
141

 10 Prolog: Final Thoughts

Chapter

Objectives

Prolog and declarative representations
 Facts
 Rules
The append example
Prolog referenced to automated reasoning systems
 Lack of occurs check
 No unique names or closed world
Prolog semantics
 Pattern-matching
Left-to-right depth-first search search
Backtracking on variable bindings
References offered for Prolog extensions

Chapter
Contents

10.1 Prolog: Towards a Declarative Semantics
10.2 Prolog and Automated Reasoning
10.3 Prolog Idioms
10.4 Prolog Extensions

 10.1 Prolog: Towards a Declarative Semantics

 We have now finishing our nine-chapter presentation of Prolog. To
summarize and conclude we describe again the design philosophy
supporting this language paradigm, look at how this influenced the history
of its development, summarize the main language idioms we used in
building our AI applications programs, and mention several modern
extensions of this declarative approach to programming.

Prolog was first designed and used at the University of Marseilles in the
south of France in the early 1970s. The first Prolog interpreter was
intended to analyze French using metamorphosis grammars (Colmerauer 1975).
From Marseilles, the language development moved on to the University of
Edinburgh in Scotland, where at the Artificial Intelligence Department,
Fernando Pereira and David Warren (1980) created definite clause grammars.
In fact, because of the declarative nature of Prolog and the flexibility of
pattern-driven control, tasks in Natural Language Processing, NLP, (Luger
2009, Chapter 15) have always offered a major application domain (see
Chapters 8 and 9). Veronica Dahl (1977), Dahl and McCord (1983),
Michael McCord (1982, 1986), and John Sowa (Sowa 1984, Walker et al.
1987) have all contributed to this research.

Besides NLP, Prolog has supported many research tasks including the
development of early expert systems (Bundy et al. 1979). Building AI
representations such as semantic nets, frames, and objects has always been
an important task for Prolog (see especially Knowledge Systems and Prolog by

142 Part II: Programming in Prolog

Adrian Walker, Michael McCord, John Sowa, and Walter Wilson, 1987, and
Prolog: A Relational Language and Its Applications by John Malpas 1987).

In the remainder of this chapter we discuss briefly declarative
programming, how Prolog relates to theorem proving, and describe again
the Prolog idioms presented in Part II.

In traditional computing languages such as FORTRAN, C, and Java the
logic for the problem’s specification and the control for executing the
solution algorithm are inextricably mixed together. A program in these
languages is simply a sequence of things to be done to achieve an answer.
This is the accepted notion of applicative or procedural languages. Prolog,
however, separates the logic or specification for a problem application
from the execution or control of the use of that specification. In artificial
intelligence programs, there are many reasons for this separation, as has
been evident throughout Part II.

Prolog presents an alternative approach to computing. A program, as we
have seen, consists of a set of specifications or declarations of what is true in
a problem domain. The Prolog interpreter, taking a question from the user,
determines whether it is true or false with respect to the set of
specifications, If the query is true, Prolog will return a set of variable
bindings (a model, see 10.2) under which the query is true.

As an example of the declarative/nonprocedural nature of Prolog, consider
append:

append([], L, L).

append([X | T], L, [X | NL]) :- append(T, L, NL).

append is nonprocedural in that it defines a relationship between lists
rather than a series of operations for joining two lists. Consequently,
different queries will cause it to compute different aspects of this
relationship. We can understand append by tracing its execution in
joining two lists together. If the following call is made, the response is:

?- append([a, b, c], [d, e], Y).

Y = [a, b, c, d, e]

The execution of append is not tail recursive, in that the local variable
values are accessed after the recursive call has succeeded. In this case, X is
placed on the head of the list ([X | NL]) after the recursive call has
finished. This requires that a record of each call be kept on the Prolog
stack. For purposes of reference in the following trace:

1. is append([], L, L).

2. is append([X | T], L, [X | NL]) :-
 append(T, L, NL).

?- append([a, b, c], [d, e], Y).

 try match 1, fail [a, b, c] /= []
 match 2, X is a, T is [b, c], L is [d, e],
 call append([b, c], [d, e], NL)
 try match 1, fail [b, c] /= []
 match 2, X is b, T is [c], L is [d, e],
 call append([c], [d, e], NL)

 Chapter 10: Final Thoughts 143

 try match 1, fail [c] []
 match 2, X is c, T is [], L is [d, e],

 call append([], [d, e], NL)
 match 1, L is [d, e]
 yes
 yes, N is [d, e], [X | NL] is [c, d, e]
 yes, NL is [c, d, e], [X | NL] is [b, c, d, e]
 yes, NL is [b, c, d, e],
 [X | NL] is [a, b, c, d, e]

 Y = [a, b, c, d, e], yes

In most Prolog programs, the parameters of the predicates seem to be
intended as either “input” or “output”; most definitions assume that
certain parameters be bound in the call and others unbound. This need not
be so. In fact, there is no commitment at all to parameters being input or
output! Prolog code is simply a set of specifications of what is true, a
statement of the logic of the situation. Thus, append specifies a
relationship between three lists, such that the third list is the catenation of
the first onto the front of the second.

To demonstrate this we can give append a different set of goals:

?- append([a, b], [c], [a, b, c]).

Yes

?- append([a], [c], [a, b, c]).

No

?- append(X, [b, c], [a, b, c]).

X = [a]

?- append(X, Y, [a, b, c]).

X = []

Y = [a, b, c]

;

X = [a]

Y = [b, c]

;

X = [a, b]

Y = [c]

;

X = [a, b, c]

Y = []

;

no

In the last query, Prolog returns all the lists X and Y that, when appended
together, give [a,b,c], four pairs of lists in all. As mentioned above,
append gives a statement of the logic of a relationship that exists among
three lists. What the interpreter produces depends on the query.

The notion of solving a problem based on a set of specifications for
relationships in a problem domain area, coupled with the action of a
theorem prover, is exciting and important. As seen in Part II, it is a

144 Part II: Programming in Prolog

valuable tool in areas as diverse as natural language understanding,
databases, expert systems, and machine learning. How the Prolog
interpreter works cannot be fully understood without the concepts of
resolution theorem proving, especially the Horn clause refutation process,
which is presented in Luger (2009, Section 14.2 and Section 14.3) where
Prolog is presented as an instance of a resolution refutation system. In
Section 10.2 we briefly summarize these issues.

 10.2 Introduction: Logic-Based Representation

Prolog and Automated Reasoning

 Prolog’s declarative semantics, with the interpreter determining the truth or
falsity of queries has much of the feel of an automated reasoning system or
theorem prover (Luger 2009, Chapter 14). In fact, Prolog is not a theorem
prover, as it lacks several important features that would make it both sound
(only producing mathematically correct responses) and complete (able to
produce all correct responses consistent with a problem’s specifications).
Many of these features are not implemented in current versions of Prolog.
In fact, most are omitted to make Prolog a more efficient programming
tool, even when this omission costs Prolog any claim of mathematical
soundness.

In this section we will list several of the key features of automated
reasoning systems that Prolog lacks. First is the occurs check. Prolog does not
determine whether any expression in the language contains a subset of
itself. For example, the test whether foo(X) = foo(foo(X)) will
make most Prolog environments get seriously weird. It turns out that the
systematic check of whether any Prolog expression contains a subset of
itself is computationally costly and as a result is ignored.

A second limitation on Prolog is the order constraint. The Prolog inference
system (interpreter) performs a left-to-right depth-first goal reduction on
its specifications. This requires that the programmer order these
specifications appropriately. For example, the termination of a recursive
call must be presented before the recursive expression, otherwise the
recursion will never terminate. The programmer can also organize goals in
the order in which she wishes the interpreter to see them. This can help
create an efficient program but does not support a truly declarative
specification language where non-deterministic goal reduction is a critical
component. Finally, the use of the cut, !, allows the programmer to
further limit the set of models that the interpreter can compute. Again this
limitation promotes efficiency but it is at the cost of a mathematically
complete system.

A third limitation of Prolog is that there is no unique name constraint or
closed world assumption. Unique names means that each atom in the prolog
world must have one and only one “name” or value; otherwise there must
exist a set of deterministic predicates that can reduce an atom to its unique
(canonical) form. In mathematics, for example, 1, cannot be 1 + 0, 0 + 1,
or 0 + 1 + 0, etc. There must be some predicate that can reduce all of these
expressions to one canonical form for that atom.

Further, the closed world assumption, requires that all the atoms in a

 Chapter 10: Final Thoughts 145

domain must be specified; the interpreter cannot return no because some
atom was ignored or misspelled. These requirements in a theorem proving
environment address the negation as failure result that can be so frustrating to
a Prolog programmer. Negation as failure describes the situation where the
interpreter returns no and this indicates either that the query is false or that
the program’s specifications are incorrect. When a true theorem prover
responds no then the query is false.
Even though the Prolog interpreter is not a theorem prover, the intelligent
programmer can utilize many aspects of its declarative semantics to build a
set of clean representational specifications; these are then addressed by an
efficient interpreter. For more discussion of Prolog as theorem proving see
Luger (2009, Section 14.3).

 10.3 Introduction: Logic-Based Representation

Prolog Idioms and Extensions

 We now summarize several of the Prolog programming idioms we have
used in Part II of this presentation. We consider idioms from three
perspectives, from the lowest level of command and specification
instructions, from a middle level of creating program language modules
such as abstract data types, and from the most general level of using meta-
predicates to make new interpreters within Prolog that are able to operate
on specific sets of Prolog expressions.

From the lowest level of designing control and building specifications, we
mention four different idioms that were used throughout Part II as critical
components for constructing Prolog programs. The first idiom is unification
or pattern matching. Unification offers a unique power for variable binding
found only in high-level languages. It is particularly powerful for pattern
matching across sets of predicate calculus specifications. Unification offers
an efficient implementation of the if/then/else constructs of lower
level languages: if the pattern matches, perform the associated action,
otherwise consider the next pattern. It is also an important and simplifying
tool for designing meta-interpreters, such as the production system
(Section 4.2). Production rules can be ordered and presented as a set of
patterns to be matched by unification) that will then trigger specific
behaviors. An algorithm for unification can be found in Luger (2009,
Section 2.3). It is interesting to note that unification, a constituent of
Prolog, is explicitly programmed into Lisp (Chapter 15) and Java (Chapter
32 and 33) to support AI programming techniques in these languages.

A second idiom of Prolog is the use of assignment. Assignment is related to
unification in that many variables, especially those in predicate calculus
form, are assigned values through unification. However, when a variable is
to have some value based on an explicit functional calculation, the is
operator must be used. Understanding the specific roles of assignment,
evaluation, and pattern matching is important for Prolog use.

The primary control construct for Prolog is recursion, the third idiom we
mention. Recursion works with unification to evaluate patterns in much
the same way as for, repeat/until, or while constructs are used in
lower level languages. Since many of AIs problem solving tasks consist in

146 Part II: Programming in Prolog

searching indeterminate sized trees or graphs, the naturalness of recursion
makes it an important idiom: until specific criteria are met continue search
over specifications. Of course the lower-level control constructs of for,
repeat, etc., could be built into Prolog, but the idioms for these
constructs is recursion coupled with unification.

Finally, at the predicate creation level of the program, the ordering of
predicate specifications is important for Prolog. The issue is to utilize the
built in depth-first left-to-right goal reduction of the Prolog interpreter.
Understanding the action of the interpreter has important implications for
using the order idiom. Along with order of specifications for efficient
search, of course, is understanding and using wisely the predicate cut, !.

At the middle level of program design, where specifications are clustered to
have systematic program level effects, we mention several idioms. These
were grouped together in our presentation in Section 3.3 under the
construct abstract data types (ADTs). Abstract data types, such as set, stack,
queue, and priority queue were developed in Chapter 3. The abstractions allow
the program designer to use the higher-level constructs of queue, stack, etc.
directly in problem solving. We then used these control abstract data types
to design the search algorithms presented in Chapter 4. They were also
later used in the machine learning and natural language chapters of Part II.
For our Prolog chapters these idioms offer a natural way to express
constructs related to graph search.

Finally, at that abstract level where the programmer is directly designing
interpreters we described and used the meta-predicate idioms. Meta-
predicates are built into the Prolog environment to assist the program
designer with tools that manipulate other Prolog predicates, as described in
Section 5.1. We demonstrated in Section 5.2 how the meta-predicate
idioms can be used to enforce type constraints within a Prolog
programming environment.

The most important use of meta-predicates, however, is to design meta-
interpreters as we did in the remaining chapters (6 – 9) of Part II. Our
meta-interpreters were collected sets of predicates that were used to
interpret other sets of predicate specifications. Example meta-interpreters
included a Prolog interpreter written in Prolog and a production system
interpreter, Exshell, for building rule-based expert systems. The meta-
interpreter is the most powerful use of our idioms, because at this level of
abstraction and encapsulation our interpreters are implementing specific
design patterns.

 There are many additional software tools for declarative and logic
programming available. An extension of Prolog’s declarative semantics into
a true resolution-based theorem-proving environment can be found in
Otter (McCune and Wos 1997). Otter, originally produced at Argonne
National Laboratories, is a complete automated reasoning system based on
resolution refutation that addresses many of the shortcomings of Prolog
mentioned in Section 10.2, e.g., the occurs check. A current version of
Otter includes Isabelle, written in ML, (Paulson 1989), Tau (Halcomb and
Schulz 2005), and Vampire (Robinson and Voronkov 2001). These
automated reasoning systems are in the public domain and downloadable.

 Chapter 10: Final Thoughts 147

Ciao Prolog is a modern version of Prolog created in Spain (Mera et al. 2007,
Hermenegildo et al. 2007). Ciao offers a complete Prolog system, but its novel
modular design allows both restricting and extending the language. As a result,
it allows working with fully declarative subsets of Prolog and also to extend
these subsets both syntactically and semantically. Most importantly, these
restrictions and extensions can be activated separately on each program
module so that several extensions can coexist in the same application for
different modules. Ciao also supports (through such extensions) programming
with functions, higher-order (with predicate abstractions), constraints, and
objects, as well as feature terms (records), persistence, several control rules
(breadth-first search, iterative deepening), concurrency (threads/engines), a
good base for distributed execution (agents), and parallel execution. Libraries
also support WWW programming, sockets, external interfaces (C, Java, TclTk,
relational databases, etc.).

Ehud Shapiro and his colleagues have researched the parallel execution of
Prolog specifications. This is an important extension of the power to be
gained by extending the built in depth-first search with backtracking traditional
Prolog interpreter with parallel execution. For example, if a declarative goal
has a number of or based goals to satisfy, these can be checked in parallel
(Shapiro 1987).

Constraint logic programming is a declarative specification language where
relations between variables can be stated in the form of constraints.
Constraints differ from the common primitives of other programming
languages in that they do not specify a step or sequence of steps to execute but
rather the properties or requirements of the solution to be found. The
constraints used in constraint programming are of various kinds, including
constraint satisfaction problems. Constraints are often embedded within a
programming language or provided via separate software libraries (O’Sullivan
2003, Krzysztof and Wallace 2007).

Recent research has also extended traditional logic programming by adding
distributions to declarative specifications (Pless and Luger 2003,
Chakrabarti et al. 2005, Sakhanenko et al. 2007). This is a natural extension,
in that declarative specifications do not be need to be seen as deterministic,
but may be more realistically cast as probabilistic.

There is ongoing interest in logic-based or pure declarative programming
environments other than Prolog. The Gödel Programming Language, by Hill and
Lloyd (1994), presents the Gödel language and Somogyi, Henderson, and
Conway (1995) describe Mercury. Gödel and Mercury are two relatively new
declarative logic-programming environments.

Finally, Prolog is a general-purpose language, and, because of space
limitations, we have been unable to present a number of its important
features and control constructs. We recommend that the interested reader
pursue some of the many excellent texts available including Programming in
Prolog (Clocksin and Mellish 2003), Computing with Logic (Maier and Warren
1988), The Art of Prolog (Sterling and Shapiro 1986), The Craft of Prolog
(O’Keefe 1990), Techniques of Prolog Programming (VanLe 1993), Mastering
Prolog (Lucas 1996), or Advanced Prolog: Techniques and Examples (Ross 1989),
Knowledge Systems through Prolog (King 1991), and Natural Language Processing in
Prolog (Gazdar and Mellish 1989).

148 Part II: Programming in Prolog

In Part III we present the philosophy and idioms of functional
programming, using the Lisp language. Part IV then presents object-
oriented design and programming with Java, and Part V offers our
summary. As the reader covers the different parts of this book it can be
seen how the different languages are utilized to address many of the same
problems, while the idioms of one programming paradigm may or may not
be suitable to another.

