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 10.1 Prolog: Towards a Declarative Semantics 

 We have now finishing our nine-chapter presentation of Prolog. To 
summarize and conclude we describe again the design philosophy 
supporting this language paradigm, look at how this influenced the history 
of its development, summarize the main language idioms we used in 
building our AI applications programs, and mention several modern 
extensions of this declarative approach to programming. 

Prolog was first designed and used at the University of Marseilles in the 
south of France in the early 1970s. The first Prolog interpreter was 
intended to analyze French using metamorphosis grammars (Colmerauer 1975). 
From Marseilles, the language development moved on to the University of 
Edinburgh in Scotland, where at the Artificial Intelligence Department, 
Fernando Pereira and David Warren (1980) created definite clause grammars. 
In fact, because of the declarative nature of Prolog and the flexibility of 
pattern-driven control, tasks in Natural Language Processing, NLP, (Luger 
2009, Chapter 15) have always offered a major application domain (see 
Chapters 8 and 9). Veronica Dahl (1977), Dahl and McCord (1983), 
Michael McCord (1982, 1986), and John Sowa (Sowa 1984, Walker et al. 
1987) have all contributed to this research. 

Besides NLP, Prolog has supported many research tasks including the 
development of early expert systems (Bundy et al. 1979). Building AI 
representations such as semantic nets, frames, and objects has always been 
an important task for Prolog (see especially Knowledge Systems and Prolog by 
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Adrian Walker, Michael McCord, John Sowa, and Walter Wilson, 1987, and 
Prolog: A Relational Language and Its Applications by John Malpas 1987). 

In the remainder of this chapter we discuss briefly declarative 
programming, how Prolog relates to theorem proving, and describe again 
the Prolog idioms presented in Part II. 

In traditional computing languages such as FORTRAN, C, and Java the 
logic for the problem’s specification and the control for executing the 
solution algorithm are inextricably mixed together. A program in these 
languages is simply a sequence of things to be done to achieve an answer. 
This is the accepted notion of applicative or procedural languages. Prolog, 
however, separates the logic or specification for a problem application 
from the execution or control of the use of that specification. In artificial 
intelligence programs, there are many reasons for this separation, as has 
been evident throughout Part II. 

Prolog presents an alternative approach to computing. A program, as we 
have seen, consists of a set of specifications or declarations of what is true in 
a problem domain. The Prolog interpreter, taking a question from the user, 
determines whether it is true or false with respect to the set of 
specifications, If the query is true, Prolog will return a set of variable 
bindings (a model, see 10.2) under which the query is true. 

As an example of the declarative/nonprocedural nature of Prolog, consider 
append: 

append([ ], L, L). 

append([X | T], L, [X | NL]) :- append(T, L, NL). 

append is nonprocedural in that it defines a relationship between lists 
rather than a series of operations for joining two lists. Consequently, 
different queries will cause it to compute different aspects of this 
relationship. We can understand append by tracing its execution in 
joining two lists together. If the following call is made, the response is: 

?- append([a, b, c], [d, e], Y). 

Y = [a, b, c, d, e] 

The execution of append is not tail recursive, in that the local variable 
values are accessed after the recursive call has succeeded. In this case, X is 
placed on the head of the list ([X | NL]) after the recursive call has 
finished. This requires that a record of each call be kept on the Prolog 
stack. For purposes of reference in the following trace: 

1. is append([ ], L, L). 

2. is append([X | T], L, [X | NL]) :-  
       append(T, L, NL). 

 
?- append([a, b, c], [d, e], Y). 

   try match 1, fail [a, b, c] /= [ ] 
   match 2, X is a, T is [b, c], L is [d, e],  
        call append([b, c], [d, e], NL) 
  try match 1, fail [b, c] /= [ ] 
  match 2, X is b, T is [c], L is [d, e],  
             call append([c], [d, e], NL) 
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   try match 1, fail [c]  [ ] 
   match 2, X is c, T is [ ], L is [d, e],       

                     call append([ ], [d, e], NL) 
    match 1, L is [d, e]  
                    yes 
   yes, N is [d, e], [X | NL] is [c, d, e] 
 yes, NL is [c, d, e], [X | NL] is [b, c, d, e] 
    yes, NL is [b, c, d, e],  
          [X | NL] is [a, b, c, d, e] 

    Y = [a, b, c, d, e], yes 

In most Prolog programs, the parameters of the predicates seem to be 
intended as either “input” or “output”; most definitions assume that 
certain parameters be bound in the call and others unbound. This need not 
be so. In fact, there is no commitment at all to parameters being input or 
output! Prolog code is simply a set of specifications of what is true, a 
statement of the logic of the situation. Thus, append specifies a 
relationship between three lists, such that the third list is the catenation of 
the first onto the front of the second. 

To demonstrate this we can give append a different set of goals: 

?- append([a, b], [c], [a, b, c]). 

Yes 

?- append([a], [c], [a, b, c]). 

No 

?- append(X, [b, c], [a, b, c]). 

X = [a] 

?- append(X, Y, [a, b, c]). 

X = [ ] 

Y = [a, b, c] 

; 

X = [a] 

Y = [b, c] 

; 

X = [a, b] 

Y = [c] 

; 

X = [a, b, c] 

Y = [ ] 

; 

no 

In the last query, Prolog returns all the lists X and Y that, when appended 
together, give [a,b,c], four pairs of lists in all. As mentioned above, 
append gives a statement of the logic of a relationship that exists among 
three lists. What the interpreter produces depends on the query. 

The notion of solving a problem based on a set of specifications for 
relationships in a problem domain area, coupled with the action of a 
theorem prover, is exciting and important. As seen in Part II, it is a 
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valuable tool in areas as diverse as natural language understanding, 
databases, expert systems, and machine learning. How the Prolog 
interpreter works cannot be fully understood without the concepts of 
resolution theorem proving, especially the Horn clause refutation process, 
which is presented in Luger (2009, Section 14.2 and Section 14.3) where 
Prolog is presented as an instance of a resolution refutation system. In 
Section 10.2 we briefly summarize these issues. 

 10.2 Introduction: Logic-Based Representation 
 

Prolog and Automated Reasoning 

 Prolog’s declarative semantics, with the interpreter determining the truth or 
falsity of queries has much of the feel of an automated reasoning system or 
theorem prover (Luger 2009, Chapter 14). In fact, Prolog is not a theorem 
prover, as it lacks several important features that would make it both sound 
(only producing mathematically correct responses) and complete (able to 
produce all correct responses consistent with a problem’s specifications). 
Many of these features are not implemented in current versions of Prolog. 
In fact, most are omitted to make Prolog a more efficient programming 
tool, even when this omission costs Prolog any claim of mathematical 
soundness. 

In this section we will list several of the key features of automated 
reasoning systems that Prolog lacks. First is the occurs check. Prolog does not 
determine whether any expression in the language contains a subset of 
itself. For example, the test whether foo(X) = foo(foo(X)) will 
make most Prolog environments get seriously weird. It turns out that the 
systematic check of whether any Prolog expression contains a subset of 
itself is computationally costly and as a result is ignored.  

A second limitation on Prolog is the order constraint. The Prolog inference 
system (interpreter) performs a left-to-right depth-first goal reduction on 
its specifications. This requires that the programmer order these 
specifications appropriately. For example, the termination of a recursive 
call must be presented before the recursive expression, otherwise the 
recursion will never terminate. The programmer can also organize goals in 
the order in which she wishes the interpreter to see them. This can help 
create an efficient program but does not support a truly declarative 
specification language where non-deterministic goal reduction is a critical 
component. Finally, the use of the cut, !, allows the programmer to 
further limit the set of models that the interpreter can compute. Again this 
limitation promotes efficiency but it is at the cost of a mathematically 
complete system. 

A third limitation of Prolog is that there is no unique name constraint or 
closed world assumption. Unique names means that each atom in the prolog 
world must have one and only one “name” or value; otherwise there must 
exist a set of deterministic predicates that can reduce an atom to its unique 
(canonical) form. In mathematics, for example, 1, cannot be 1 + 0, 0 + 1, 
or 0 + 1 + 0, etc. There must be some predicate that can reduce all of these 
expressions to one canonical form for that atom.  

Further, the closed world assumption, requires that all the atoms in a 
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domain must be specified; the interpreter cannot return no because some 
atom was ignored or misspelled. These requirements in a theorem proving 
environment address the negation as failure result that can be so frustrating to 
a Prolog programmer. Negation as failure describes the situation where the 
interpreter returns no and this indicates either that the query is false or that 
the program’s specifications are incorrect. When a true theorem prover 
responds no then the query is false. 
Even though the Prolog interpreter is not a theorem prover, the intelligent 
programmer can utilize many aspects of its declarative semantics to build a 
set of clean representational specifications; these are then addressed by an 
efficient interpreter. For more discussion of Prolog as theorem proving see 
Luger (2009, Section 14.3). 

 10.3 Introduction: Logic-Based Representation 
 

Prolog Idioms and Extensions 

 We now summarize several of the Prolog programming idioms we have 
used in Part II of this presentation. We consider idioms from three 
perspectives, from the lowest level of command and specification 
instructions, from a middle level of creating program language modules 
such as abstract data types, and from the most general level of using meta-
predicates to make new interpreters within Prolog that are able to operate 
on specific sets of Prolog expressions. 

From the lowest level of designing control and building specifications, we 
mention four different idioms that were used throughout Part II as critical 
components for constructing Prolog programs. The first idiom is unification 
or pattern matching. Unification offers a unique power for variable binding 
found only in high-level languages. It is particularly powerful for pattern 
matching across sets of predicate calculus specifications. Unification offers 
an efficient implementation of the if/then/else constructs of lower 
level languages: if the pattern matches, perform the associated action, 
otherwise consider the next pattern. It is also an important and simplifying 
tool for designing meta-interpreters, such as the production system 
(Section 4.2). Production rules can be ordered and presented as a set of 
patterns to be matched by unification) that will then trigger specific 
behaviors. An algorithm for unification can be found in Luger (2009, 
Section 2.3). It is interesting to note that unification, a constituent of 
Prolog, is explicitly programmed into Lisp (Chapter 15) and Java (Chapter 
32 and 33) to support AI programming techniques in these languages. 

A second idiom of Prolog is the use of assignment. Assignment is related to 
unification in that many variables, especially those in predicate calculus 
form, are assigned values through unification. However, when a variable is 
to have some value based on an explicit functional calculation, the is 
operator must be used. Understanding the specific roles of assignment, 
evaluation, and pattern matching is important for Prolog use. 

The primary control construct for Prolog is recursion, the third idiom we 
mention. Recursion works with unification to evaluate patterns in much 
the same way as for, repeat/until, or while constructs are used in 
lower level languages. Since many of AIs problem solving tasks consist in 
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searching indeterminate sized trees or graphs, the naturalness of recursion 
makes it an important idiom: until specific criteria are met continue search 
over specifications. Of course the lower-level control constructs of for, 
repeat, etc., could be built into Prolog, but the idioms for these 
constructs is recursion coupled with unification. 

Finally, at the predicate creation level of the program, the ordering of 
predicate specifications is important for Prolog. The issue is to utilize the 
built in depth-first left-to-right goal reduction of the Prolog interpreter. 
Understanding the action of the interpreter has important implications for 
using the order idiom. Along with order of specifications for efficient 
search, of course, is understanding and using wisely the predicate cut, !. 

At the middle level of program design, where specifications are clustered to 
have systematic program level effects, we mention several idioms. These 
were grouped together in our presentation in Section 3.3 under the 
construct abstract data types (ADTs). Abstract data types, such as set, stack, 
queue, and priority queue were developed in Chapter 3. The abstractions allow 
the program designer to use the higher-level constructs of queue, stack, etc. 
directly in problem solving. We then used these control abstract data types 
to design the search algorithms presented in Chapter 4. They were also 
later used in the machine learning and natural language chapters of Part II. 
For our Prolog chapters these idioms offer a natural way to express 
constructs related to graph search. 

Finally, at that abstract level where the programmer is directly designing 
interpreters we described and used the meta-predicate idioms. Meta-
predicates are built into the Prolog environment to assist the program 
designer with tools that manipulate other Prolog predicates, as described in 
Section 5.1. We demonstrated in Section 5.2 how the meta-predicate 
idioms can be used to enforce type constraints within a Prolog 
programming environment.  

The most important use of meta-predicates, however, is to design meta-
interpreters as we did in the remaining chapters (6 – 9) of Part II. Our 
meta-interpreters were collected sets of predicates that were used to 
interpret other sets of predicate specifications. Example meta-interpreters 
included a Prolog interpreter written in Prolog and a production system 
interpreter, Exshell, for building rule-based expert systems. The meta-
interpreter is the most powerful use of our idioms, because at this level of 
abstraction and encapsulation our interpreters are implementing specific 
design patterns. 

 There are many additional software tools for declarative and logic 
programming available. An extension of Prolog’s declarative semantics into 
a true resolution-based theorem-proving environment can be found in 
Otter (McCune and Wos 1997). Otter, originally produced at Argonne 
National Laboratories, is a complete automated reasoning system based on 
resolution refutation that addresses many of the shortcomings of Prolog 
mentioned in Section 10.2, e.g., the occurs check. A current version of 
Otter includes Isabelle, written in ML, (Paulson 1989), Tau (Halcomb and 
Schulz 2005), and Vampire (Robinson and Voronkov 2001). These 
automated reasoning systems are in the public domain and downloadable.  
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Ciao Prolog is a modern version of Prolog created in Spain (Mera et al. 2007, 
Hermenegildo et al. 2007). Ciao offers a complete Prolog system, but its novel 
modular design allows both restricting and extending the language. As a result, 
it allows working with fully declarative subsets of Prolog and also to extend 
these subsets both syntactically and semantically. Most importantly, these 
restrictions and extensions can be activated separately on each program 
module so that several extensions can coexist in the same application for 
different modules. Ciao also supports (through such extensions) programming 
with functions, higher-order (with predicate abstractions), constraints, and 
objects, as well as feature terms (records), persistence, several control rules 
(breadth-first search, iterative deepening), concurrency (threads/engines), a 
good base for distributed execution (agents), and parallel execution. Libraries 
also support WWW programming, sockets, external interfaces (C, Java, TclTk, 
relational databases, etc.). 

Ehud Shapiro and his colleagues have researched the parallel execution of 
Prolog specifications. This is an important extension of the power to be 
gained by extending the built in depth-first search with backtracking traditional 
Prolog interpreter with parallel execution. For example, if a declarative goal 
has a number of or based goals to satisfy, these can be checked in parallel 
(Shapiro 1987). 

Constraint logic programming is a declarative specification language where 
relations between variables can be stated in the form of constraints. 
Constraints differ from the common primitives of other programming 
languages in that they do not specify a step or sequence of steps to execute but 
rather the properties or requirements of the solution to be found. The 
constraints used in constraint programming are of various kinds, including 
constraint satisfaction problems. Constraints are often embedded within a 
programming language or provided via separate software libraries (O’Sullivan 
2003, Krzysztof and Wallace 2007). 

Recent research has also extended traditional logic programming by adding 
distributions to declarative specifications (Pless and Luger 2003, 
Chakrabarti et al. 2005, Sakhanenko et al. 2007). This is a natural extension, 
in that declarative specifications do not be need to be seen as deterministic, 
but may be more realistically cast as probabilistic. 

There is ongoing interest in logic-based or pure declarative programming 
environments other than Prolog. The Gödel Programming Language, by Hill and 
Lloyd (1994), presents the Gödel language and Somogyi, Henderson, and 
Conway (1995) describe Mercury. Gödel and Mercury are two relatively new 
declarative logic-programming environments.  

Finally, Prolog is a general-purpose language, and, because of space 
limitations, we have been unable to present a number of its important 
features and control constructs. We recommend that the interested reader 
pursue some of the many excellent texts available including Programming in 
Prolog (Clocksin and Mellish 2003), Computing with Logic (Maier and Warren 
1988), The Art of Prolog (Sterling and Shapiro 1986), The Craft of Prolog 
(O’Keefe 1990), Techniques of Prolog Programming (VanLe 1993), Mastering 
Prolog (Lucas 1996), or Advanced Prolog: Techniques and Examples (Ross 1989), 
Knowledge Systems through Prolog (King 1991), and Natural Language Processing in 
Prolog (Gazdar and Mellish 1989). 
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In Part III we present the philosophy and idioms of functional 
programming, using the Lisp language. Part IV then presents object-
oriented design and programming with Java, and Part V offers our 
summary. As the reader covers the different parts of this book it can be 
seen how the different languages are utilized to address many of the same 
problems, while the idioms of one programming paradigm may or may not 
be suitable to another. 

 


