this ancient fear of the consequences of intellectual
ambition, modern technology has only made those consequences seem likely, even
imminent. The legends of Prometheus, Eve, and Faustus have been retold in the language
of technological society. In her introduction to 

 

Frankenstein,

 

 subtitled, interestingly
enough, 

 

The Modern Prometheus

 

, Mary Shelley writes: 

 

Many and long were the conversations between Lord Byron and Shelley to which I was a
devout and silent listener. During one of these, various philosophical doctrines were discussed,
and among others the nature of the principle of life, and whether there was any probability of
its ever being discovered and communicated. They talked of the experiments of Dr. Darwin
(I

 

 

 

speak not of what the doctor really did or said that he did, but, as more to my purpose, of
what was then spoken of as having been done by him), who preserved a piece of vermicelli in a
glass case till by some extraordinary means it began to move with a voluntary motion. Not thus,
after all, would life be given. Perhaps a corpse would be reanimated; galvanism had given
token of such things: perhaps the component parts of a creature might be manufactured,
brought together, and endued with vital warmth

 

 

 

(Butler 1998). 

 

Mary Shelley shows us the extent to which scientific advances such as the work of
Darwin and the discovery of electricity had convinced even nonscientists that the work-
ings of nature were not divine secrets, but could be broken down and understood system-
atically. Frankenstein’s monster is not the product of shamanistic incantations or
unspeakable transactions with the underworld: it is assembled from separately “manufac-
tured” components and infused with the vital force of electricity. Although nineteenth-cen-
tury science was inadequate to realize the goal of understanding and creating a fully
intelligent agent, it affirmed the notion that the mysteries of life and intellect might be
brought into the light of scientific analysis.

 

1.1.1

 

 

 

A Brief History of the Foundations for AI

 

By the time Mary Shelley finally and perhaps irrevocably joined modern science with the
Promethean myth, the philosophical foundations of modern work in artificial intelligence
had been developing for several thousand years. Although the moral and cultural issues
raised by artificial intelligence are both interesting and important, our introduction is more
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properly concerned with AI’s intellectual heritage. The logical starting point for such a
history is the genius of Aristotle, or as Dante in the 

 

Divine Comedy

 

 refers to him, “the
master of them that know”. Aristotle wove together the insights, wonders, and fears of the
early Greek tradition with the careful analysis and disciplined thought that were to become
the standard for more modern science. 

For Aristotle, the most fascinating aspect of nature was change. In his 

 

Physics

 

, he
defined his “philosophy of nature” as the “study of things that change”. He distinguished
between the 

 

matter

 

 and 

 

form

 

 of things: a sculpture is fashioned from the 

 

material

 

 bronze
and has the 

 

form

 

 of a human. Change occurs when the bronze is molded to a new form.
The matter/form distinction provides a philosophical basis for modern notions such as
symbolic computing and data abstraction. In computing (even with numbers) we are
manipulating patterns that are the forms of electromagnetic material, with the changes of
form of this material representing aspects of the solution process. Abstracting the form
from the medium of its representation not only allows these forms to be manipulated com-
putationally but also provides the promise of a theory of data structures, the heart of mod-
ern computer science. It also supports the creation of an “artificial” intelligence. 

In his 

 

Metaphysics

 

, beginning with the words “All men by nature desire to know”,
Aristotle developed a science of things that never change, including his cosmology and
theology. More relevant to artificial intelligence, however, was Aristotle’s epistemology or
analysis of how humans “know” their world, discussed in his 

 

Logic

 

. Aristotle referred to
logic as the “instrument” (

 

organon

 

), because he felt that the study of thought itself was at
the basis of all knowledge. In his 

 

Logic

 

, he investigated whether certain propositions can
be said to be “true” because they are related to other things that are known to be “true”.
Thus if we know that “all men are mortal” and that “Socrates is a man”, then we can con-
clude that “Socrates is mortal”. This argument is an example of what Aristotle referred to
as a syllogism using the deductive form 

 

modus ponens

 

. Although the formal axiomatiza-
tion of reasoning needed another two thousand years for its full flowering in the works of
Gottlob Frege, Bertrand Russell, Kurt Gödel, Alan Turing, Alfred Tarski, and others, its
roots may be traced to Aristotle. 

Renaissance thought, building on the Greek tradition, initiated the evolution of a dif-
ferent and powerful way of thinking about humanity and its relation to the natural world.
Science began to replace mysticism as a means of understanding nature. Clocks and, even-
tually, factory schedules superseded the rhythms of nature for thousands of city dwellers.
Most of the modern social and physical sciences found their origin in the notion that pro-
cesses, whether natural or artificial, could be mathematically analyzed and understood. In
particular, scientists and philosophers realized that thought itself, the way that knowledge
was represented and manipulated in the human mind, was a difficult but essential subject
for scientific study. 

Perhaps the major event in the development of the modern world view was the
Copernican revolution, the replacement of the ancient Earth-centered model of the
universe with the idea that the Earth and other planets are actually in orbits around the sun.
After centuries of an “obvious” order, in which the scientific explanation of the nature of
the cosmos was consistent with the teachings of religion and common sense, a drastically
different and not at all obvious model was proposed to explain the motions of heavenly
bodies. For perhaps the first time, 

 

our ideas about the world were seen as fundamentally
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distinct from that world’s appearance

 
. This split between the human mind and its sur-

rounding reality, between ideas about things and things themselves, is essential to the
modern study of the mind and its organization. This breach was widened by the writings
of Galileo, whose scientific observations further contradicted the “obvious” truths about
the natural world and whose development of mathematics as a tool for describing that
world emphasized the distinction between the world and our ideas about it. It is out of this
breach that the modern notion of the mind evolved: introspection became a common motif
in literature, philosophers began to study epistemology and mathematics, and the system-
atic application of the scientific method rivaled the senses as tools for understanding the
world. 

In 1620, Francis Bacon’s 

 

Novum Organun

 

 offered a set of search techniques for this
emerging scientific methodology. Based on the Aristotelian and Platonic idea that the
“form” of an entity was equivalent to the sum of its necessary and sufficient “features”,
Bacon articulated an algorithm for determining the essence of an entity. First, he made an
organized collection of all instances of the entity, enumerating the features of each in a
table. Then he collected a similar list of negative instances of the entity, focusing espe-
cially on near instances of the entity, that is, those that deviated from the “form” of the
entity by single features. Then Bacon attempts - this step is not totally clear - to make a
systematic list of all the features essential to the entity, that is, those that are common to all
positive instances of the entity and missing from the negative instances.

It is interesting to see a form of Francis Bacon’s approach to concept learning
reflected in modern AI algorithms for Version Space Search, Chapter 10.2. An extension
of Bacon’s algorithms was also part of an AI program for discovery learning, suitably
called 

 

Bacon

 

 (Langley et al. 1981). This program was able to induce many physical laws
from collections of data related to the phenomena. It is also interesting to note that the
question of whether a general purpose algorithm was possible for producing scientific
proofs awaited the challenges of the early twentieth century mathematician Hilbert (his

 

Entscheidungsproblem

 

) and the response of the modern genius of Alan Turing (his 

 

Turing
Machine 

 

and proofs of 

 

computability 

 

and the

 

 halting problem

 

); see Davis et al. (1976).
Although the first calculating machine, the abacus, was created by the Chinese in the

twenty-sixth century BC, further mechanization of algebraic processes awaited the skills
of the seventeenth century Europeans. In 1614, the Scots mathematician, John Napier, cre-
ated logarithms, the mathematical transformations that allowed multiplication and the use
of exponents to be reduced to addition and multiplication. Napier also created his 

 

bones

 

that were used to represent overflow values for arithmetic operations. These bones were
later used by Wilhelm Schickard (1592-1635), a German mathematician and clergyman of
Tübingen, who in 1623 invented a 

 

Calculating Clock

 

 for performing addition and subtrac-
tion. This machine recorded the overflow from its calculations by the chiming of a clock.

Another famous calculating machine was the 

 

Pascaline

 

 that Blaise Pascal, the French
philosopher and mathematician, created in 1642. Although the mechanisms of Schickard
and Pascal were limited to addition and subtraction - including carries and borrows - they
showed that processes that previously were thought to require human thought and skill
could be fully automated. As Pascal later stated in his 

 

Pensees

 

 (1670), “The arithmetical
machine produces effects which approach nearer to thought than all the actions of
animals”. 
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Pascal’s successes with calculating machines inspired Gottfried Wilhelm von Leibniz

in 1694 to complete a working machine that become known as the 

 

Leibniz Wheel

 

. It inte-
grated a moveable carriage and hand crank to drive wheels and cylinders that performed
the more complex operations of multiplication and division. Leibniz was also fascinated
by the possibility of a automated logic for proofs of propositions. Returning to Bacon’s
entity specification algorithm, where concepts were characterized as the collection of their
necessary and sufficient features, Liebniz conjectured a machine that could calculate with
these features to produce logically correct conclusions. Liebniz (1887) also envisioned a
machine, reflecting modern ideas of deductive inference and proof, by which the produc-
tion of scientific knowledge could become automated, a calculus for reasoning.

The seventeenth and eighteenth centuries also saw a great deal of discussion of episte-
mological issues; perhaps the most influential was the work of René Descartes, a central
figure in the development of the modern concepts of thought and theories of mind. In his

 

Meditations

 

, Descartes (1680) attempted to find a basis for reality purely through intro-
spection. Systematically rejecting the input of his senses as untrustworthy, Descartes was
forced to doubt even the existence of the physical world and was left with only the reality
of thought; even his own existence had to be justified in terms of thought: “Cogito ergo
sum” (I think, therefore I am). After he established his own existence purely as a thinking
entity, Descartes inferred the existence of God as an essential creator and ultimately reas-
serted the reality of the physical universe as the necessary creation of a benign God. 

We can make two observations here: first, the schism between the mind and the phys-
ical world had become so complete that the process of thinking could be discussed in iso-
lation from any specific sensory input or worldly subject matter; second, the connection
between mind and the physical world was so tenuous that it required the intervention of a
benign God to support reliable knowledge of the physical world! This view of the duality
between the mind and the physical world underlies all of Descartes’s thought, including
his development of analytic geometry. How else could he have unified such a seemingly
worldly branch of mathematics as geometry with such an abstract mathematical frame-
work as algebra?

Why have we included this mind/body discussion in a book on artificial intelligence?
There are two consequences of this analysis essential to the AI enterprise: 

1.   By attempting to separate the mind from the physical world, Descartes and related
thinkers established that the structure of ideas about the world was not necessar-
ily the same as the structure of their subject matter. This underlies the methodol-
ogy of AI, along with the fields of epistemology, psychology, much of higher
mathematics, and most of modern literature: mental processes have an existence
of their own, obey their own laws, and can be studied in and of themselves.

2.   Once the mind and the body are separated, philosophers found it necessary to find
a way to reconnect the two, because interaction between Descartes mental, 

 

res
cogitans

 

, and physical, 

 

res extensa

 

, is essential for human existence. 

Although millions of words have been written on this 

 

mind–body problem

 

, and
numerous solutions proposed, no one has successfully explained the obvious interactions
between mental states and physical actions while affirming a fundamental difference
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between them. The most widely accepted response to this problem, and the one that
provides an essential foundation for the study of AI, holds that the mind and the body are
not fundamentally different entities at all. On this view, mental processes are indeed
achieved by physical systems such as brains (or computers). Mental processes, like physi-
cal processes, can ultimately be characterized through formal mathematics. Or, as
acknowledged in his 

 

Leviathan

 

 by the 17th century English philosopher Thomas Hobbes
(1651), “By ratiocination, I mean computation”.

 

1.1.2

 

 

 

AI and the Rationalist and Empiricist Traditions

 

Modern research issues in artificial intelligence, as in other scientific disciplines, are
formed and evolve through a combination of historical, social, and cultural pressures. Two
of the most prominent pressures for the evolution of AI are the empiricist and rationalist
traditions in philosophy.

The rationalist tradition, as seen in the previous section, had an early proponent in
Plato, and was continued on through the writings of Pascal, Descartes, and Liebniz. For
the rationalist, the external world is reconstructed through the clear and distinct ideas of a
mathematics. A criticism of this dualistic approach is the forced disengagement of repre-
sentational systems from their field of reference. The issue is whether the meaning attrib-
uted to a representation can be defined independent of its application conditions. If the
world is different from our beliefs about the world, can our created concepts and symbols
still have meaning?

Many AI programs have very much of this rationalist flavor. Early robot planners, for
example, would describe their application domain or “world” as sets of predicate calculus
statements and then a “plan” for action would be created through proving theorems about
this “world” (Fikes et al. 1972, see also Section 8.4). Newell and Simon’s 

 

Physical Symbol
System Hypothesis

 

 (Introduction to Part II and Chapter 16) is seen by many as the arche-
type of this approach in modern AI. Several critics have commented on this rationalist bias
as part of the failure of AI at solving complex tasks such as understanding human lan-
guages (Searle 1980, Winograd and Flores 1986, Brooks 1991a).

Rather than affirming as “real” the world of clear and distinct ideas, empiricists con-
tinue to remind us that “nothing enters the mind except through the senses”. This con-
straint leads to further questions of how the human can possibly perceive general concepts
or the pure forms of Plato’s cave (Plato 1961). Aristotle was an early empiricist, emphasiz-
ing in his 

 

De Anima

 

, the limitations of the human perceptual system. More modern empir-
icists, especially Hobbes, Locke, and Hume, emphasize that knowledge must be explained
through an introspective but empirical psychology. They distinguish two types of mental
phenomena perceptions on one hand and thought, memory, and imagination on the other.
The Scots philosopher, David Hume, for example, distinguishes between 

 

impressions

 

 and

 

ideas

 

. Impressions are lively and vivid, reflecting the presence and existence of an exter-
nal object and not subject to voluntary control, the 

 

qualia 

 

of  Dennett (2005). Ideas on the
other hand, are less vivid and detailed and more subject to the subject’s voluntary control.

Given this distinction between impressions and ideas, how can knowledge arise? For
Hobbes, Locke, and Hume the fundamental explanatory mechanism is 

 

association

 

.
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Particular perceptual properties are associated through repeated experience. This repeated
association creates a disposition in the mind to associate the corresponding ideas, a pre-
curser of the behaviorist approach of the twentieth century. A fundamental property of this
account is presented with Hume’s skepticism. Hume’s purely descriptive account of the
origins of ideas cannot, he claims, support belief in causality. Even the use of logic and
induction cannot be rationally supported in this radical empiricist epistemology.

In 

 

An Inquiry Concerning Human Understanding

 

 (1748), Hume’s skepticism
extended to the analysis of miracles. Although Hume didn’t address the nature of miracles
directly, he did question the testimony-based belief in the miraculous. This skepticism, of
course, was seen as a direct threat by believers in the bible as well as many other purvey-
ors of religious traditions. The Reverend Thomas Bayes was both a mathematician and a
minister. One of his papers, called 

 

Essay towards Solving a Problem in the Doctrine of
Chances

 

 (1763) addressed Hume’s questions mathematically. Bayes’ theorem demon-
strates formally how, through learning the correlations of the effects of actions, we can
determine the probability of their causes.

The associational account of knowledge plays a significant role in the development of
AI representational structures and programs, for example, in memory organization with

 

semantic networks

 

 and 

 

MOPS

 

 and work in natural language understanding (see Sections
7.0, 7.1, and Chapter 15). Associational accounts have important influences of machine
learning, especially with connectionist networks (see Section 10.6, 10.7, and Chapter 11).
Associationism also plays an important role in cognitive psychology including the 

 

sche-
mas

 

 of Bartlett and Piaget as well as the entire thrust of the behaviorist tradition (Luger
1994). Finally, with AI tools for stochastic analysis, including the 

 

Bayesian belief network

 

(BBN) and its current extensions to first-order Turing-complete systems for stochastic
modeling, associational theories have found a sound mathematical basis and mature
expressive power. Bayesian tools are important for research including diagnostics,
machine learning, and natural language understanding (see Chapters 5 and 13).

Immanuel Kant, a German philosopher trained in the rationalist tradition, was
strongly influenced by the writing of Hume. As a result, he began the modern synthesis of
these two traditions. Knowledge for Kant contains two collaborating energies, an a priori
component coming from the subject’s reason along with an a posteriori component com-
ing from active experience. Experience is meaningful only through the contribution of the
subject. Without an active organizing form proposed by the subject, the world would be
nothing more than passing transitory sensations. Finally, at the level of judgement, Kant
claims, passing images or representations are bound together by the active subject and
taken as the diverse appearances of an identity, of an “object”. Kant’s realism began the
modern enterprise of psychologists such as Bartlett, Brunner, and Piaget. Kant’s work
influences the modern AI enterprise of machine learning (Section IV) as well as the con-
tinuing development of a constructivist epistemology (see Chapter 16).

 

1.1.3

 

 

 

The Development of Formal Logic

 

Once thinking had come to be regarded as a form of computation, its formalization and
eventual mechanization were obvious next steps. As noted in Section 1.1.1,
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Gottfried Wilhelm von Leibniz, with his

 
 Calculus Philosophicus

 
, introduced the first sys-

tem of formal logic as well as proposed a machine for automating its tasks (Leibniz 1887).
Furthermore, the steps and stages of this mechanical solution can be represented as move-
ment through the states of a tree or graph. Leonhard Euler, in the eighteenth century, with
his analysis of the “connectedness” of the bridges joining the riverbanks and islands of the
city of Königsberg (see the introduction to Chapter 3), introduced the study of representa-
tions that can abstractly capture the structure of relationships in the world as well as the
discrete steps within a computation about these relationships (Euler 1735).

The formalization of graph theory also afforded the possibility of 

 

state space search

 

,
a major conceptual tool of artificial intelligence. We can use graphs to model the deeper
structure of a problem. The nodes of a 

 

state space graph

 

 represent possible stages of a
problem solution; the arcs of the graph represent inferences, moves in a game, or other
steps in a problem solution. Solving the problem is a process of searching the state space
graph for a path to a solution (Introduction to II and Chapter 3). By describing the entire
space of problem solutions, state space graphs provide a powerful tool for measuring the
structure and complexity of problems and analyzing the efficiency, correctness, and gener-
ality of solution strategies. 

As one of the originators of the science of operations research, as well as the designer
of the first programmable mechanical computing machines, Charles Babbage, a nine-
teenth century mathematician, may also be considered an early practitioner of artificial
intelligence (Morrison and Morrison 1961). Babbage’s 

 

difference engine

 

 was a special-
purpose machine for computing the values of certain polynomial functions and was the
forerunner of his 

 

analytical engine

 

. The analytical engine, designed but not successfully
constructed during his lifetime, was a general-purpose programmable computing machine
that presaged many of the architectural assumptions underlying the modern computer. 

In describing the analytical engine, Ada Lovelace (1961), Babbage’s friend, sup-
porter, and collaborator, said: 

 

We may say most aptly that the Analytical Engine weaves algebraical patterns just as the Jac-
quard loom weaves flowers and leaves. Here, it seems to us, resides much more of originality
than the difference engine can be fairly entitled to claim.

 

Babbage’s inspiration was his desire to apply the technology of his day to liberate
humans from the drudgery of making arithmetic calculations. In this sentiment, as well as
with his conception of computers as mechanical devices, Babbage was thinking in purely
nineteenth century terms. His analytical engine, however, also included many modern
notions, such as the separation of memory and processor, the 

 

store

 

 and the 

 

mill

 

 in Bab-
bage’s terms, the concept of a digital rather than analog machine, and programmability
based on the execution of a series of operations encoded on punched pasteboard cards.
The most striking feature of Ada Lovelace’s description, and of Babbage’s work in gen-
eral, is its treatment of the “patterns” of algebraic relationships as entities that may be
studied, characterized, and finally implemented and manipulated mechanically without
concern for the particular values that are finally passed through the mill of the calculating
machine. This is an example implementation of the “abstraction and manipulation of
form” first described by Aristotle and Liebniz. 
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The goal of creating a formal language for thought also appears in the work of George

Boole, another nineteenth-century mathematician whose work must be included in any
discussion of the roots of artificial intelligence (Boole 1847, 1854). Although he made
contributions to a number of areas of mathematics, his best known work was in the
mathematical formalization of the laws of logic, an accomplishment that forms the very
heart of modern computer science. Though the role of Boolean algebra in the design of
logic circuitry is well known, Boole’s own goals in developing his system seem closer to
those of contemporary AI researchers. In the first chapter of 

 

An Investigation of the Laws
of Thought, on which are founded the Mathematical Theories of Logic and Probabilities

 

,
Boole (1854) described his goals as

 

to investigate the fundamental laws of those operations of the mind by which reasoning is
performed: to give expression to them in the symbolical language of a Calculus, and upon this
foundation to establish the science of logic and instruct its method; …and finally to collect
from the various elements of truth brought to view in the course of these inquiries some proba-
ble intimations concerning the nature and constitution of the human mind. 

 

The importance of Boole’s accomplishment is in the extraordinary power and sim-
plicity of the system he devised: three operations, “AND” (denoted by 

 

∗

 

 or 

 

∧

 

), “OR”
(denoted by 

 

+

 

 or

 

 ∨

 

), and “NOT” (denoted by 

 

¬

 

), formed the heart of his logical calculus.
These operations have remained the basis for all subsequent developments in formal logic,
including the design of modern computers. While keeping the meaning of these symbols
nearly identical to the corresponding algebraic operations, Boole noted that “the Symbols
of logic are further subject to a special law, to which the symbols of quantity, as such, are
not subject”. This law states that for any 

 

X

 

, an element in the algebra, 

 

X

 

∗

 

X

 

=

 

X

 

 (or that once
something is known to be true, repetition cannot augment that knowledge). This led to the
characteristic restriction of Boolean values to the only two numbers that may satisfy this
equation: 1 and 0. The standard definitions of Boolean multiplication (AND) and addition
(OR) follow from this insight. 

Boole’s system not only provided the basis of binary arithmetic but also demonstrated
that an extremely simple formal system was adequate to capture the full power of logic.
This assumption and the system Boole developed to demonstrate it form the basis of all
modern efforts to formalize logic, from Russell and Whitehead’s 

 

Principia Mathematica

 

(Whitehead and Russell 1950), through the work of Turing and Gödel, up to modern auto-
mated reasoning systems. 

Gottlob Frege, in his 

 

Foundations of Arithmetic

 

 (Frege 1879, 1884), created a
mathematical specification language for describing the basis of arithmetic in a clear and
precise fashion. With this language Frege formalized many of the issues first addressed by
Aristotle’s 

 

Logic

 

. Frege’s language, now called the 

 

first-order predicate calculus

 

, offers a
tool for describing the propositions and truth value assignments that make up the elements
of mathematical reasoning and describes the axiomatic basis of “meaning” for these
expressions. The formal system of the predicate calculus, which includes predicate sym-
bols, a theory of functions, and quantified variables, was intended to be a language for
describing mathematics and its philosophical foundations. It also plays a fundamental role
in creating a theory of representation for artificial intelligence (Chapter 2). The first-order
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predicate calculus offers the tools necessary for automating reasoning: a language for
expressions, a theory for assumptions related to the meaning of expressions, and a logi-
cally sound calculus for inferring new true expressions. 

Whitehead and Russell’s (1950) work is particularly important to the foundations of
AI, in that their stated goal was to derive the whole of mathematics through formal opera-
tions on a collection of axioms. Although many mathematical systems have been con-
structed from basic axioms, what is interesting is Russell and Whitehead’s commitment to
mathematics as a purely formal system. This meant that axioms and theorems would be
treated solely as strings of characters: proofs would proceed solely through the application
of well-defined rules for manipulating these strings. There would be no reliance on intu-
ition or the meaning of theorems as a basis for proofs. Every step of a proof followed from
the strict application of formal (syntactic) rules to either axioms or previously proven the-
orems, even where traditional proofs might regard such a step as “obvious”. What “mean-
ing” the theorems and axioms of the system might have in relation to the world would be
independent of their logical derivations. This treatment of mathematical reasoning in
purely formal (and hence mechanical) terms provided an essential basis for its automation
on physical computers. The logical syntax and formal rules of inference developed by
Russell and Whitehead are still a basis for automatic theorem-proving systems, presented
in Chapter 14, as well as for the theoretical foundations of artificial intelligence.

Alfred Tarski is another mathematician whose work is essential to the foundations of
AI. Tarski created a 

 

theory of reference

 

 wherein the 

 

well-formed formulae

 

 of Frege or
Russell and Whitehead can be said to refer, in a precise fashion, to the physical world
(Tarski 1944, 1956; see Chapter 2). This insight underlies most theories of formal seman-
tics. In his paper 

 

The Semantic Conception of Truth and the Foundation of Semantics

 

, Tar-
ski describes his theory of reference and truth value relationships. Modern computer
scientists, especially Scott, Strachey, Burstall (Burstall and Darlington 1977), and Plotkin
have related this theory to programming languages and other specifications for computing.

Although in the eighteenth, nineteenth, and early twentieth centuries the formaliza-
tion of science and mathematics created the intellectual prerequisite for the study of artifi-
cial intelligence, it was not until the twentieth century and the introduction of the digital
computer that AI became a viable scientific discipline. By the end of the 1940s electronic
digital computers had demonstrated their potential to provide the memory and processing
power required by intelligent programs. It was now possible to implement formal reason-
ing systems on a computer and empirically test their sufficiency for exhibiting intelli-
gence. An essential component of the science of artificial intelligence is this commitment
to digital computers as the vehicle of choice for creating and testing theories of
intelligence.  

Digital computers are not merely a vehicle for testing theories of intelligence. Their
architecture also suggests a specific paradigm for such theories: intelligence is a form of
information processing. The notion of search as a problem-solving methodology, for
example, owes more to the sequential nature of computer operation than it does to any
biological model of intelligence. Most AI programs represent knowledge in some formal
language that is then manipulated by algorithms, honoring the separation of data and
program fundamental to the von Neumann style of computing. Formal logic has emerged
as an important representational tool for AI research, just as graph theory plays an indis-
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pensable role in the analysis of problem spaces as well as providing a basis for semantic
networks and similar models of semantic meaning. These techniques and formalisms are
discussed in detail throughout the body of this text; we mention them here to emphasize
the symbiotic relationship between the digital computer and the theoretical underpinnings
of artificial intelligence. 

We often forget that the tools we create for our own purposes tend to shape our
conception of the world through their structure and limitations. Although seemingly
restrictive, this interaction is an essential aspect of the evolution of human knowledge: a
tool (and scientific theories are ultimately only tools) is developed to solve a particular
problem. As it is used and refined, the tool itself seems to suggest other applications,
leading to new questions and, ultimately, the development of new tools. 

 

1.1.4

 

 The Turing Test

One of the earliest papers to address the question of machine intelligence specifically in
relation to the modern digital computer was written in 1950 by the British mathematician
Alan Turing. Computing Machinery and Intelligence (Turing 1950) remains timely in both
its assessment of the arguments against the possibility of creating an intelligent computing
machine and its answers to those arguments. Turing, known mainly for his contributions
to the theory of computability, considered the question of whether or not a machine could
actually be made to think. Noting that the fundamental ambiguities in the question itself
(what is thinking? what is a machine?) precluded any rational answer, he proposed that the
question of intelligence be replaced by a more clearly defined empirical test. 

The Turing test measures the performance of an allegedly intelligent machine against
that of a human being, arguably the best and only standard for intelligent behavior. The
test, which Turing called the imitation game, places the machine and a human
counterpart in rooms apart from a second human being, referred to as the interrogator
(Figure 1.1). The interrogator is not able to see or speak directly to either of them, does not
know which entity is actually the machine, and may communicate with them solely by use
of a textual device such as a terminal. The interrogator is asked to distinguish the
computer from the human being solely on the basis of their answers to questions asked
over this device. If the interrogator cannot distinguish the machine from the human, then,
Turing argues, the machine may be assumed to be intelligent.

By isolating the interrogator from both the machine and the other human participant,
the test ensures that the interrogator will not be biased by the appearance of the machine or
any mechanical property of its voice. The interrogator is free, however, to ask any
questions, no matter how devious or indirect, in an effort to uncover the computer’s
identity. For example, the interrogator may ask both subjects to perform a rather involved
arithmetic calculation, assuming that the computer will be more likely to get it correct than
the human; to counter this strategy, the computer will need to know when it should fail to
get a correct answer to such problems in order to seem like a human. To discover the
human’s identity on the basis of emotional nature, the interrogator may ask both subjects
to respond to a poem or work of art; this strategy will require that the computer have
knowledge concerning the emotional makeup of human beings. 
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The important features of Turing’s test are: 

1. It attempts to give an objective notion of intelligence, i.e., the behavior of a
known intelligent being in response to a particular set of questions. This provides
a standard for determining intelligence that avoids the inevitable debates over its
“true” nature. 

2. It prevents us from being sidetracked by such confusing and currently
unanswerable questions as whether or not the computer uses the appropriate
internal processes or whether or not the machine is actually conscious of
its actions. 

3. It eliminates any bias in favor of living organisms by forcing the interrogator to
focus solely on the content of the answers to questions. 

Because of these advantages, the Turing test provides a basis for many of the schemes
actually used to evaluate modern AI programs. A program that has potentially achieved
intelligence in some area of expertise may be evaluated by comparing its performance on
a given set of problems to that of a human expert. This evaluation technique is just a
variation of the Turing test: a group of humans are asked to blindly compare the
performance of a computer and a human being on a particular set of problems. As we will
see, this methodology has become an essential tool in both the development and
verification of modern expert systems. 

The Turing test, in spite of its intuitive appeal, is vulnerable to a number of justifiable
criticisms. One of the most important of these is aimed at its bias toward purely symbolic
problem-solving tasks. It does not test abilities requiring perceptual skill or manual
dexterity, even though these are important components of human intelligence. Conversely,
it is sometimes suggested that the Turing test needlessly constrains machine intelligence to
fit a human mold. Perhaps machine intelligence is simply different from human intelli-
gence and trying to evaluate it in human terms is a fundamental mistake. Do we really
wish a machine would do mathematics as slowly and inaccurately as a human? Shouldn’t
an intelligent machine capitalize on its own assets, such as a large, fast, reliable memory,

THE
INTERROGATOR

Figure 1.1 The Turing test.
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rather than trying to emulate human cognition? In fact, a number of modern AI practitio-
ners (e.g., Ford and Hayes 1995) see responding to the full challenge of Turing’s test as a
mistake and a major distraction to the more important work at hand: developing general
theories to explain the mechanisms of intelligence in humans and machines and applying
those theories to the development of tools to solve specific, practical problems. Although
we agree with the Ford and Hayes concerns in the large, we still see Turing’s test as an
important component in the verification and validation of modern AI software.

Turing also addressed the very feasibility of constructing an intelligent program on a
digital computer. By thinking in terms of a specific model of computation (an electronic
discrete state computing machine), he made some well-founded conjectures concerning
the storage capacity, program complexity, and basic design philosophy required for such a
system. Finally, he addressed a number of moral, philosophical, and scientific objections
to the possibility of constructing such a program in terms of an actual technology. The
reader is referred to Turing’s article for a perceptive and still relevant summary of the
debate over the possibility of intelligent machines. 

Two of the objections cited by Turing are worth considering further. Lady
Lovelace’s Objection, first stated by Ada Lovelace, argues that computers can only do as
they are told and consequently cannot perform original (hence, intelligent) actions. This
objection has become a reassuring if somewhat dubious part of contemporary technologi-
cal folklore. Expert systems (Section 1.2.3 and Chapter 8), especially in the area of diag-
nostic reasoning, have reached conclusions unanticipated by their designers. Indeed, a
number of researchers feel that human creativity can be expressed in a computer program. 

The other related objection, the Argument from Informality of Behavior, asserts the
impossibility of creating a set of rules that will tell an individual exactly what to do under
every possible set of circumstances. Certainly, the flexibility that enables a biological
intelligence to respond to an almost infinite range of situations in a reasonable if not nec-
essarily optimal fashion is a hallmark of intelligent behavior. While it is true that the con-
trol structure used in most traditional computer programs does not demonstrate great
flexibility or originality, it is not true that all programs must be written in this fashion.
Indeed, much of the work in AI over the past 25 years has been to develop programming
languages and models such as production systems, object-based systems, neural network
representations, and others discussed in this book that attempt to overcome this deficiency. 

Many modern AI programs consist of a collection of modular components, or rules of
behavior, that do not execute in a rigid order but rather are invoked as needed in response
to the structure of a particular problem instance. Pattern matchers allow general rules to
apply over a range of instances. These systems have an extreme flexibility that enables rel-
atively small programs to exhibit a vast range of possible behaviors in response to differ-
ing problems and situations. 

Whether these systems can ultimately be made to exhibit the flexibility shown by a
living organism is still the subject of much debate. Nobel laureate Herbert Simon has
argued that much of the originality and variability of behavior shown by living creatures is
due to the richness of their environment rather than the complexity of their own internal
programs. In The Sciences of the Artificial, Simon (1981) describes an ant progressing
circuitously along an uneven and cluttered stretch of ground. Although the ant’s path
seems quite complex, Simon argues that the ant’s goal is very simple: to return to its
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colony as quickly as possible. The twists and turns in its path are caused by the obstacles it
encounters on its way. Simon concludes that 

An ant, viewed as a behaving system, is quite simple. The apparent complexity of its behavior
over time is largely a reflection of the complexity of the environment in which it finds itself. 

This idea, if ultimately proved to apply to organisms of higher intelligence as well as
to such simple creatures as insects, constitutes a powerful argument that such systems are
relatively simple and, consequently, comprehensible. It is interesting to note that if one
applies this idea to humans, it becomes a strong argument for the importance of culture in
the forming of intelligence. Rather than growing in the dark like mushrooms, intelligence
seems to depend on an interaction with a suitably rich environment. Culture is just as
important in creating humans as human beings are in creating culture. Rather than deni-
grating our intellects, this idea emphasizes the miraculous richness and coherence of the
cultures that have formed out of the lives of separate human beings. In fact, the idea that
intelligence emerges from the interactions of individual elements of a society is one of the
insights supporting the approach to AI technology presented in the next section. 

1.1.5 Biological and Social Models of Intelligence: Agents Theories

So far, we have approached the problem of building intelligent machines from the view-
point of mathematics, with the implicit belief of logical reasoning as paradigmatic of intel-
ligence itself, as well as with a commitment to “objective” foundations for logical
reasoning. This way of looking at knowledge, language, and thought reflects the rational-
ist tradition of western philosophy, as it evolved through Plato, Galileo, Descartes, Leib-
niz, and many of the other philosophers discussed earlier in this chapter. It also reflects the
underlying assumptions of the Turing test, particularly its emphasis on symbolic reasoning
as a test of intelligence, and the belief that a straightforward comparison with human
behavior was adequate to confirming machine intelligence.

The reliance on logic as a way of representing knowledge and on logical inference as
the primary mechanism for intelligent reasoning are so dominant in Western philosophy
that their “truth” often seems obvious and unassailable. It is no surprise, then, that
approaches based on these assumptions have dominated the science of artificial
intelligence from its inception almost through to the present day.

The latter half of the twentieth century has, however, seen numerous challenges to
rationalist philosophy. Various forms of philosophical relativism question the objective
basis of language, science, society, and thought itself. Ludwig Wittgenstein's later
philosophy (Wittgenstein 1953), has forced us to reconsider the basis on meaning in both
natural and formal languages. The work of Godel (Nagel and Newman 1958) and Turing
has cast doubt on the very foundations of mathematics itself. Post-modern thought has
changed our understanding of meaning and value in the arts and society. Artificial intelli-
gence has not been immune to these criticisms; indeed, the difficulties that AI has encoun-
tered in achieving its goals are often taken as evidence of the failure of the rationalist
viewpoint (Winograd and Flores 1986, Lakoff and Johnson 1999, Dennett 2005). 
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Two philosophical traditions, that of Wittgenstein (1953) as well as that of Husserl
(1970, 1972) and Heidegger (1962) are central to this reappraisal of the Western philo-
sophical tradition. In his later work, Wittgenstein questioned many of the assumptions of
the rationalist tradition, including the foundations of language, science, and knowledge.
Human language was a major focus of Wittgenstein’s analysis: he challenged the notion
that language derived its meaning from any sort of objective foundation. 

For Wittgenstein, as well as the speech act theory developed by Austin (1962) and his
followers (Grice 1975, Searle 1969), the meaning of any utterance depends on its being
situated in a human, cultural context. Our understanding of the meaning of the word
“chair”, for example, is dependent on having a physical body that conforms to a sitting
posture and the cultural conventions for using chairs. When, for example, is a large, flat
rock a chair? Why is it odd to refer to the throne of England as a chair? What is the
difference between a human being's understanding of a chair and that of a dog or cat, inca-
pable of sitting in the human sense? Based on his attacks on the foundations of meaning,
Wittgenstein argued that we should view the use of language in terms of choices made and
actions taken in a shifting cultural context. Wittgenstein even extended his criticisms to
science and mathematics, arguing that they are just as much social constructs as is
language use.

Husserl (1970, 1972), the father of phenomenology, was committed to abstractions as
rooted in the concrete Lebenswelt or life-world: a rationalist model was very much sec-
ondary to the concrete world that supported it. For Husserl, as well as for his student
Heidegger (1962), and their proponent Merleau-Ponty (1962), intelligence was not know-
ing what was true, but rather knowing how to cope in a world that was constantly chang-
ing and evolving. Gadamer (1976) also contributed to this tradition. For the existentialist/
phenomenologist, intelligence is seen as survival in the world, rather than as a set of logi-
cal propositions about the world (combined with some inferencing scheme).

Many authors, for example Dreyfus and Dreyfus (1985) and Winograd and Flores
(1986), have drawn on Wittgenstein’s and the Husserl/Heidegger work in their criticisms
of AI. Although many AI practitioners continue developing the rational/logical agenda,
also known as GOFAI, or Good Old Fashioned AI, a growing number of researchers in the
field have incorporated these criticisms into new and exciting models of intelligence. In
keeping with Wittgenstein’s emphasis on the anthropological and cultural roots of
knowledge, they have turned to social, sometimes referred to as agent-based or situated,
models of intelligent behavior for their inspiration. 

As an example of an alternative to a logic-based approach, research in connectionist
learning (Section 1.2.9 and Chapter 11) de-emphasizes logic and the functioning of the
rational mind in an effort to achieve intelligence by modeling the architecture of the
physical brain. Neural models of intelligence emphasize the brain’s ability to adapt to the
world in which it is situated by modifying the relationships between individual neurons.
Rather than representing knowledge in explicit logical sentences, they capture it
implicitly, as a property of patterns of relationships. 

Another biologically based model of intelligence takes its inspiration from the
processes by which entire species adapt to their surroundings. Work in artificial life and
genetic algorithms (Chapter 12) applies the principles of biological evolution to the prob-
lems of finding solutions to difficult problems. These programs do not solve problems by
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reasoning logically about them; rather, they spawn populations of competing candidate
solutions and drive them to evolve ever better solutions through a process patterned after
biological evolution: poor candidate solutions tend to die out, while those that show the
promise for solving a problem survive and reproduce by constructing new solutions out of
components of their successful parents. 

Social systems provide another metaphor for intelligence in that they exhibit global
behaviors that enable them to solve problems that would confound any of their individual
members. For example, although no individual could accurately predict the number of
loaves of bread to be consumed in New York City on a given day, the entire system of
New York bakeries does an excellent job of keeping the city stocked with bread, and doing
so with minimal waste. The stock market does an excellent job of setting the relative val-
ues of hundreds of companies, even though each individual investor has only limited
knowledge of a few companies. A final example comes from modern science. Individuals
located in universities, industry, or government environments focus on common problems.
With conferences and journals as the main communication media, problems important to
society at large are attacked and solved by individual agents working semi-independently,
although progress in many instances is also driven by funding agencies.

These examples share two themes: first, the view of intelligence as rooted in culture
and society and, as a consequence, emergent. The second theme is that intelligence is
reflected by the collective behaviors of large numbers of very simple interacting, semi-
autonomous individuals, or agents. Whether these agents are neural cells, individual mem-
bers of a species, or a single person in a society, their interactions produce intelligence.

What are the main themes supporting an agent-oriented and emergent view of
intelligence? They include:

1. Agents are autonomous or semi-autonomous. That is, each agent has certain
responsibilities in problem solving with little or no knowledge of either what
other agents do or how they do it. Each agent does its own independent piece of
the problem solving and either produces a result itself (does something) or
reports results back to others in the community (communicating agent).

2. Agents are “situated.” Each agent is sensitive to its own surrounding environ-
ment and (usually) has no knowledge of the full domain of all agents. Thus, an
agent's knowledge is limited to the tasks to hand: “the-file-I’m-processing” or
“the-wall-next-to-me” with no knowledge of the total range of files or physical
constraints in the problem solving task.

3. Agents are interactional. That is, they form a collection of individuals that
cooperate on a particular task. In this sense they may be seen as a “society” and,
as with human society, knowledge, skills, and responsibilities, even when seen as
collective, are distributed across the population of individuals.

4. The society of agents is structured. In most views of agent-oriented problem
solving, each individual, although having its own unique environment and skill
set, will coordinate with other agents in the overall problem solving. Thus, a final
solution will not only be seen as collective, but also as cooperative.
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5. Finally, the phenomenon of intelligence in this environment is “emergent.”
Although individual agents are seen as possessing sets of skills and responsibili-
ties, the overall cooperative result can be viewed as greater than the sum of its
individual contributors. Intelligence is seen as a phenomenon resident in and
emerging from a society and not just a property of an individual agent.

Based on these observations, we define an agent as an element of a society that can
perceive (often limited) aspects of its environment and affect that environment either
directly or through cooperation with other agents. Most intelligent solutions require a vari-
ety of agents. These include rote agents, that simply capture and communicate pieces of
information, coordination agents that can support the interactions between other agents,
search agents that can examine multiple pieces of information and return some chosen bit
of it, learning agents that can examine collections of information and form concepts or
generalizations, and decision agents that can both dispatch tasks and come to conclusions
in the light of limited information and processing. Going back to an older definition of
intelligence, agents can be seen as the mechanisms supporting decision making in the con-
text of limited processing resources.

The main requisites for designing and building such a society are:

1. structures for the representation of information, 

2. strategies for the search through alternative solutions, and 

3. the creation of architectures that can support the interaction of agents. 

The remaining chapters of our book, especially Section 7.4, include prescriptions for the
construction of support tools for this society of agents, as well as many examples of agent-
based problem solving.
 

Our preliminary discussion of the possibility of a theory of automated intelligence is
in no way intended to overstate the progress made to date or minimize the work that lies
ahead. As we emphasize throughout this book, it is important to be aware of our limita-
tions and to be honest about our successes. For example, there have been only limited
results with programs that in any interesting sense can be said to “learn”. Our accomplish-
ments in modeling the semantic complexities of a natural language such as English have
also been very modest. Even fundamental issues such as organizing knowledge or fully
managing the complexity and correctness of very large computer programs (such as large
knowledge bases) require considerable further research. Knowledge-based systems,
though they have achieved marketable engineering successes, still have many limitations
in the quality and generality of their reasoning. These include their inability to perform
commonsense reasoning or to exhibit knowledge of rudimentary physical reality, such as
how things change over time.

But we must maintain a reasonable perspective. It is easy to overlook the
accomplishments of artificial intelligence when honestly facing the work that remains. In
the next section, we establish this perspective through an overview of several important
areas of artificial intelligence research and development. 
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1.2 Overview of AI Application Areas

The Analytical Engine has no pretensions whatever to originate anything. It can do
whatever we know how to order it to perform. 

—ADA BYRON, Countess of Lovelace

I’m sorry Dave; I can’t let you do that. 

—HAL 9000 in 2001: A Space Odyssey by Arthur C. Clarke 

We now return to our goal of defining artificial intelligence through an examination of the
ambitions and accomplishments of workers in the field. The two most fundamental con-
cerns of AI researchers are knowledge representation and search. The first of these
addresses the problem of capturing in a language, i.e., one suitable for computer manipu-
lation, the full range of knowledge required for intelligent behavior. Chapter 2 introduces
predicate calculus as a language for describing the properties and relationships among
objects in problem domains that require qualitative reasoning rather than arithmetic calcu-
lations for their solutions. Later, Section III discusses the tools that artificial intelligence
has developed for representing the ambiguities and complexities of areas such as com-
monsense reasoning and natural language understanding. 

Search is a problem-solving technique that systematically explores a space of prob-
lem states, i.e., successive and alternative stages in the problem-solving process. Exam-
ples of problem states might include the different board configurations in a game or
intermediate steps in a reasoning process. This space of alternative solutions is then
searched to find an answer. Newell and Simon (1976) have argued that this is the essential
basis of human problem solving. Indeed, when a chess player examines the effects of dif-
ferent moves or a doctor considers a number of alternative diagnoses, they are searching
among alternatives. The implications of this model and techniques for its implementation
are discussed in Chapters 3, 4, 6, and 16. The auxiliary material for this book (see Preface)
offers Lisp, Prolog, and Java implementations of these algorithms.

Like most sciences, AI is decomposed into a number of subdisciplines that, while
sharing an essential approach to problem solving, have concerned themselves with
different applications. In this section we outline several of these major application areas
and their contributions to artificial intelligence as a whole. 

1.2.1 Game Playing

Much of the early research in state space search was done using common board games
such as checkers, chess, and the 15-puzzle. In addition to their inherent intellectual appeal,
board games have certain properties that made them ideal subjects for research. Most
games are played using a well-defined set of rules: this makes it easy to generate the
search space and frees the researcher from many of the ambiguities and complexities
inherent in less structured problems. The board configurations used in playing games are
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easily represented on a computer, requiring none of the complex formalisms needed to
capture the semantic subtleties of more complex problem domains. As games are
easily played, testing a game-playing program presents no financial or ethical burden.
State space search, the paradigm underlying most game-playing research, is presented in
Chapters 3 and 4. 

Games can generate extremely large search spaces. These are large and complex
enough to require powerful techniques for determining what alternatives to explore in the
problem space. These techniques are called heuristics and constitute a major area of AI
research. A heuristic is a useful but potentially fallible problem-solving strategy, such as
checking to make sure that an unresponsive appliance is plugged in before assuming that it
is broken or to castle in order to try and protect your king from capture in a chess game.
Much of what we commonly call intelligence seems to reside in the heuristics used by
humans to solve problems.

Because most of us have some experience with these simple games, it is possible to
devise and test the effectiveness of our own heuristics. We do not need to find and consult
an expert in some esoteric problem area such as medicine or mathematics (chess is an
obvious exception to this rule). For these reasons, games provide a rich domain for the
study of heuristic search. Chapter 4 introduces heuristics using these simple games.
Game-playing programs, in spite of their simplicity, offer their own challenges, including
an opponent whose moves may not be deterministically anticipated, Chapters 5 and 9, and
the need to consider psychological as well as tactical factors in game strategy.

Recent successes in computer-based game playing include world championships in
backgammon and chess. It is also interesting to note that in 2007 the full state space for
the game of checkers was mapped out, allowing it to be from the first move, deterministic! 

1.2.2 Automated Reasoning and Theorem Proving

We could argue that automatic theorem proving is the oldest branch of artificial
intelligence, tracing its roots back through Newell and Simon’s Logic Theorist (Newell
and Simon 1963a) and General Problem Solver (Newell and Simon 1963b), through Rus-
sell and Whitehead’s efforts to treat all of mathematics as the purely formal derivation of
theorems from basic axioms, to its origins in the writings of Babbage and Leibniz. In any
case, it has certainly been one of the most fruitful branches of the field. Theorem-proving
research was responsible for much of the early work in formalizing search algorithms and
developing formal representation languages such as the predicate calculus (Chapter 2) and
the logic programming language Prolog. 

Most of the appeal of automated theorem proving lies in the rigor and generality of
logic. Because it is a formal system, logic lends itself to automation. A wide variety of
problems can be attacked by representing the problem description and relevant
background information as logical axioms and treating problem instances as theorems to
be proved. This insight is the basis of work in automatic theorem proving and
mathematical reasoning systems (Chapter 14). 

Unfortunately, early efforts at writing theorem provers failed to develop a system that
could consistently solve complicated problems. This was due to the ability of any
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reasonably complex logical system to generate an infinite number of provable theorems:
without powerful techniques (heuristics) to guide their search, automated theorem provers
proved large numbers of irrelevant theorems before stumbling onto the correct one. In
response to this inefficiency, many argue that purely formal, syntactic methods of guiding
search are inherently incapable of handling such a huge space and that the only alternative
is to rely on the informal, ad hoc strategies that humans seem to use in solving problems.
This is the approach underlying the development of expert systems (Chapter 8), and it has
proved to be a fruitful one.

Still, the appeal of reasoning based in formal mathematical logic is too strong to
ignore. Many important problems such as the design and verification of logic circuits,
verification of the correctness of computer programs, and control of complex systems
seem to respond to such an approach. In addition, the theorem-proving community has
enjoyed success in devising powerful solution heuristics that rely solely on an evaluation
of the syntactic form of a logical expression, and as a result, reducing the complexity of
the search space without resorting to the ad hoc techniques used by most human problem
solvers. 

Another reason for the continued interest in automatic theorem provers is the
realization that such a system does not have to be capable of independently solving
extremely complex problems without human assistance. Many modern theorem provers
function as intelligent assistants, letting humans perform the more demanding tasks of
decomposing a large problem into subproblems and devising heuristics for searching the
space of possible proofs. The theorem prover then performs the simpler but still demand-
ing task of proving lemmas, verifying smaller conjectures, and completing the
formal aspects of a proof outlined by its human associate (Boyer and Moore 1979, Bundy
1988, Veroff 1997, Veroff and Spinks 2006).

1.2.3 Expert Systems

One major insight gained from early work in problem solving was the importance of
domain-specific knowledge. A doctor, for example, is not effective at diagnosing illness
solely because she possesses some innate general problem-solving skill; she is effective
because she knows a lot about medicine. Similarly, a geologist is effective at discovering
mineral deposits because he is able to apply a good deal of theoretical and empirical
knowledge about geology to the problem at hand. Expert knowledge is a combination of a
theoretical understanding of the problem and a collection of heuristic problem-solving
rules that experience has shown to be effective in the domain. Expert systems are
constructed by obtaining this knowledge from a human expert and coding it into a form
that a computer may apply to similar problems. 

This reliance on the knowledge of a human domain expert for the system’s problem
solving strategies is a major feature of expert systems. Although some programs are writ-
ten in which the designer is also the source of the domain knowledge, it is far more typical
to see such programs growing out of a collaboration between a domain expert such as a
doctor, chemist, geologist, or engineer and a separate artificial intelligence specialist. The
domain expert provides the necessary knowledge of the problem domain through a
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general discussion of her problem-solving methods and by demonstrating those skills on a
carefully chosen set of sample problems. The AI specialist, or knowledge engineer, as
expert systems designers are often known, is responsible for implementing this knowledge
in a program that is both effective and seemingly intelligent in its behavior. Once such a
program has been written, it is necessary to refine its expertise through a process of giving
it example problems to solve, letting the domain expert criticize its behavior, and making
any required changes or modifications to the program’s knowledge. This process is
repeated until the program has achieved the desired level of performance. 

One of the earliest systems to exploit domain-specific knowledge in problem solving
was DENDRAL, developed at Stanford in the late 1960s (Lindsay et al. 1980). DEN-
DRAL was designed to infer the structure of organic molecules from their chemical for-
mulas and mass spectrographic information about the chemical bonds present in the
molecules. Because organic molecules tend to be very large, the number of possible
structures for these molecules tends to be huge. DENDRAL addresses the problem of this
large search space by applying the heuristic knowledge of expert chemists to the structure
elucidation problem. DENDRAL’s methods proved remarkably effective, routinely find-
ing the correct structure out of millions of possibilities after only a few trials. The
approach has proved so successful that descendants extensions of DENDRAL are cur-
rently used in chemical and pharmaceutical laboratories throughout the world. 

Whereas DENDRAL was one of the first programs to effectively use domain-specific
knowledge to achieve expert performance, MYCIN established the methodology of con-
temporary expert systems (Buchanan and Shortliffe 1984). MYCIN uses expert medical
knowledge to diagnose and prescribe treatment for spinal meningitis and bacterial infec-
tions of the blood. MYCIN, developed at Stanford in the mid-1970s, was one of the first
programs to address the problems of reasoning with uncertain or incomplete information.
MYCIN provided clear and logical explanations of its reasoning, used a control structure
appropriate to the specific problem domain, and identified criteria to reliably evaluate its
performance. Many of the expert system development techniques currently in use were
first developed in the MYCIN project (Chapter 8). 

Other early expert systems include the PROSPECTOR program for determining the
probable location and type of ore deposits based on geological information about a site
(Duda et al. 1979a, 1979b), the INTERNIST program for performing diagnosis in the area
of internal medicine, the Dipmeter Advisor for interpreting the results of oil well drilling
logs (Smith and Baker 1983), and XCON for configuring VAX computers. XCON was
developed in 1981, and at one time every VAX sold by Digital Equipment Corporation
was configured by that software. Numerous other expert systems are currently solving
problems in areas such as medicine, education, business, design, and science (Waterman
1986, Durkin 1994). See also current proceedings of the Inovative Applications of Artifi-
cial Intelligence (IAAI) Confersnces.

It is interesting to note that most expert systems have been written for relatively spe-
cialized, expert level domains. These domains are generally well studied and have clearly
defined problem-solving strategies. Problems that depend on a more loosely defined
notion of “common sense” are much more difficult to solve by these means. In spite of the
promise of expert systems, it would be a mistake to overestimate the ability of this
technology. Current deficiencies include: 
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1. Difficulty in capturing “deep” knowledge of the problem domain. MYCIN, for
example, lacks any real knowledge of human physiology. It does not know what
blood does or the function of the spinal cord. Folklore has it that once, when
selecting a drug for treatment of meningitis, MYCIN asked whether the patient
was pregnant, even though it had been told that the patient was male. Whether
this actually occurred or not, it does illustrate the potential narrowness of knowl-
edge in expert systems. 

2. Lack of robustness and flexibility. If humans are presented with a problem
instance that they cannot solve immediately, they can generally return to an
examination of first principles and come up with some strategy for attacking the
problem. Expert systems generally lack this ability. 

3. Inability to provide deep explanations. Because expert systems lack deep
knowledge of their problem domains, their explanations are generally restricted
to a description of the steps they took in finding a solution. For example, they
often cannot tell “why” a certain approach was taken. 

4. Difficulties in verification. Though the correctness of any large computer system
is difficult to prove, expert systems are particularly difficult to verify. This is a
serious problem, as expert systems technology is being applied to critical
applications such as air traffic control, nuclear reactor operations, and weapons
systems. 

5. Little learning from experience. Current expert systems are handcrafted; once the
system is completed, its performance will not improve without further attention
from its programmers, leading to doubts about the intelligence of such systems.

In spite of these limitations, expert systems have proved their value in a number of
important applications. Expert systems are a major topic in this text and are discussed in
Chapters 7 and 8. Current applications can often be found in the proceedings of the Inova-
tive Applications of Artificial Intelligence (IAAI) conferences.

1.2.4 Natural Language Understanding and Semantics

One of the long-standing goals of artificial intelligence is the creation of programs that are
capable of understanding and generating human language. Not only does the ability to use
and understand natural language seem to be a fundamental aspect of human intelligence,
but also its successful automation would have an incredible impact on the usability and
effectiveness of computers themselves. Much effort has been put into writing programs
that understand natural language. Although these programs have achieved success within
restricted contexts, systems that can use natural language with the flexibility and general-
ity that characterize human speech are beyond current methodologies. 

Understanding natural language involves much more than parsing sentences into their
individual parts of speech and looking those words up in a dictionary. Real understanding
depends on extensive background knowledge about the domain of discourse and the
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idioms used in that domain as well as an ability to apply general contextual knowledge to
resolve the omissions and ambiguities that are a normal part of human speech. 

Consider, for example, the difficulties in carrying on a conversation about baseball
with an individual who understands English but knows nothing about the rules, players, or
history of the game. Could this person possibly understand the meaning of the sentence:
“With none down in the top of the ninth and the go-ahead run at second, the manager
called his relief from the bull pen”? Even though all of the words in the sentence may be
individually understood, this sentence would be gibberish to even the most intelligent
non-baseball fan. 

The task of collecting and organizing this background knowledge in such a way that it
may be applied to language comprehension forms the major problem in automating
natural language understanding. Responding to this need, researchers have developed
many of the techniques for structuring semantic meaning used throughout artificial
intelligence (Chapters 7 and 15). 

Because of the tremendous amounts of knowledge required for understanding natural
language, most work is done in well-understood, specialized problem areas. One of the
earliest programs to exploit this “micro world” methodology was Winograd’s SHRDLU, a
natural language system that could “converse” about a simple configuration of blocks of
different shapes and colors (Winograd 1973). SHRDLU could answer queries such as
“what color block is on the blue cube?” as well as plan actions such as “move the red pyr-
amid onto the green brick”. Problems of this sort, involving the description and manipula-
tion of simple arrangements of blocks,  appeared with surprising frequency in early AI
research and are known as “blocks world” problems. 

In spite of SHRDLU’s success in conversing about arrangements of blocks, its
methods did not generalize from that domain. The representational techniques used in the
program were too simple to capture the semantic organization of richer and more
complex domains in a useful way. Much of the current work in natural language under-
standing is devoted to finding representational formalisms that are general enough to be
used in a wide range of applications yet adapt themselves well to the specific structure of a
given domain. A number of different techniques (many of which are extensions or modifi-
cations of semantic networks) are explored for this purpose and used in the development
of programs that can understand natural language in constrained but interesting knowl-
edge domains. Finally, in current research (Marcus 1980, Manning and Schutze 1999,
Jurafsky and Martin 2009) stochastic models, describing how words and language struc-
tures “occur” in use, are employed to characterize both syntax and semantics. Full compu-
tational understanding of language, however, remains beyond the current state of the art. 

1.2.5 Modeling Human Performance

Although much of the above discussion uses human intelligence as a reference point in
considering artificial intelligence, it does not follow that programs should pattern them-
selves after the organization of the human mind. Indeed, many AI programs are engi-
neered to solve some useful problem without regard for their similarities to human mental
architecture. Even expert systems, while deriving much of their knowledge from human
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experts, do not really attempt to simulate human internal mental problem solving pro-
cesses. If performance is the only criterion by which a system will be judged, there may be
little reason to attempt to simulate human problem-solving methods; in fact, programs that
take nonhuman approaches to solving problems (chess) are often more successful than
their human counterparts. Still, the design of systems that explicitly model aspects of
human performance is a fertile area of research in both AI and psychology. 

Human performance modeling, in addition to providing AI with much of its basic
methodology, has proved to be a powerful tool for formulating and testing theories of
human cognition. The problem-solving methodologies developed by computer scientists
have given psychologists a new metaphor for exploring the human mind. Rather than
casting theories of cognition in the vague language used in early research or abandoning
the problem of describing the inner workings of the human mind entirely (as suggested by
the behaviorists), many psychologists have adopted the language and theory of computer
science to formulate models of human intelligence. Not only do these techniques provide a
new vocabulary for describing human intelligence, but also computer implementations of
these theories offer psychologists an opportunity to empirically test, critique, and refine
their ideas (Luger 1994; See the Cognitive Science Society’s journal and conferences).
The relationship between artificial and human intelligence is summarized in Chapter 16.

1.2.6 Planning and Robotics

Research in planning began as an effort to design robots that could perform their tasks
with some degree of flexibility and responsiveness to the outside world. Briefly, planning
assumes a robot that is capable of performing certain atomic actions. It attempts to find a
sequence of those actions that will accomplish some higher-level task, such as moving
across an obstacle-filled room. 

Planning is a difficult problem for a number of reasons, not the least of which is the
size of the space of possible sequences of moves. Even an extremely simple robot is
capable of generating a vast number of potential move sequences. Imagine, for example, a
robot that can move forward, backward, right, or left, and consider how many different
ways that robot can possibly move around a room. Assume also that there are obstacles in
the room and that the robot must select a path that moves around them in some efficient
fashion. Writing a program that can discover the best path under these circumstances,
without being overwhelmed by the huge number of possibilities, requires sophisticated
techniques for representing spatial knowledge and controlling search through possible
environments.

One method that human beings use in planning is hierarchical problem decomposi-
tion. If you are planning a trip from Albuquerque to London, you will generally treat the
problems of arranging a flight, getting to the airport, making airline connections, and find-
ing ground transportation in London separately, even though they are all part of a bigger
overall plan. Each of these may be further decomposed into smaller subproblems such as
finding a map of the city, negotiating the subway system, and finding a decent pub. Not
only does this approach effectively restrict the size of the space that must be searched, but
also supports the saving of frequently used subplans for future use. 
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While humans plan effortlessly, creating a computer program that can do the same is a
difficult challenge. A seemingly simple task such as breaking a problem into independent
subproblems actually requires sophisticated heuristics and extensive knowledge about the
planning domain. Determining what subplans should be saved and how they may be
generalized for future use is an equally difficult problem. 

A robot that blindly performs a sequence of actions without responding to changes in
its environment or being able to detect and correct errors in its own plan could hardly be
considered intelligent. A robot may not have adequate sensors to locate all obstacles in the
way of a projected path. Such a robot must begin moving through the room based on what
it has “perceived” and correct its path as other obstacles are detected. Organizing plans in
a fashion that allows response to changing environmental conditions is a major problem
for planning (Lewis and Luger 2000, Thrun et al. 2007). 

Finally, robotics was one of the research areas in AI that produced many of the
insights supporting agent-oriented problem solving (Section 1.1.4). Frustrated by both the
complexities of maintaining the large representational space as well as the design of
search algorithms for traditional planning, researchers, including Agre and Chapman
(1987) , Brooks (1991a), Thrun et al. (2007), restated the problem in terms of the interac-
tion of multiple semi-autonomous agents. Each agent was responsible for its own portion
of the problem task and through their coordination the larger solution would emerge. 

Planning research now extends well beyond the domains of robotics, to include the
coordination of any complex set of tasks and goals. Modern planners are applied to agents
(Nilsson 1994) as well as to control of particle beam accelerators (Klein et al. 1999, 2000).

1.2.7 Languages and Environments for AI

Some of the most important by-products of artificial intelligence research have been
advances in programming languages and software development environments. For a num-
ber of reasons, including the size of many AI application programs, the importance of a
prototyping methodology, the tendency of search algorithms to generate huge spaces, and
the difficulty of predicting the behavior of heuristically driven programs, AI programmers
have been forced to develop a powerful set of programming methodologies. 

Programming environments include knowledge-structuring techniques such as
object-oriented programming. High-level languages, such as Lisp and Prolog, which sup-
port modular development, help manage program size and complexity. Trace packages
allow a programmer to reconstruct the execution of a complex algorithm and make it pos-
sible to unravel the complexities of heuristic search. Without such tools and techniques, it
is doubtful that many significant AI systems could have been built. 

Many of these techniques are now standard tools for software engineering and have
little relationship to the core of AI theory. Others, such as object-oriented programming,
are of significant theoretical and practical interest. Finally, many AI algorithms are also
now built in more traditional computing languages, such as C++ and Java.

The languages developed for artificial intelligence programming are intimately bound
to the theoretical structure of the field. We have built many of the representational struc-
tures presneted in this book in Prolog, Lisp and Java and make them available in Luger
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and Stubblefield (2009) and on the internet. In this book we remain apart from religious
debates over their relative merits  different languages. Rather, We adhere to the adage “the
good professional knows all her tools.” 

1.2.8 Machine Learning

Learning has remained a challenging area for AI. The importance of learning, however, is
beyond question, particularly as this ability is one of the most important components of
intelligent behavior. An expert system may perform extensive and costly computations to
solve a problem. Unlike a human being, however, if it is given the same or a similar prob-
lem a second time, it usually does not remember the solution. It performs the same
sequence of computations again. This is true the second, third, fourth, and every time it
solves that problem—hardly the behavior of an intelligent problem solver. The obvious
solution to this problem is for programs to learn on their own, either from experience,
analogy, examples, being “told” what to do, or rewarded or punished depending on results. 

Although learning is a difficult area, there are several programs that suggest that it is
not impossible. One early program is AM, the Automated Mathematician, designed to dis-
cover mathematical laws (Lenat 1977, 1982). Initially given the concepts and axioms of
set theory, AM was able to induce such important mathematical concepts as cardinality,
integer arithmetic, and many of the results of number theory. AM conjectured new theo-
rems by modifying its current knowledge base and used heuristics to pursue the “best” of
a number of possible alternative theorems. More recently, Cotton et al. (2000) designed a
program that automatically invents “interesting” integer sequences. 

Early influential work also includes Winston’s research on the induction of structural
concepts such as “arch” from a set of examples in the blocks world (Winston 1975a). The
ID3 algorithm has proved successful in learning general patterns from examples (Quinlan
1986a). Meta-DENDRAL learns rules for interpreting mass spectrographic data in organic
chemistry from examples of data on compounds of known structure. Teiresias, an intelli-
gent “front end” for expert systems, converts high-level advice into new rules for its
knowledge base (Davis 1982). Hacker devises plans for performing blocks world manipu-
lations through an iterative process of devising a plan, testing it, and correcting any flaws
discovered in the candidate plan (Sussman 1975). Work in explanation-based learning has
shown the effectiveness of prior knowledge in learning (Mitchell et al. 1986, DeJong and
Mooney 1986). There are also now many important biological and sociological models of
learning; we review these in the connectionist learning and emergent learning chapters. 

The success of machine learning programs suggests the existence of a set of general
learning principles that will allow the construction of programs with the ability to learn in
realistic domains. We present several approaches to learning in Section IV.

1.2.9 Alternative Representations: Neural Nets and Genetic Algorithms

Most of the techniques presented in this AI book use explicitly represented knowledge and
carefully designed search algorithms to implement intelligence. A very different approach
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seeks to build intelligent programs using models that parallel the structure of neurons in
the human brain or the evolving patterns found in genetic algorithms and artificial life.

A simple schematic of a neuron (Figure 1.2) consists of a cell body that has a number
of branched protrusions, called dendrites, and a single branch called the axon. Dendrites
receive signals from other neurons. When these combined impulses exceed a certain
threshold, the neuron fires and an impulse, or spike, passes down the axon. Branches at the
end of the axon form synapses with the dendrites of other neurons. The synapse is the
point of contact between neurons; synapses may be either excitatory or inhibitory, either
adding to the total of signals reaching the neuron or subtracting from that total. 

This description of a neuron is excessively simple, but it captures those features that
are relevant to neural models of computation. In particular, each computational unit com-
putes some function of its inputs and passes the result along to connected units in the net-
work: the final results are produced by the parallel and distributed processing of this
network of neural connections and threshold weights.

Neural architectures are appealing mechanisms for implementing intelligence for a
number of reasons. Traditional AI programs can be brittle and overly sensitive to noise.
Human intelligence is much more flexible and good at interpreting noisy input, such as a
face in a darkened room or a conversation at a noisy party. Neural architectures, because
they capture knowledge in a large number of fine-grained units distributed about a net-
work, seem to have more potential for partially matching noisy and incomplete data. 

With genetic algorithms and artificial life we evolve new problem solutions from
components of previous solutions. The genetic operators, such as crossover and mutation,
much like their genetic equivalents in the natural world, work to produce, for each new
generation, ever better potential problem solutions. Artificial life produces its new genera-
tion as a function of the “quality” of its neighbors in previous generations.

Both neural architectures and genetic algorithms provide a natural model for parallel-
ism, because each neuron or segment of a solution is an independent unit. Hillis (1985)
has commented on the fact that humans get faster at a task as they acquire more knowl-
edge, while computers tend to slow down. This slowdown is due to the cost of sequen-
tially searching a knowledge base; a massively parallel architecture like the human brain
would not suffer from this problem. Finally, something is intrinsically appealing about
approaching the problems of intelligence from a neural or genetic point of view. After all,
the evolved brain achieves intelligence and it does so using a neural architecture. We
present neural networks, genetic algorithms, and artificial life, in Chapters 10 and 11. 

Synapse

Cell body
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Axon

Figure 1.2 A simplified diagram of a neuron, from 
Crick and Asanuma (1986).
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1.2.10 AI and Philosophy

In Section 1.1 we presented the philosophical, mathematical, and sociological roots of
artificial intelligence. It is important to realize that modern AI is not just a product of this
rich intellectual tradition but also contributes to it. 

For example, the questions that Turing posed about intelligent programs reflect back
on our understanding of intelligence itself. What is intelligence, and how is it described?
What is the nature of knowledge? Can knowledge be represented? How does knowledge
in an application area relate to problem-solving skill in that domain? How does knowing
what is true, Aristotle’s theoria, relate to knowing how to perform, his praxis?

Answers proposed to these questions make up an important part of what AI research-
ers and designers do. In the scientific sense, AI programs can be viewed as experiments. A
design is made concrete in a program and the program is run as an experiment. The pro-
gram designers observe the results and then redesign and rerun the experiment. In this
manner we can determine whether our representations and algorithms are sufficient mod-
els of intelligent behavior. Newell and Simon (1976) proposed this approach to scientific
understanding in their 1976 Turing Award lecture (Section VI). Newell and Simon (1976)
also propose a stronger model for intelligence with their physical symbol system hypothe-
sis: the necessary and sufficient condition for a physical system to exhibit intelligence is
that it be a physical symbol system. We take up in Section VI what this hypothesis means
in practice as well as how it has been criticized by many modern thinkers. 

A number of AI application areas also open up deep philosophical issues. In what
sense can we say that a computer can understand natural language expressions? To
produce or understand a language requires interpretation of symbols. It is not sufficient to
be able to say that a string of symbols is well formed. A mechanism for understanding
must be able to impute meaning or interpret symbols in context. What is meaning? What is
interpretation? In what sense does interpretation require responsibility? 

Similar philosophical issues emerge from many AI application areas, whether they be
building expert systems to cooperate with human problem solvers, designing computer
vision systems, or designing algorithms for machine learning. We look at many of these
issues as they come up in the chapters of this book and address the general issue of
relevance to philosophy again in Section VI.

1.3 Artificial Intelligence—A Summary

We have attempted to define artificial intelligence through discussion of its major areas of
research and application. This survey reveals a young and promising field of study whose
primary concern is finding an effective way to understand and apply intelligent problem
solving, planning, and communication skills to a wide range of practical problems. In
spite of the variety of problems addressed in artificial intelligence research, a number of
important features emerge that seem common to all divisions of the field; these include: 

1. The use of computers to do reasoning, pattern recognition, learning, or some
other form of inference. 
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2. A focus on problems that do not respond to algorithmic solutions. This underlies
the reliance on heuristic search as an AI problem-solving technique. 

3. A concern with problem solving using inexact, missing, or poorly defined infor-
mation and the use of representational formalisms that enable the programmer to
compensate for these problems. 

4. Reasoning about the significant qualitative features of a situation. 

5. An attempt to deal with issues of semantic meaning as well as syntactic form.

6. Answers that are neither exact nor optimal, but are in some sense “sufficient”.
This is a result of the essential reliance on heuristic problem-solving methods in
situations where optimal or exact results are either too expensive or not possible. 

7. The use of large amounts of domain-specific knowledge in solving problems.
This is the basis of expert systems. 

8. The use of meta-level knowledge to effect more sophisticated control of problem
solving strategies. Although this is a very difficult problem, addressed in rela-
tively few current systems, it is emerging as an essential area of research. 

We hope that this introduction provides some feel for the overall structure and
significance of the field of artificial intelligence. We also hope that the brief discussions of
such technical issues as search and representation were not excessively cryptic and
obscure; they are developed in proper detail throughout the remainder of the book, but
included here to demonstrate their significance in the general organization of the field. 

As we mentioned in the discussion of agent-oriented problem solving, objects take on
meaning through their relationships with other objects. This is equally true of the facts,
theories, and techniques that constitute a field of scientific study. We have intended to give
a sense of those interrelationships, so that when the separate technical themes of artificial
intelligence are presented, they will find their place in a developing understanding of the
overall substance and directions of the field. We are guided in this process by an observa-
tion made by Gregory Bateson (1979), the psychologist and systems theorist: 

Break the pattern which connects the items of learning and you necessarily destroy all quality. 

1.4 Epilogue and References

The field of AI reflects some of the oldest concerns of Western civilization in the light of
the modern computational model. The notions of rationality, representation, and reason
are now under scrutiny as perhaps never before, because we workers in AI demand to
understand them algorithmically! At the same time, the political, economic, and ethical
situation of our species forces us to confront our responsibility for the effects of our
artifices.  

Many excellent sources are available on the topics raised in this chapter: Mind Design
(Haugeland 1997), Artificial Intelligence: The Very Idea (Haugeland 1985), Brainstorms
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(Dennett 1978), Mental Models (Johnson-Laird 1983), Elbow Room (Dennett 1984), The
Body in the Mind (Johnson 1987), Consciousness Explained (Dennett 1991), and Darwin’s
Dangerous Idea (Dennett 1995), Prehistory of Android Epistemology (Glymour, Ford, and
Hayes 1995a), and Sweet Dreems (Dennett 2006).

Several of the primary sources are also readily available, including Aristotle’s Phys-
ics, Metaphysics, and Logic; papers by Frege; and the writings of Babbage, Boole, and
Russell and Whitehead. Turing’s papers are also very interesting, especially his discus-
sions of the nature of intelligence and the possibility of designing intelligent programs
(Turing 1950). Turing's famous 1937 paper On Computable Numbers, with an Application
to the Entscheidungsproblem worked out the theory of Turing machines and the definition
of computability. Turing’s biography, Alan Turing: The Enigma (Hodges 1983), makes
excellent reading. Selfridge’s Pandemonium (1959) is an early example of learning. An
important collection of early papers in AI may be found in Webber and Nilsson (1981).

Computer Power and Human Reason (Weizenbaum 1976) and Understanding
Computers and Cognition (Winograd and Flores 1986) offer sobering comments on the
limitations of and ethical issues in AI. The Sciences of the Artificial (Simon 1981) is a pos-
itive statement on the possibility of artificial intelligence and its role in society. 

The AI applications mentioned in Section 1.2 are intended to introduce the reader to
the broad interests of AI researchers and outline many of the important questions under
investigation. Each of these subsections referenced the primary areas in this book where
these topics are presented. The Handbook of Artificial Intelligence (Barr and Feigenbaum
1989) also offers an introduction to many of these areas. The Encyclopedia of Artificial
Intelligence (Shapiro 1992) offers a clear and comprehensive treatment of the field of arti-
ficial intelligence. 

Natural language understanding is a dynamic field of study; some important points of
view are expressed in Natural Language Understanding (Allen 1995), Language as a
Cognitive Process (Winograd 1983), Computer Models of Thought and Language (Schank
and Colby 1973), Grammar, Meaning and the Machine Analysis of Language (Wilks
1972), The Language Instinct (Pinker 1994), Philosophy in the Flesh (Lakoff and Johnson
1999), and Speech and Language Processing (Jurafsky and Martin 2009); an introduction
to the field is presented in our Chapters 7 and 15. 

Using computers to model human performance, which we address briefly in Chapter
17, is discussed in some depth in Human Problem Solving (Newell and Simon 1972),
Computation and Cognition (Pylyshyn 1984), Arguments Concerning Representations for
Mental Imagery (Anderson 1978), Cognitive Science: the Science of Intelligent
Systems (Luger 1994), Problem Solving as Model Refinement: Towards a Constructivist
Epistemology (Luger et al. 2002), and Bayesian Brain, (Doya et al. 2007). 

Machine learning is discussed in Section IV; the multi-volume set, Machine Learning
(Michalski et al. 1983, 1986; Kodratoff and Michalski 1990), the Journal of Artificial
Intelligence and the Journal of Machine Learning are important resources. Further refer-
ences may be found in the four chapters of Section IV. 

Finally, Chapter 12 presents a view of intelligence that emphasizes its modular struc-
ture and adaptation within a social and natural context. Minsky’s Society of Mind (1985) is
one of the earliest and most thought provoking articulations of this point of view. Also see
Android Epistemology (Ford et al. 1995b) and Artificial Life (Langton 1995).
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1.5 Exercises

1. Create and justify your own definition of artificial intelligence. 

2. Give several other examples of Aristotle’s distinction between matter and form. Can you
show how your examples might fit into a theory of abstraction? 

3. Much traditional Western thought has dwelt on the mind–body relationship. Are the mind
and body: 

a. distinct entities somehow interacting, or 

b. is mind an expression of “physical processes”, or 

c. is body just an illusion of the rational mind?

Discuss your thoughts on the mind–body problem and its importance for a theory of artificial
intelligence. 

4. Criticize Turing’s criteria for computer software being “intelligent”. 

5. Describe your own criteria for computer software to be considered “intelligent”. 

6. Although computing is a relatively new discipline, philosophers and mathematicians have
been thinking about the issues involved in automating problem solving for thousands of
years. What is your opinion of the relevance of these philosophical issues to the design of a
device for intelligent problem solving? Justify your answer. 

7. Given the differences between the architectures of modern computers and that of the human
brain, what relevance does research into the physiological structure and function of
biological systems have for the engineering of AI programs? Justify your answer. 

8. Pick one problem area that you feel would justify the energy required to design an expert
system solution. Spell the problem out in some detail. Based on your own intuition, which
aspects of this solution would be most difficult to automate? 

9. Add two more benefits for expert systems to those already listed in the text. Discuss these in
terms of intellectual, social, or financial results. 

   10. Discuss why you think the problem of machines “learning” is so difficult.

   11. Discuss whether or not you think it is possible for a computer to understand and use a natural
(human) language.

12. List and discuss two potentially negative effects on society of the development of artificial
intelligence technologies.


