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 2.1 Introduction: Logic-Based Representation 

Prolog and 
Logic 

Prolog is a computer language that uses many of the representational 
strengths of the First-Order Predicate Calculus (Luger 2009, Chapter 2). 
Because Prolog has this representational power it can express general 
relationships between entities. This allows expressions such as “all females 
are intelligent” rather than the limited representations of the propositional 
calculus: “Kate is intelligent”, “Sarah is intelligent”, “Karen is intelligent”, 
and so on for a very long time!  

As in the Predicate Calculus, predicates offer the primary (and only) 
representational structure in Prolog. Predicates can have zero or more 
arguments, where their arity is the number of arguments. Functions may 
only be represented as the argument of a predicate; they cannot be a 
program statement in themselves. Prolog predicates have the usual and, 
or, not and implies connectives. The predicate representation along 
with its connectives is presented in Section 2.2. 
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Prolog also takes on many of the declarative aspects of the Predicate 
Calculus in the sense that a program is simply the set of all true predicates 
that describe a domain. The Prolog interpreter can be seen as a “theorem 
prover” that takes the user’s query and determines whether or not it is true, 
as well as what variable substitutions might be required to make the query 
true. If the query is not true in the context of the program’s specifications, 
the interpreter says “no.”  

 2.2 Introduction: Logic-Based Representation Prolog Syntax 

Facts, Rules 
and 

Connectives 

Although there are numerous dialects of Prolog, the syntax used 
throughout this text is that of the original Warren and Pereira C-Prolog as 
described by Clocksin and Mellish (2003). We begin with the set of 
connectives that can take atomic predicates and join them with other 
expressions to make more complex relationships. There are, because of the 
usual keyboard conventions, a number of differences between Prolog and 
predicate calculus syntax. In C-Prolog, for example, the symbol :- replaces 
the   of first-order predicate calculus. The Prolog connectives include: 

ENGLISH  PREDICATE CALCULUS  Prolog 

and    ^    , 

or    v    ; 

only if        :- 

not    ~    not 

In Prolog, predicate names and bound variables are expressed as a 
sequence of alphanumeric characters beginning with an alphabetic. 
Variables are represented as a string of alphanumeric characters beginning 
(the first character, at least) with an uppercase alphabetic. Thus: 

likes(X, susie). 

or, better, 
likes(Everyone, susie). 

could represent the fact that “everyone likes Susie.” Note that the scope of 
all variables is universal to that predicate, i.e., when a variable is used in a 
predicate it is understood that it is true for all the domain elements within 
its scope. For example,  

likes(george, Y), likes(susie, Y). 

represents the set of things (or people) liked by BOTH George and Susie. 

Similarly, suppose it was desired to represent in Prolog the following 
relationships: “George likes Kate and George likes Susie.” This could be 
stated as: 

likes(george, kate), likes(george, susie). 

Likewise, “George likes Kate or George likes Susie”: 

likes(george, kate); likes(george, susie). 

Finally, “George likes Susie if George does not like Kate”: 
likes(george, susie) :- not(likes(george, kate)). 
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These examples show how the predicate calculus connectives are expressed 
in Prolog. The predicate names (likes), the number or order of parameters, 
and even whether a given predicate always has the same number of 
parameters are determined by the design requirements (the implicit 
“semantics”) of the problem.  

The form Prolog expressions take, as in the examples above, is a restricted 
form of the full predicate calculus called the “Horn Clause calculus.” There 
are many reasons supporting this restricted form, most important is the 
power and computational efficiency of a resolution refutation system. For details 
see Luger (2009, Chapter 14). 

A Simple 
Prolog 

Program 

A Prolog program is a set of specifications in the first-order predicate 
calculus describing the objects and relations in a problem domain. The set 
of specifications is referred to as the database for that problem. The Prolog 
interpreter responds to questions about this set of specifications. Queries to 
the database are patterns in the same logical syntax as the database entries. 
The Prolog interpreter uses pattern-directed search to find whether these 
queries logically follow from the contents of the database. 

The interpreter processes queries, searching the database in left to right 
depth-first order to find out whether the query is a logical consequence of 
the database of specifications. Prolog is primarily an interpreted language. 
Some versions of Prolog run in interpretive mode only, while others allow 
compilation of part or all of the set of specifications for faster execution. 
Prolog is an interactive language; the user enters queries in response to the 
Prolog prompt, “?-“. 

Let us describe a “world” consisting of George’s, Kate’s, and Susie’s likes 
and dislikes. The database might contain the following set of predicates: 

likes(george, kate). 

likes(george, susie).  

likes(george, wine). 

likes(susie, wine). 

likes(kate, gin). 

likes(kate, susie). 

This set of specifications has the obvious interpretation, or mapping, into 
the world of George and his friends. That world is a model for the database 
(Luger 2009, Section 2.3). The interpreter may then be asked questions: 

?- likes(george, kate). 

Yes 

?- likes(kate, susie). 

Yes 

?- likes(george, X). 

X = kate 

; 

X = Susie 

; 

X = wine 
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; 

no 

?- likes(george, beer). 

no 

Note first that in the request likes(george, X), successive user 
prompts (;) cause the interpreter to return all the terms in the database 
specification that may be substituted for the X in the query. They are 
returned in the order in which they are found in the database: kate before 
susie before wine. Although it goes against the philosophy of 
nonprocedural specifications, a determined order of evaluation is a 
property of most interpreters implemented on sequential machines.  

To summarize: further responses to queries are produced when the user 
prompts with the ; (or). This forces the rejection of the current solution 
and a backtrack on the set of Prolog specifications for answers. Continued 
prompts force Prolog to find all possible solutions to the query. When no 
further solutions exist, the interpreter responds no.  

This example also illustrates the closed world assumption or negation as failure. 
Prolog assumes that “anything is false whose opposite is not provably 
true.” For the query likes(george, beer), the interpreter looks for 
the predicate likes(george, beer) or some rule that could 
establish likes(george, beer). Failing this, the request is false. 
Prolog assumes that all knowledge of the world is present in the database. 

The closed world assumption introduces a number of practical and 
philosophical difficulties in the language. For example, failure to include a 
fact in the database often means that its truth is unknown; the closed world 
assumption treats it as false. If a predicate were omitted or there were a 
misspelling, such as likes(george, beeer), the response remains 
no. Negation-as-failure issue is an important topic in AI research. Though 
negation-as-failure is a simple way to deal with the problem of unspecified 
knowledge, more sophisticated approaches, such as multi-valued logics 
(true, false, unknown) and nonmonotonic reasoning (see Luger 
2009, Section 9.1), provide a richer interpretive context. 

The Prolog expressions just seen are examples of fact specifications. Prolog 
also supports rule predicates to describe relationships between facts. We use 
the logical implication :- . For rules, only one predicate is permitted on 
the left-hand side of the if symbol :-, and this predicate must be a positive 
literal, which means it cannot have not in front of it. All predicate calculus 
expressions that contain logical implication must be reduced to this form, 
referred to as Horn clause logic. In Horn clause form, the left-hand side 
(conclusion) of an implication must be a single positive literal. The Horn 
clause calculus is equivalent to the full first-order predicate calculus for proofs 
by refutation (Luger 2009, Chapter 14). 

Suppose we add to the specifications of the previous database a rule for 
determining whether two people are friends. This may be defined: 

 friends(X, Y) :- likes(X, Z), likes(Y, Z). 

This expression might be interpreted as “X and Y are friends if there exists 
a Z such that X likes Z and Y likes Z.” Two issues are important here. First, 
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because neither the predicate calculus nor Prolog has global variables, the 
scopes (extent of definition) of X, Y, and Z are limited to the friends 
rule. Second, values bound to, or unified with, X, Y, and Z are consistent 
across the entire expression. The treatment of the friends rule by the 
Prolog interpreter is seen in the following example. 

With the friends rule added to the set of specifications of the preceding 
example, we can query the interpreter: 

?- friends(george, susie). 

yes 

To solve this query, Prolog searches the database using the backtrack 
algorithm. Briefly, backtrack examines each predicate specification in the 
order that it was placed in the Prolog. If the variable bindings of the 
specification satisfy the query it accepts them. If they don’t, the interpreter 
goes on to the next specification. If the interpreter runs into a dead end, 
i.e., no variable substitution satisfies it, then it backs up looking for other 
variable bindings for the predicates it has already satisfied. For example, 
using the predicate specifications of our current example, the query 
friends(george, susie) is unified with the conclusion of the rule 
friends(X, Y) :- likes(X, Z), likes(Y, Z), with X as 
george and Y as susie. The interpreter looks for a Z such that 
likes(george, Z) is true and uses the first fact, with Z as kate. 

The interpreter then tries to determine whether likes(susie, 
kate) is true. When it is found to be false, using the closed world 
assumption, this value for Z (kate) is rejected. The interpreter backtracks 
to find a second value for Z. likes(george, Z) then matches the 
second fact, with Z bound to susie. The interpreter then tries to match 
likes(susie, susie). When this also fails, the interpreter goes 
back to the database for yet another value for Z. This time wine is found 
in the third predicate, and the interpreter goes on to show that 
likes(susie, wine) is true. In this case wine is the binding that 
ties george and susie.  

It is important to state the relationship between universal and existential 
quantification in the predicate calculus and the treatment of variables in a 
Prolog program. When a variable is placed in the specifications of a Prolog 
database, it is universally quantified. For example, likes(susie, Y) 
means, according to the semantics of the previous examples, “Susie likes 
everyone.” In the course of interpreting a query, any term, or list, or 
predicate from the domain of Y, may be bound to Y. Similarly, in the rule 
friends(X, Y) :- likes(X, Z), likes(Y, Z), any X, Y, 
and Z that meets the specifications of the expression are used. 

To represent an existentially quantified variable in Prolog, we may take two 
approaches. First, if the existential value of a variable is known, that value 
may be entered directly into the database. Thus, likes(george, 
wine) is an instance of likes(george, Z).  

Second, to find an instance of a variable that makes an expression true, we 
query the interpreter. For example, to find whether a Z exists such that 
likes(george, Z) is true, we put this query to the interpreter. It will 
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find whether a value of Z exists under which the expression is true. Some 
Prolog interpreters find all existentially quantified values; C-Prolog requires 
repeated user prompts (;), as shown previously, to get all values. 

 2.3 Introduction: Logic-Based Representation Creating, Changing, and Tracing a Prolog Computation 

 In building a Prolog program the database of specifications is created first. 
In an interactive environment the predicate assert can be used to add 
new predicates to the set of specifications. Thus: 

?- assert(likes(david, sarah)). 

adds this predicate to the computing specifications. Now, with the query: 
?- likes(david, X). 

X = sarah. 

is returned. assert allows further control in adding new specifications to 
the database: asserta(P) asserts the predicate P at the beginning of all 
the predicates P, and assertz(P) adds P at the end of all the predicates 
named P. This is important for search priorities and building heuristics. To 
remove a predicate P from the database retract(P) is used. (It should 
be noted that in many Prologs assert can be unpredictable in that the 
exact entry time of the new predicate into the environment can vary 
depending on what other things are going on, affecting both the indexing 
of asserted clauses as well as backtracking.) 

It soon becomes tedious to create a set of specifications using the 
predicates assert and retract. Instead, the good programmer takes 
her favorite editor and creates a file containing all the Prolog program’s 
specifications. Once this file is created, call it myfile, and Prolog is 
called, then the file is placed in the database by the Prolog command 
consult. Thus: 

?- consult(myfile). 

yes 

integrates the predicates in myfile into the database. A short form of the 
consult predicate, and better for adding multiple files to the database, 
uses the list notation, to be seen shortly: 

?- [myfile]. 

yes 

If there are any syntax errors in your Prolog code the consult operator 
will describe them at the time it is called. 

The predicates read and write are important for user/system 
communication. read(X) takes the next term from the current input 
stream and binds it to X. Input expressions are terminated with a “.” 
write(X) puts X in the output stream. If X is unbound then an integer 
preceded by an underline is printed (_69). This integer represents the 
internal bookkeeping on variables necessary in a theorem-proving 
environment (see Luger 2009, Chapter 14). 

The Prolog predicates see and tell are used to read information from 
and place information into files. see(X) opens the file X and defines the 
current input stream as originating in X. If X is not bound to an available 
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file see(X) fails. Similarly, tell(X) opens a file for the output stream. 
If no file X exists, tell(X) creates a file named by the bound value of X. 
seen(X) and told(X) close the respective files. 

A number of Prolog predicates are important in helping keep track of the 
state of the Prolog database as well as the state of computing about the 
database; the most important of these are listing, trace, and spy. If 
we use listing(predicate_name) where predicate_name is 
the name of a predicate, such as friends (above), all the clauses with 
that predicate name in the database are returned by the interpreter. Note 
that the number of arguments of the predicate is not indicated; in fact, all 
uses of the predicate, regardless of the number of arguments, are returned. 

trace allows the user to monitor the progress of the Prolog interpreter. 
This monitoring is accomplished by printing to the output file every goal 
that Prolog attempts, which is often more information than the user wants 
to have. The tracing facilities in Prolog are often rather cryptic and take 
some study and experience to understand. The information available in a 
trace of a Prolog program usually includes the following: 

  The depth level of recursive calls (marked left to right on line). 

       When a goal is tried for the first time (sometimes call is used). 

       When a goal is successfully satisfied (with an exit). 

       When a goal has further matches possible (a retry). 

       When a goal fails because all attempts to satisfy it have failed  

       The goal notrace stops the exhaustive tracing. 

When a more selective trace is required the goal spy is useful. This 
predicate takes a predicate name as argument but sometimes is defined as a 
prefix operator where the predicate to be monitored is listed after the 
operator. Thus, spy member causes the interpreter to print to output all 
uses of the predicate member. spy can also take a list of predicates 
followed by their arities: spy[member/2, append/3] monitors 
member with two arguments and append with three. nospy removes 
these spy points. 

               2.4 Lists and Recursion in Prolog  

 The previous subsections presented Prolog syntax with several simple 
examples. These examples introduced Prolog as an engine for computing 
with predicate calculus expressions (in Horn clause form). This is 
consistent with all the principles of predicate calculus inference presented 
in Luger (2009, Chapter 2). Prolog uses unification for pattern matching 
and returns the bindings that make an expression true. These values are 
unified with the variables in a particular expression and are not bound in 
the global environment. 

Recursion is the primary control mechanism for Prolog programming. We 
will demonstrate this with several examples. But first we consider some 
simple list-processing examples. The list is a data structure consisting of 
ordered sets of elements (or, indeed, lists). Recursion is the natural way to 
process the list structure. Unification and recursion come together in list 
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processing in Prolog. The set of elements of a list are enclosed by brackets,  
[ ], and are separated by commas. Examples of Prolog lists are: 

[1, 2, 3, 4] 

[[george, kate], [allen, amy], [richard, shirley]] 

[tom, dick, harry, fred] 

[ ] 

The first elements of a list may be separated from the tail of the list by the 
bar operator, |. The tail of a list is the list with its first element removed. 
For instance, when the list is [tom,dick,harry,fred], the first 
element is tom and the tail is the list [dick, harry, fred]. Using 
the vertical bar operator and unification, we can break a list into its 
components: 

If [tom, dick, harry, fred] is matched to [X | Y], 
then X = tom and Y = [dick, harry, fred]. 

If [tom,dick,harry,fred] is matched to the pattern 
[X, Y | Z], then X = tom , Y = dick , and Z = 
[harry, fred]. 

If [tom, dick, harry, fred] is matched to [X, Y, Z | 
W], then X = tom, Y = dick, Z = harry, and W = 
[fred]. 

If [tom, dick, harry, fred] is matched to [W, X, Y, 
Z | V], then W = tom, X = dick, Y = harry, Z = fred, 
and V = [ ]. 

[tom, dick, harry, fred] will not match [V, W, X, Y, 
Z | U]. 

[tom, dick, harry, fred] will match [tom, X | 
[harry, fred]], to give X = dick. 

Besides “tearing lists apart” to get at particular elements, unification can be 
used to “build” the list structure. For example, if  X = tom, Y = 
[dick] when L unifies with [X | Y], then L will be bound to [tom, 
dick]. Thus terms separated by commas before the | are all elements of 
the list, and the structure after the | is always a list, the tail of the list. 

Let’s take a simple example of recursive processing of lists: the member 
check. We define a predicate to determine whether an item, represented by 
X, is in a list. This predicate member takes two arguments, an element and 
a list, and is true if the element is a member of the list. For example: 

?- member(a, [a, b, c, d, e]). 

yes 

?- member(a, [1, 2, 3, 4]). 

no 

?- member(X, [a, b, c]). 

X = a 

; 

X = b 

; 

X = c 
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; 

no 

To define member recursively, we first test if X is the first item in the list: 
member(X, [X | T]). 

This tests whether X and the first element of the list are identical. Not that 
this pattern will match no matter what X is bound to: an atom, a list, 
whatever! If the two are not identical, then it is natural to check whether X 
is an element of the rest (T) of the list. This is defined by: 

member(X, [Y | T]) :- member(X, T). 

The two lines of Prolog for checking list membership are then: 
member(X, [X | T]). 

member(X, [Y | T]) :- member(X, T). 

This example illustrates the importance of Prolog’s built-in order of search 
with the terminating condition placed before the recursive call, that is, to be 
tested before the algorithm recurs. If the order of the predicates is reversed, 
the terminating condition may never be checked. We now trace 
member(c,[a,b,c]), with numbering: 

1: member(X, [X | T]). 
2: member(X, [Y | T]) :- member(X, T). 

?- member(c, [a, b, c]). 
 call 1. fail, since c <> a 
 call 2. X = c, Y = a, T = [b, c],  
                 member(c, | [b,c])? 
  call 1. fail, since c <> b 
  call 2. X = c, Y = b, T = [c],  
                     member(c, | [c])? 
   call 1. success, c = c 
  yes (to second call 2.) 
 yes (to first call 2.) 
yes 

Good Prolog style suggests the use of anonymous variables. These serve as an 
indication to the programmer and interpreter that certain variables are used 
solely for pattern-matching purposes, with the variable binding itself not 
part of the computation process. Thus, when we test whether the element 
X is the same as the first item in the list we usually say: member(X, 
[X|_]). The use of the _ indicates that even though the tail of the list 
plays a crucial part in the unification of the query, the content of the tail of 
the list is unimportant. In the member check the anonymous variable 
should be used in the recursive statement as well, where the value of the 
head of the list is unimportant: 

member(X, [X | _]). 

member(X, [_ | T]) :- member(X, T). 

Writing out a list one element to a line is a nice exercise for understanding 
both lists and recursive control. Suppose we wish to write out the list 
[a,b,c,d]. We could define the recursive command: 

writelist([ ]). 

writelist([H | T]) :- write(H), nl, writelist(T). 
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This predicate writes one element of the list on each line, as nl requires the 
output stream controller to begin a new line.  

If we wish to write out a list in reversed order the recursive predicate must 
come before the write command. This guarantees that the list is 
traversed to the end before any element is written. At that time the last 
element of the list is written followed by each preceding element as the 
recursive control comes back up to the top. A reverse write of a list would 
be: 

reverse_writelist([ ]). 

reverse_writelist([H | T]) :- reverse_writelist(T),    
     write(H), nl. 

The reader should run writelist and reverse_writelist with 
trace to observe the behavior of these predicates. 

               2.5 Structured Representations and Inheritance Search 

Semantic Nets 
in Prolog 

 

Structured representations are an important component of the AI 
representational toolkit (Collins and Quillian 1969, Luger 2009). They also 
support many of the design patterns mentioned in Chapter 1. In this and 
the following section we consider two structured representations, the 
semantic net, and frames that are used almost ubiquitously in AI. We now 
propose a simple semantic network representational structure in Prolog and 
use recursive search to implement inheritance. Our language ignores the 
important distinction between classes and instances. This restriction 
simplifies the implementation of inheritance. 

In the semantic net of Figure 2.1, nodes represent individuals such as the 
canary tweety and classes such as ostrich, crow, robin, bird, 
and vertebrate. isa links represent the class hierarchy relationship. 
We adopt canonical forms for the data relationships within the net. We use 
an isa(Type, Parent) predicate to indicate that Type is a member 
of Parent and a hasprop(Object, Property, Value) 
predicate to represent property relations. hasprop indicates that 
Object has Property with Value. Object and Value are nodes in 
the network, and Property is the name of the link that joins them. 

A partial list of predicates describing the bird hierarchy of Figure 2.1 is: 
isa(canary, bird).   hasprop(tweety, color, white)  

   isa(robin, bird).    hasprop(robin, color, red). 

   isa(ostrich, bird).  hasprop(canary, color, yellow). 

   isa(penguin, bird).  hasprop(penguin, color, brown). 

   isa(bird, animal).   hasprop(bird, travel, fly). 

   isa(fish, animal).   hasprop(ostrich, travel, walk). 

   isa(opus, penguin).  hasprop(fish, travel, swim).  

   isa(tweety, canary). hasprop(robin, sound, sing). 

   hasprop(canary, sound, sing).  

   hasprop(bird, cover, feathers).  

hasprop(animal, cover, skin). 
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Figure 2.1 A semantic net for a bird hierarchy reflecting the Prolog code. 
We create a recursive search algorithm to find whether an object in our 
semantic net has a particular property. Properties are stored in the net at 
the most general level at which they are true. Through inheritance, an 
individual or subclass acquires the properties of its superclasses. Thus the 
property fly holds for bird and all its subclasses. Exceptions are located 
at the specific level of the exception. Thus, ostrich and penguin 
travel by walking instead of flying. The hasproperty predicate begins 
search at a particular object. If the information is not directly attached to 
that object, hasproperty follows isa links to superclasses. If no more 
superclasses exist and hasproperty has not located the property, it 
fails. 

hasproperty(Object, Property, Value) :- 

     hasprop(Object, Property, Value). 

hasproperty(Object, Property, Value) :- 

     isa(Object, Parent), 

     hasproperty(Parent, Property, Value). 

hasproperty searches the inheritance hierarchy in a depth-first fashion. 
In the next section, we show how inheritance can be applied to a frame-
based representation with both single and multiple-inheritance relations. 

Frames in  
Prolog 

Semantic nets can be partitioned, with additional information added to 
node descriptions, to give them a frame-like structure (Minsky 1975, Luger 
2009). We present the bird example again using frames, where each frame 
represents a collection of relationships of the semantic net and the isa 
slots of the frame define the frame hierarchy as in Figure 2.2. 

The first slot of each of the frames name that node, for example, 
name(tweety) or name(vertebrate). The second slot gives the 
inheritance links between that node and its parents. Because our example 
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has a tree structure, each node has only one link, the isa predicate with 
one argument. The third slot in the node’s frame is a list of features that 
describe that node. In this list we use any Prolog predicate such as flies, 
feathers, or color(brown). The final slot in the frame is the list of 
exceptions and default values for the node, again either a single word or 
predicate indicating a property. 

In our frame language, each frame organizes its slot names into lists of 
properties and default values. This allows us to distinguish these different 
types of knowledge and give them different behaviors in the inheritance 
hierarchy. Although our implementation allows subclasses to inherit 
properties from both lists, other representations are possible and may be 
useful in certain applications. We may wish to specify that only default 
values are inherited. Or we may wish to build a third list containing the 
properties of the class itself rather than the members, sometimes called class 
values. For example, we may wish to state that the class canary names a 
species of songbird. This should not be inherited by subclasses or 
instances: tweety does not name a species of songbird. Further 
extensions to this example are suggested in the exercises. 

We now represent the relationships in Figure 2.2 with the Prolog fact 
predicate frame with four arguments. We may use the methods suggested 
in Chapter 5 to check the parameters of the frame predicate for appropriate 
type, for instance, to ensure that the third frame slot is a list that contains 
only values from a fixed list of properties. 

frame(name(bird), 

     isa(animal), 

     [travel(flies), feathers], 

     [ ]). 

frame(name(penguin), 

     isa(bird), 

     [color(brown)], 

     [travel(walks)]). 

frame(name(canary), 

     isa(bird), 

     [color(yellow), call(sing)], 

     [size(small)]). 

frame(name(tweety), 

     isa(canary), 

     [ ], 

     [color(white)]). 

Once the full set of descriptions and inheritance relationships are defined 
for the frame of Figure 2.2, we create procedures to infer properties from 
this representation: 

get(Prop, Object) :- 

     frame(name(Object), _, List_of_properties,_), 

     member(Prop, List_of_properties). 
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Figure 2.2 A frame system reflecting the Prolog code in the text. 

get(Prop, Object) :- 

     frame(name(Object), _, _ List_of_defaults), 

     member(Prop, List_of_defaults). 

get(Prop, Object) :- 

     frame(name(Object), isa(Parent), _, _), 

     get(Prop, Parent). 

If the frame structure allows multiple inheritance of properties, we make 
this change both in our representation and in our search strategy. First, in 
the frame representation we make the argument of the isa predicate a list 
of superclasses of the Object. Thus, each superclass in the list is a parent 
of the entity named in the first argument of frame. If opus is a 
penguin and a cartoon_char we represent this: 

frame(name(opus), 

     isa([penguin, cartoon_char]), 

     [color(black)], 

     [ ]). 

Now, we test for properties of opus by recurring up the isa hierarchy 
for both penguin and cartoon_char. We add the following get 
definition between the third and fourth get predicates of the previous 
example. 

get(Prop, Object) :- 

     frame(name(Object), isa(List), _, _), 

     get_multiple(Prop, List). 



32 Part II: Programming in Prolog 

 

We define get_multiple by: 
get_multiple(Prop, [Parent  _]) :- 

     get(Prop, Parent). 

get_multiple(Prop, [_ Rest]) :- 

     get_multiple(Prop, Rest). 

With this inheritance preference, properties of penguin and its 
superclasses will be examined before those of cartoon_char. 

Finally, any Prolog procedure may be attached to a frame slot. As we have 
built the frame representation in our examples, this would entail adding a 
Prolog rule, or list of Prolog rules, as a parameter of frame. This is 
accomplished by enclosing the entire rule in parentheses, as we will see for 
rules in exshell in Chapter 6, and making this structure an argument of 
the frame predicate. For example, we could design a list of response rules 
for opus, giving him different responses for different questions. 

This list of rules, each rule in parentheses, would then become a parameter 
of the frame and, depending on the value of X passed to the opus frame, 
would define the appropriate response. More complex examples could be 
rules describing the control of a thermostat or creating a graphic image 
appropriate to a set of values. Examples of this are presented in both Lisp 
(Chapter 17) and Java (Chapter 21) where attached procedures, often called 
methods, play an important role in object-oriented representations. 

 Exercises 

 1. Create a relational database in Prolog. Represent the data tuples as facts 
and the constraints on the data tuples as rules. Suitable examples might be 
from stock in a department store or records in a personnel office. 

2. Write the “member check” program in Prolog. What happens when an 
item is not in the list? Query to the “member” specification to break a list 
into its component elements. 

3. Design a Prolog program unique(Bag, Set) that takes a bag (a list 
that may contain duplicate elements) and returns a set (no elements are 
repeated). 

4. Write a Prolog program to count the elements in a list (a list within the 
list counts as one element). Write a program to count the atoms in a list 
(count the elements within any sublist). Hint: several meta-predicates such 
as atom() can be helpful. 

5. Implement a frame system with inheritance that supports the definition 
of three kinds of slots: properties of a class that may be inherited by 
subclasses, properties that are inherited by instances of the class but not by 
subclasses, and properties of the class and its subclasses that are not 
inherited by instances (class properties). Discuss the benefits, uses, and 
problems with this distinction. 

 


