

19

 2 Prolog: Representation

Chapter

Objectives
Prolog’s fundamental representations are described and built:
 Facts
 Rules
 The and, or, not, and imply connectives
The environment for Prolog is presented:
 The program as a data base of facts and relations between facts
 Predicates are for creating and modifying this data base
Prolog’s procedural semantics is described with examples
 Pattern-matching
Left-to-right depth-first search
Backtracking on variable bindings
The built-in predicates for monitoring Prolog’s execution are presented
 spy and trace
The list representation and recursive search are introduced
 Examples of member check and writing out lists
Representations for structured hierarchies are created in Prolog
 Semantic net and frame systems
 Inherited properties determined through recursive (tree) search

Chapter
Contents

2.1 Introduction: Logic-Based Representation
2.2 Syntax for Predicate Calculus Programming
2.3 Creating, Changing and Tracing a Prolog Computation
2.4 Lists and Recursion in Prolog
2.5 Structured Representations and Inheritance Search in Prolog

 2.1 Introduction: Logic-Based Representation

Prolog and
Logic

Prolog is a computer language that uses many of the representational
strengths of the First-Order Predicate Calculus (Luger 2009, Chapter 2).
Because Prolog has this representational power it can express general
relationships between entities. This allows expressions such as “all females
are intelligent” rather than the limited representations of the propositional
calculus: “Kate is intelligent”, “Sarah is intelligent”, “Karen is intelligent”,
and so on for a very long time!

As in the Predicate Calculus, predicates offer the primary (and only)
representational structure in Prolog. Predicates can have zero or more
arguments, where their arity is the number of arguments. Functions may
only be represented as the argument of a predicate; they cannot be a
program statement in themselves. Prolog predicates have the usual and,
or, not and implies connectives. The predicate representation along
with its connectives is presented in Section 2.2.

20 Part II: Programming in Prolog

Prolog also takes on many of the declarative aspects of the Predicate
Calculus in the sense that a program is simply the set of all true predicates
that describe a domain. The Prolog interpreter can be seen as a “theorem
prover” that takes the user’s query and determines whether or not it is true,
as well as what variable substitutions might be required to make the query
true. If the query is not true in the context of the program’s specifications,
the interpreter says “no.”

 2.2 Introduction: Logic-Based Representation Prolog Syntax

Facts, Rules
and

Connectives

Although there are numerous dialects of Prolog, the syntax used
throughout this text is that of the original Warren and Pereira C-Prolog as
described by Clocksin and Mellish (2003). We begin with the set of
connectives that can take atomic predicates and join them with other
expressions to make more complex relationships. There are, because of the
usual keyboard conventions, a number of differences between Prolog and
predicate calculus syntax. In C-Prolog, for example, the symbol :- replaces
the  of first-order predicate calculus. The Prolog connectives include:

ENGLISH PREDICATE CALCULUS Prolog

and ^ ,

or v ;

only if  :-

not ~ not

In Prolog, predicate names and bound variables are expressed as a
sequence of alphanumeric characters beginning with an alphabetic.
Variables are represented as a string of alphanumeric characters beginning
(the first character, at least) with an uppercase alphabetic. Thus:

likes(X, susie).

or, better,
likes(Everyone, susie).

could represent the fact that “everyone likes Susie.” Note that the scope of
all variables is universal to that predicate, i.e., when a variable is used in a
predicate it is understood that it is true for all the domain elements within
its scope. For example,

likes(george, Y), likes(susie, Y).

represents the set of things (or people) liked by BOTH George and Susie.

Similarly, suppose it was desired to represent in Prolog the following
relationships: “George likes Kate and George likes Susie.” This could be
stated as:

likes(george, kate), likes(george, susie).

Likewise, “George likes Kate or George likes Susie”:

likes(george, kate); likes(george, susie).

Finally, “George likes Susie if George does not like Kate”:
likes(george, susie) :- not(likes(george, kate)).

 Chapter 2 Prolog: Representation 21

These examples show how the predicate calculus connectives are expressed
in Prolog. The predicate names (likes), the number or order of parameters,
and even whether a given predicate always has the same number of
parameters are determined by the design requirements (the implicit
“semantics”) of the problem.

The form Prolog expressions take, as in the examples above, is a restricted
form of the full predicate calculus called the “Horn Clause calculus.” There
are many reasons supporting this restricted form, most important is the
power and computational efficiency of a resolution refutation system. For details
see Luger (2009, Chapter 14).

A Simple
Prolog

Program

A Prolog program is a set of specifications in the first-order predicate
calculus describing the objects and relations in a problem domain. The set
of specifications is referred to as the database for that problem. The Prolog
interpreter responds to questions about this set of specifications. Queries to
the database are patterns in the same logical syntax as the database entries.
The Prolog interpreter uses pattern-directed search to find whether these
queries logically follow from the contents of the database.

The interpreter processes queries, searching the database in left to right
depth-first order to find out whether the query is a logical consequence of
the database of specifications. Prolog is primarily an interpreted language.
Some versions of Prolog run in interpretive mode only, while others allow
compilation of part or all of the set of specifications for faster execution.
Prolog is an interactive language; the user enters queries in response to the
Prolog prompt, “?-“.

Let us describe a “world” consisting of George’s, Kate’s, and Susie’s likes
and dislikes. The database might contain the following set of predicates:

likes(george, kate).

likes(george, susie).

likes(george, wine).

likes(susie, wine).

likes(kate, gin).

likes(kate, susie).

This set of specifications has the obvious interpretation, or mapping, into
the world of George and his friends. That world is a model for the database
(Luger 2009, Section 2.3). The interpreter may then be asked questions:

?- likes(george, kate).

Yes

?- likes(kate, susie).

Yes

?- likes(george, X).

X = kate

;

X = Susie

;

X = wine

22 Part II: Programming in Prolog

;

no

?- likes(george, beer).

no

Note first that in the request likes(george, X), successive user
prompts (;) cause the interpreter to return all the terms in the database
specification that may be substituted for the X in the query. They are
returned in the order in which they are found in the database: kate before
susie before wine. Although it goes against the philosophy of
nonprocedural specifications, a determined order of evaluation is a
property of most interpreters implemented on sequential machines.

To summarize: further responses to queries are produced when the user
prompts with the ; (or). This forces the rejection of the current solution
and a backtrack on the set of Prolog specifications for answers. Continued
prompts force Prolog to find all possible solutions to the query. When no
further solutions exist, the interpreter responds no.

This example also illustrates the closed world assumption or negation as failure.
Prolog assumes that “anything is false whose opposite is not provably
true.” For the query likes(george, beer), the interpreter looks for
the predicate likes(george, beer) or some rule that could
establish likes(george, beer). Failing this, the request is false.
Prolog assumes that all knowledge of the world is present in the database.

The closed world assumption introduces a number of practical and
philosophical difficulties in the language. For example, failure to include a
fact in the database often means that its truth is unknown; the closed world
assumption treats it as false. If a predicate were omitted or there were a
misspelling, such as likes(george, beeer), the response remains
no. Negation-as-failure issue is an important topic in AI research. Though
negation-as-failure is a simple way to deal with the problem of unspecified
knowledge, more sophisticated approaches, such as multi-valued logics
(true, false, unknown) and nonmonotonic reasoning (see Luger
2009, Section 9.1), provide a richer interpretive context.

The Prolog expressions just seen are examples of fact specifications. Prolog
also supports rule predicates to describe relationships between facts. We use
the logical implication :- . For rules, only one predicate is permitted on
the left-hand side of the if symbol :-, and this predicate must be a positive
literal, which means it cannot have not in front of it. All predicate calculus
expressions that contain logical implication must be reduced to this form,
referred to as Horn clause logic. In Horn clause form, the left-hand side
(conclusion) of an implication must be a single positive literal. The Horn
clause calculus is equivalent to the full first-order predicate calculus for proofs
by refutation (Luger 2009, Chapter 14).

Suppose we add to the specifications of the previous database a rule for
determining whether two people are friends. This may be defined:

 friends(X, Y) :- likes(X, Z), likes(Y, Z).

This expression might be interpreted as “X and Y are friends if there exists
a Z such that X likes Z and Y likes Z.” Two issues are important here. First,

 Chapter 2 Prolog: Representation 23

because neither the predicate calculus nor Prolog has global variables, the
scopes (extent of definition) of X, Y, and Z are limited to the friends
rule. Second, values bound to, or unified with, X, Y, and Z are consistent
across the entire expression. The treatment of the friends rule by the
Prolog interpreter is seen in the following example.

With the friends rule added to the set of specifications of the preceding
example, we can query the interpreter:

?- friends(george, susie).

yes

To solve this query, Prolog searches the database using the backtrack
algorithm. Briefly, backtrack examines each predicate specification in the
order that it was placed in the Prolog. If the variable bindings of the
specification satisfy the query it accepts them. If they don’t, the interpreter
goes on to the next specification. If the interpreter runs into a dead end,
i.e., no variable substitution satisfies it, then it backs up looking for other
variable bindings for the predicates it has already satisfied. For example,
using the predicate specifications of our current example, the query
friends(george, susie) is unified with the conclusion of the rule
friends(X, Y) :- likes(X, Z), likes(Y, Z), with X as
george and Y as susie. The interpreter looks for a Z such that
likes(george, Z) is true and uses the first fact, with Z as kate.

The interpreter then tries to determine whether likes(susie,
kate) is true. When it is found to be false, using the closed world
assumption, this value for Z (kate) is rejected. The interpreter backtracks
to find a second value for Z. likes(george, Z) then matches the
second fact, with Z bound to susie. The interpreter then tries to match
likes(susie, susie). When this also fails, the interpreter goes
back to the database for yet another value for Z. This time wine is found
in the third predicate, and the interpreter goes on to show that
likes(susie, wine) is true. In this case wine is the binding that
ties george and susie.

It is important to state the relationship between universal and existential
quantification in the predicate calculus and the treatment of variables in a
Prolog program. When a variable is placed in the specifications of a Prolog
database, it is universally quantified. For example, likes(susie, Y)
means, according to the semantics of the previous examples, “Susie likes
everyone.” In the course of interpreting a query, any term, or list, or
predicate from the domain of Y, may be bound to Y. Similarly, in the rule
friends(X, Y) :- likes(X, Z), likes(Y, Z), any X, Y,
and Z that meets the specifications of the expression are used.

To represent an existentially quantified variable in Prolog, we may take two
approaches. First, if the existential value of a variable is known, that value
may be entered directly into the database. Thus, likes(george,
wine) is an instance of likes(george, Z).

Second, to find an instance of a variable that makes an expression true, we
query the interpreter. For example, to find whether a Z exists such that
likes(george, Z) is true, we put this query to the interpreter. It will

24 Part II: Programming in Prolog

find whether a value of Z exists under which the expression is true. Some
Prolog interpreters find all existentially quantified values; C-Prolog requires
repeated user prompts (;), as shown previously, to get all values.

 2.3 Introduction: Logic-Based Representation Creating, Changing, and Tracing a Prolog Computation

 In building a Prolog program the database of specifications is created first.
In an interactive environment the predicate assert can be used to add
new predicates to the set of specifications. Thus:

?- assert(likes(david, sarah)).

adds this predicate to the computing specifications. Now, with the query:
?- likes(david, X).

X = sarah.

is returned. assert allows further control in adding new specifications to
the database: asserta(P) asserts the predicate P at the beginning of all
the predicates P, and assertz(P) adds P at the end of all the predicates
named P. This is important for search priorities and building heuristics. To
remove a predicate P from the database retract(P) is used. (It should
be noted that in many Prologs assert can be unpredictable in that the
exact entry time of the new predicate into the environment can vary
depending on what other things are going on, affecting both the indexing
of asserted clauses as well as backtracking.)

It soon becomes tedious to create a set of specifications using the
predicates assert and retract. Instead, the good programmer takes
her favorite editor and creates a file containing all the Prolog program’s
specifications. Once this file is created, call it myfile, and Prolog is
called, then the file is placed in the database by the Prolog command
consult. Thus:

?- consult(myfile).

yes

integrates the predicates in myfile into the database. A short form of the
consult predicate, and better for adding multiple files to the database,
uses the list notation, to be seen shortly:

?- [myfile].

yes

If there are any syntax errors in your Prolog code the consult operator
will describe them at the time it is called.

The predicates read and write are important for user/system
communication. read(X) takes the next term from the current input
stream and binds it to X. Input expressions are terminated with a “.”
write(X) puts X in the output stream. If X is unbound then an integer
preceded by an underline is printed (_69). This integer represents the
internal bookkeeping on variables necessary in a theorem-proving
environment (see Luger 2009, Chapter 14).

The Prolog predicates see and tell are used to read information from
and place information into files. see(X) opens the file X and defines the
current input stream as originating in X. If X is not bound to an available

 Chapter 2 Prolog: Representation 25

file see(X) fails. Similarly, tell(X) opens a file for the output stream.
If no file X exists, tell(X) creates a file named by the bound value of X.
seen(X) and told(X) close the respective files.

A number of Prolog predicates are important in helping keep track of the
state of the Prolog database as well as the state of computing about the
database; the most important of these are listing, trace, and spy. If
we use listing(predicate_name) where predicate_name is
the name of a predicate, such as friends (above), all the clauses with
that predicate name in the database are returned by the interpreter. Note
that the number of arguments of the predicate is not indicated; in fact, all
uses of the predicate, regardless of the number of arguments, are returned.

trace allows the user to monitor the progress of the Prolog interpreter.
This monitoring is accomplished by printing to the output file every goal
that Prolog attempts, which is often more information than the user wants
to have. The tracing facilities in Prolog are often rather cryptic and take
some study and experience to understand. The information available in a
trace of a Prolog program usually includes the following:

 The depth level of recursive calls (marked left to right on line).

 When a goal is tried for the first time (sometimes call is used).

 When a goal is successfully satisfied (with an exit).

 When a goal has further matches possible (a retry).

 When a goal fails because all attempts to satisfy it have failed

 The goal notrace stops the exhaustive tracing.

When a more selective trace is required the goal spy is useful. This
predicate takes a predicate name as argument but sometimes is defined as a
prefix operator where the predicate to be monitored is listed after the
operator. Thus, spy member causes the interpreter to print to output all
uses of the predicate member. spy can also take a list of predicates
followed by their arities: spy[member/2, append/3] monitors
member with two arguments and append with three. nospy removes
these spy points.

 2.4 Lists and Recursion in Prolog

 The previous subsections presented Prolog syntax with several simple
examples. These examples introduced Prolog as an engine for computing
with predicate calculus expressions (in Horn clause form). This is
consistent with all the principles of predicate calculus inference presented
in Luger (2009, Chapter 2). Prolog uses unification for pattern matching
and returns the bindings that make an expression true. These values are
unified with the variables in a particular expression and are not bound in
the global environment.

Recursion is the primary control mechanism for Prolog programming. We
will demonstrate this with several examples. But first we consider some
simple list-processing examples. The list is a data structure consisting of
ordered sets of elements (or, indeed, lists). Recursion is the natural way to
process the list structure. Unification and recursion come together in list

26 Part II: Programming in Prolog

processing in Prolog. The set of elements of a list are enclosed by brackets,
[], and are separated by commas. Examples of Prolog lists are:

[1, 2, 3, 4]

[[george, kate], [allen, amy], [richard, shirley]]

[tom, dick, harry, fred]

[]

The first elements of a list may be separated from the tail of the list by the
bar operator, |. The tail of a list is the list with its first element removed.
For instance, when the list is [tom,dick,harry,fred], the first
element is tom and the tail is the list [dick, harry, fred]. Using
the vertical bar operator and unification, we can break a list into its
components:

If [tom, dick, harry, fred] is matched to [X | Y],
then X = tom and Y = [dick, harry, fred].

If [tom,dick,harry,fred] is matched to the pattern
[X, Y | Z], then X = tom , Y = dick , and Z =
[harry, fred].

If [tom, dick, harry, fred] is matched to [X, Y, Z |
W], then X = tom, Y = dick, Z = harry, and W =
[fred].

If [tom, dick, harry, fred] is matched to [W, X, Y,
Z | V], then W = tom, X = dick, Y = harry, Z = fred,
and V = [].

[tom, dick, harry, fred] will not match [V, W, X, Y,
Z | U].

[tom, dick, harry, fred] will match [tom, X |
[harry, fred]], to give X = dick.

Besides “tearing lists apart” to get at particular elements, unification can be
used to “build” the list structure. For example, if X = tom, Y =
[dick] when L unifies with [X | Y], then L will be bound to [tom,
dick]. Thus terms separated by commas before the | are all elements of
the list, and the structure after the | is always a list, the tail of the list.

Let’s take a simple example of recursive processing of lists: the member
check. We define a predicate to determine whether an item, represented by
X, is in a list. This predicate member takes two arguments, an element and
a list, and is true if the element is a member of the list. For example:

?- member(a, [a, b, c, d, e]).

yes

?- member(a, [1, 2, 3, 4]).

no

?- member(X, [a, b, c]).

X = a

;

X = b

;

X = c

 Chapter 2 Prolog: Representation 27

;

no

To define member recursively, we first test if X is the first item in the list:
member(X, [X | T]).

This tests whether X and the first element of the list are identical. Not that
this pattern will match no matter what X is bound to: an atom, a list,
whatever! If the two are not identical, then it is natural to check whether X
is an element of the rest (T) of the list. This is defined by:

member(X, [Y | T]) :- member(X, T).

The two lines of Prolog for checking list membership are then:
member(X, [X | T]).

member(X, [Y | T]) :- member(X, T).

This example illustrates the importance of Prolog’s built-in order of search
with the terminating condition placed before the recursive call, that is, to be
tested before the algorithm recurs. If the order of the predicates is reversed,
the terminating condition may never be checked. We now trace
member(c,[a,b,c]), with numbering:

1: member(X, [X | T]).
2: member(X, [Y | T]) :- member(X, T).

?- member(c, [a, b, c]).
 call 1. fail, since c <> a
 call 2. X = c, Y = a, T = [b, c],
 member(c, | [b,c])?
 call 1. fail, since c <> b
 call 2. X = c, Y = b, T = [c],
 member(c, | [c])?
 call 1. success, c = c
 yes (to second call 2.)
 yes (to first call 2.)
yes

Good Prolog style suggests the use of anonymous variables. These serve as an
indication to the programmer and interpreter that certain variables are used
solely for pattern-matching purposes, with the variable binding itself not
part of the computation process. Thus, when we test whether the element
X is the same as the first item in the list we usually say: member(X,
[X|_]). The use of the _ indicates that even though the tail of the list
plays a crucial part in the unification of the query, the content of the tail of
the list is unimportant. In the member check the anonymous variable
should be used in the recursive statement as well, where the value of the
head of the list is unimportant:

member(X, [X | _]).

member(X, [_ | T]) :- member(X, T).

Writing out a list one element to a line is a nice exercise for understanding
both lists and recursive control. Suppose we wish to write out the list
[a,b,c,d]. We could define the recursive command:

writelist([]).

writelist([H | T]) :- write(H), nl, writelist(T).

28 Part II: Programming in Prolog

This predicate writes one element of the list on each line, as nl requires the
output stream controller to begin a new line.

If we wish to write out a list in reversed order the recursive predicate must
come before the write command. This guarantees that the list is
traversed to the end before any element is written. At that time the last
element of the list is written followed by each preceding element as the
recursive control comes back up to the top. A reverse write of a list would
be:

reverse_writelist([]).

reverse_writelist([H | T]) :- reverse_writelist(T),
 write(H), nl.

The reader should run writelist and reverse_writelist with
trace to observe the behavior of these predicates.

 2.5 Structured Representations and Inheritance Search

Semantic Nets
in Prolog

Structured representations are an important component of the AI
representational toolkit (Collins and Quillian 1969, Luger 2009). They also
support many of the design patterns mentioned in Chapter 1. In this and
the following section we consider two structured representations, the
semantic net, and frames that are used almost ubiquitously in AI. We now
propose a simple semantic network representational structure in Prolog and
use recursive search to implement inheritance. Our language ignores the
important distinction between classes and instances. This restriction
simplifies the implementation of inheritance.

In the semantic net of Figure 2.1, nodes represent individuals such as the
canary tweety and classes such as ostrich, crow, robin, bird,
and vertebrate. isa links represent the class hierarchy relationship.
We adopt canonical forms for the data relationships within the net. We use
an isa(Type, Parent) predicate to indicate that Type is a member
of Parent and a hasprop(Object, Property, Value)
predicate to represent property relations. hasprop indicates that
Object has Property with Value. Object and Value are nodes in
the network, and Property is the name of the link that joins them.

A partial list of predicates describing the bird hierarchy of Figure 2.1 is:
isa(canary, bird). hasprop(tweety, color, white)

 isa(robin, bird). hasprop(robin, color, red).

 isa(ostrich, bird). hasprop(canary, color, yellow).

 isa(penguin, bird). hasprop(penguin, color, brown).

 isa(bird, animal). hasprop(bird, travel, fly).

 isa(fish, animal). hasprop(ostrich, travel, walk).

 isa(opus, penguin). hasprop(fish, travel, swim).

 isa(tweety, canary). hasprop(robin, sound, sing).

 hasprop(canary, sound, sing).

 hasprop(bird, cover, feathers).

hasprop(animal, cover, skin).

 Chapter 2 Prolog: Representation 29

Figure 2.1 A semantic net for a bird hierarchy reflecting the Prolog code.
We create a recursive search algorithm to find whether an object in our
semantic net has a particular property. Properties are stored in the net at
the most general level at which they are true. Through inheritance, an
individual or subclass acquires the properties of its superclasses. Thus the
property fly holds for bird and all its subclasses. Exceptions are located
at the specific level of the exception. Thus, ostrich and penguin
travel by walking instead of flying. The hasproperty predicate begins
search at a particular object. If the information is not directly attached to
that object, hasproperty follows isa links to superclasses. If no more
superclasses exist and hasproperty has not located the property, it
fails.

hasproperty(Object, Property, Value) :-

 hasprop(Object, Property, Value).

hasproperty(Object, Property, Value) :-

 isa(Object, Parent),

 hasproperty(Parent, Property, Value).

hasproperty searches the inheritance hierarchy in a depth-first fashion.
In the next section, we show how inheritance can be applied to a frame-
based representation with both single and multiple-inheritance relations.

Frames in
Prolog

Semantic nets can be partitioned, with additional information added to
node descriptions, to give them a frame-like structure (Minsky 1975, Luger
2009). We present the bird example again using frames, where each frame
represents a collection of relationships of the semantic net and the isa
slots of the frame define the frame hierarchy as in Figure 2.2.

The first slot of each of the frames name that node, for example,
name(tweety) or name(vertebrate). The second slot gives the
inheritance links between that node and its parents. Because our example

30 Part II: Programming in Prolog

has a tree structure, each node has only one link, the isa predicate with
one argument. The third slot in the node’s frame is a list of features that
describe that node. In this list we use any Prolog predicate such as flies,
feathers, or color(brown). The final slot in the frame is the list of
exceptions and default values for the node, again either a single word or
predicate indicating a property.

In our frame language, each frame organizes its slot names into lists of
properties and default values. This allows us to distinguish these different
types of knowledge and give them different behaviors in the inheritance
hierarchy. Although our implementation allows subclasses to inherit
properties from both lists, other representations are possible and may be
useful in certain applications. We may wish to specify that only default
values are inherited. Or we may wish to build a third list containing the
properties of the class itself rather than the members, sometimes called class
values. For example, we may wish to state that the class canary names a
species of songbird. This should not be inherited by subclasses or
instances: tweety does not name a species of songbird. Further
extensions to this example are suggested in the exercises.

We now represent the relationships in Figure 2.2 with the Prolog fact
predicate frame with four arguments. We may use the methods suggested
in Chapter 5 to check the parameters of the frame predicate for appropriate
type, for instance, to ensure that the third frame slot is a list that contains
only values from a fixed list of properties.

frame(name(bird),

 isa(animal),

 [travel(flies), feathers],

 []).

frame(name(penguin),

 isa(bird),

 [color(brown)],

 [travel(walks)]).

frame(name(canary),

 isa(bird),

 [color(yellow), call(sing)],

 [size(small)]).

frame(name(tweety),

 isa(canary),

 [],

 [color(white)]).

Once the full set of descriptions and inheritance relationships are defined
for the frame of Figure 2.2, we create procedures to infer properties from
this representation:

get(Prop, Object) :-

 frame(name(Object), _, List_of_properties,_),

 member(Prop, List_of_properties).

 Chapter 2 Prolog: Representation 31

Figure 2.2 A frame system reflecting the Prolog code in the text.

get(Prop, Object) :-

 frame(name(Object), _, _ List_of_defaults),

 member(Prop, List_of_defaults).

get(Prop, Object) :-

 frame(name(Object), isa(Parent), _, _),

 get(Prop, Parent).

If the frame structure allows multiple inheritance of properties, we make
this change both in our representation and in our search strategy. First, in
the frame representation we make the argument of the isa predicate a list
of superclasses of the Object. Thus, each superclass in the list is a parent
of the entity named in the first argument of frame. If opus is a
penguin and a cartoon_char we represent this:

frame(name(opus),

 isa([penguin, cartoon_char]),

 [color(black)],

 []).

Now, we test for properties of opus by recurring up the isa hierarchy
for both penguin and cartoon_char. We add the following get
definition between the third and fourth get predicates of the previous
example.

get(Prop, Object) :-

 frame(name(Object), isa(List), _, _),

 get_multiple(Prop, List).

32 Part II: Programming in Prolog

We define get_multiple by:
get_multiple(Prop, [Parent _]) :-

 get(Prop, Parent).

get_multiple(Prop, [_ Rest]) :-

 get_multiple(Prop, Rest).

With this inheritance preference, properties of penguin and its
superclasses will be examined before those of cartoon_char.

Finally, any Prolog procedure may be attached to a frame slot. As we have
built the frame representation in our examples, this would entail adding a
Prolog rule, or list of Prolog rules, as a parameter of frame. This is
accomplished by enclosing the entire rule in parentheses, as we will see for
rules in exshell in Chapter 6, and making this structure an argument of
the frame predicate. For example, we could design a list of response rules
for opus, giving him different responses for different questions.

This list of rules, each rule in parentheses, would then become a parameter
of the frame and, depending on the value of X passed to the opus frame,
would define the appropriate response. More complex examples could be
rules describing the control of a thermostat or creating a graphic image
appropriate to a set of values. Examples of this are presented in both Lisp
(Chapter 17) and Java (Chapter 21) where attached procedures, often called
methods, play an important role in object-oriented representations.

 Exercises

 1. Create a relational database in Prolog. Represent the data tuples as facts
and the constraints on the data tuples as rules. Suitable examples might be
from stock in a department store or records in a personnel office.

2. Write the “member check” program in Prolog. What happens when an
item is not in the list? Query to the “member” specification to break a list
into its component elements.

3. Design a Prolog program unique(Bag, Set) that takes a bag (a list
that may contain duplicate elements) and returns a set (no elements are
repeated).

4. Write a Prolog program to count the elements in a list (a list within the
list counts as one element). Write a program to count the atoms in a list
(count the elements within any sublist). Hint: several meta-predicates such
as atom() can be helpful.

5. Implement a frame system with inheritance that supports the definition
of three kinds of slots: properties of a class that may be inherited by
subclasses, properties that are inherited by instances of the class but not by
subclasses, and properties of the class and its subclasses that are not
inherited by instances (class properties). Discuss the benefits, uses, and
problems with this distinction.

