

33

 3 Abstract Data Types and Search

Chapter

Objectives
Prolog’s graph search representations were described and built:
 Lists
A recursive tree-walk algorithm
The cut predicate, !, for Prolog was presented:
 Controls the interpreter’s backtracking
Limits variable instantiations, and thus
 May prevent the interpreter from computing good solutions
Demonstrated procedural abstraction and information hiding with Abstract Data
Types
The stack operators
 The queue operators
 The priority queue operators
 Sets

Chapter
Contents

3.1 Recursive Search in Prolog
3.2 Using cut to Control Search in Prolog
3.3 Abstract Data Types in Prolog

 3.1 Introduction

Recursion-
Based Graph

Search

We next introduce the 3 x 3 knight’s tour problem, create a predicate
calculus based representation of problem states, and a recursive search of
its state space. The chess knight can move on a restricted board as on any
regular chessboard: two squares one direction (horizontally or vertically)
and one in the other (vertically or horizontally). Thus, the knight can go
from square 1 to either square 6 or 8 or from square 9 to either 2 or 4. We
ask if the knight can generate a sequence on legal moves from one square
to another on this restricted chessboard, from square 1 to 9, for example.
The knight’s moves are represented in Prolog using move facts, Figure 3.1.

The path predicate defines an algorithm for a path between its two
arguments, the present state, X, and the goal that it wants to achieve, Y. To
do this it first tests whether it is where it wants to be, path(Z, Z), and
if not, looks for a state, W, to move to

The Prolog search defined by path is a recursive, depth-first, left-to-right,
tree walk. As shown in Section 2.3, assert is a built-in Prolog predicate
that always succeeds and has the side effect of placing its argument in the
database of specifications. The been predicate is used to record each state
as it is visited and then not(been(X)) determines, with each new state
found whether that state has been previously visited, thus avoiding looping
within the search space.

 Part II: Programming in Prolog

34

Figure 3.1. The 3 x 3 chessboard and set of legal moves expressed as
Prolog facts.

path(Z, Z).

path(X, Y) :-

 move(X, W), not(been(W)), assert(been(W)),

 path(W, Y).

This use of the been predicate violates good programming practice in that
it uses global side-effects to control search. been(3), when asserted into
the database, is a fact available to any other predicate and, as such, has
global extension. We created been to modify the program execution.

A more sophisticated method for control of search is to create a list that
keeps track of visited states. We create this list and make it the third
argument of the path predicate. As each new state is encountered, the
member predicate, Section 2.3, checks whether or not it is already a visited
state. If the state is not a member of the list we put it on this list in the
order in which it was encountered, the most recent state encountered the
head of the list. If the new state is on the list of already visited states, the
path predicate backtracks looking for new non-visited states. This
approach remedies the problems of using global been(W). The following
clauses implement depth-first left-to right graph search with backtracking.

path(Z, Z, L).

path(X, Y, L) :-

 move(X, Z), not(member(Z, L)),

 path(Z, Y, [Z|L]).

The third parameter of path is the variable representing the list of visited
states. When a new state not already on the list of visited states L, it is
placed on the front of the state list [Z | L] for the next path call. It
should be noted that all the parameters of path are local and their current
values depend on where they are called in the graph search. Each
successful recursive call adds a state to this list. If all continuations from a
certain state fail, then that particular path call fails and the interpreter
backs up to the parent call. Thus, states are added to and deleted from this
state list as the backtracking search moves through the graph.

When the path call finally succeeds, the first two parameters are identical
and the third parameter is the list of states visited, in reverse order. Thus
we can print out the steps of the solution. The call to the Prolog interpreter

 Chapter 3: Abstract Data Types and Search

35

path(X,Y,[X]), where X and Y are replaced by numbers between 1
and 9, finds a path from state X to state Y, if the path exists. The third
parameter initializes the path list with the starting state X. Note that there is
no typing distinction in Prolog: the first two parameters are any
representation of states in the problem space and the third is a list of states.
Unification makes this generalization of pattern matching across data types
possible. Thus, path is a general depth-first search algorithm that may be
used with any graph. In Chapter 4 we use this algorithm to implement a
solution to the farmer, wolf, goat, and cabbage problem, with different
state specifications of state in the call to path.

We now present a solution for the 3 x 3 knight’s tour. (It is an exercise to
solve the full 8 x 8 knight’s tour problem in Prolog. We refer to the two
parts of the path algorithm by number:

1. is path(Z, Z, L).

2. is path(X, Y, L) :-

 move(X, Z), not(member(Z, L)),

 path(Z, Y, [Z | L]).

?- path(1, 3, [1]).

 path(1, 3, [1]) attempts to match 1. fail 1<>3.

 path(1, 3, [1]) matches 2. X=1, Y=3, L=[1]

 move(1, Z) matches, Z=6,

 not(member(6,[1]))=true,

 call path(6, 3, [6,1]

 path(6, 3, [6,1]) trys to match 1. fail 6<>3.

 path(6, 3, [6,1]) calls 2. X=6, Y=3, L=[6, 1].

 move(6, Z) matches, Z=7,

 not(member(7, [6,1]))=true,

 call path(7, 3, [7,6,1])

 path(7, 3, [7,6,1]) trys to match 1. fail 7<>3.

 path(7, 3, [7,6,1]) in 2: X=7, Y=3, L=[7,6,1].

 move(7, Z) matches Z=6,

 not(member(6, [7,6,1])) fails, backtrack!

 move(7, Z) matches, Z = 2,

 not(member(2, [7,6,1])) is true

 call path(2, 3, [2,7,6,1])

 path(2, 3, [2,7,6,1]) attempts 1, fail, 2 <> 3.

 path matches 2, X in 2: Y is 3, L is [2, 7, 6, 1]

 move(2, Z) matches, Z=7,

 not(member(…)) fails, backtrack!

 move(2, Z) matches Z=9,

 not(member(…)) is true,

 call path(9, 3, [9,2,7,6,1])

 path(9, 3, [9,2,7,6,1]) fails 1, 9<>3.

 Part II: Programming in Prolog

36

 path matches 2, X=9, Y=3, L=[9,2,7,6,1]

 move(9, Z) matches Z = 4,

 not(member(…)) is true,

 call path(4, 3, [4,9,2,7,6,1])

 path(4, 3, [4,9,2,7,6,1])fails 1, 4<>3.

 path matches 2, X=4, Y=3, L is [4,9,2,7,6,1]

 move(4, Z) matches Z = 3,

 not(member(…)) true,

 call path(3, 3, [3,4,9,2,7,6,1])

 path(3, 3, [3,4,9,2,7,6,1]) attempts 1, true, 3=3

The recursive path call then returns yes for each of its calls.

In summary, the recursive path call is a shell or general control structure
for search in a graph: in path(X, Y, L), X is the present state; Y is the
goal state. When X and Y are identical, the recursion terminates. L is the
list of states on the current path towards state Y, and as each new state Z is
found with the call move(X, Z) it is placed on front of the list: [Z |
L]. The state list is checked, using not(member(Z, L)), to be sure
the path does not loop.

In Chapter 4, we generalize this approach creating a closed list that retains
all the states visited and does not remove visited states when the path
predicate backtracks from a state that has no “useful” children. The
difference between the state list L in the path call above and the closed
set in Chapter 4 is that closed records all states visited, while the state list L
keeps track of only the present path of states.

 3.2 Using cut to Control Search in Prolog

 The predicate cut is represented by an exclamation point, !. The syntax for
cut is that of a goal with no arguments. Cut has several side effects: first,
when originally encountered it always succeeds, and second, if it is “failed
back to” in backtracking, it causes the entire goal in which it is contained to
fail. For a simple example of the effect of the cut, we create a two-move
path call from the knight’s tour example that we just presented. Consider
the predicate path2:

path2(X, Y) :- move(X, Z), move(Z, Y).

There is a two-move path between X and Y if there exists an intermediate
state Z between them. We assume part of the knight’s tour database:

move(1, 6).

move(1, 8).

move(6, 7).

move(6, 1).

move(8, 3).

move(8, 1).

The interpreter finds all the two-move paths from 1; there are four:
?- path2(1, W).

W = 7

 Chapter 3: Abstract Data Types and Search

37

;

W = 1

;
W = 3
;
W = 1
;
no

When path2 is altered with cut, only two answers result:
path2(X, Y) :- move(X, Z), !, move(Z, Y)

?- path2(1, W).

W = 7

;

W = 1

;

no

The no response happens because variable Z takes on only one value (the
first value it is bound to), namely 6. Once the first subgoal succeeds, Z is
bound to 6 and the cut is encountered. This prohibits further backtracking
using the first move subgoal and allowing any further bindings for the
variable Z.

There are several justifications for the use of cut in Prolog programming.
First, as this example demonstrated, it allows the programmer to control
precisely the shape of the search tree. When further (exhaustive) search is
not required, the tree can be explicitly pruned at that point. This allows
Prolog code to have the flavor of function calling: when one set of values
(bindings) is “returned” by a Prolog predicate (or set of predicates) and the
cut is encountered, the interpreter does not search for any other
unifications. Thus, if that set of values does not lead to a solution then no
further values are attempted. Of course, in the context of the mathematical
foundations of the predicate calculus itself, cut may prevent the
computation of possible interpretations of the particular predicate calculus
and as a result eliminate a possible answer or model, (Luger 2009, Sections
2.3, 14.3).

A second use of the cut controls recursive calls. For example, in the path
call:

path(Z, Z, L).
path(X, Z, L) :- move(X, Y), not(member(Y, L)),
 path(Y, Z, [Y|L]),!.

The addition of cut means that (at most) one solution to the graph search
is produced. This single solution is produced because further solutions
occur after the clause path(Z, Z, L) is satisfied. If the user asks for
more solutions, path(Z, Z, L) fails, and the second path call is
reinvoked to continue the (exhaustive) search of the graph. When the cut is
placed after the recursive path call, the call cannot be reentered (backed
into) for further search.

Important side effects of the cut are to make the program run faster and to

 Part II: Programming in Prolog

38

conserve memory locations. When cut is used within a predicate, the
pointers in memory needed for backtracking to predicates to the left of the
cut are not created. This is, of course, because they will never be needed.
Thus, cut produces the desired solution, and only the desired solution, with
a more efficient use of memory.

The cut can also be used with recursion to reinitialize the path call for
further search within the graph. This will be demonstrated with the general
search algorithms presented in Chapter 4. For this purpose we also need to
develop several abstract data types.

 3.3 Abstract Data Types (ADTs) in Prolog

 Programming, in almost any environment, is enhanced by creating
procedural abstractions and by hiding information. Because the set, stack,
queue, and priority queue data structures are important support constructs for
graph search algorithms, a major component of AI problem solving, we
build them in Prolog in the present section. We will use these ADTs in the
design of the Prolog search algorithms presented in Chapter 4.

Since lists, recursion, and pattern matching, as emphasized throughout this
book, are the primary tools for building and searching graph structures.
These are the pieces with which we build our ADTs. All list handling and
recursive processing that define the ADT are “hidden” within the ADT
abstraction, quite different than the normal static data structure.

The ADT Stack A stack is a linear structure with access at one end only. Thus all elements
must be added to, pushed, and removed, popped, from the structure at that
access end. The stack is sometimes referred to as a last-in-first-out (LIFO)
data structure. We will see its use with depth-first search in Chapter 4. The
operators that we will define for a stack are:

1. Test whether the stack is empty.

2. Push an element onto the stack.

3. Pop or remove, the top element from the stack.

4. Peek (often called Top) to see the top element on the stack
 without popping it.

5. Member_stack, checks whether an element is in the stack.

6. Add_list_to stack, adds a list of elements to the stack.

Operators 5 and 6 may be built from 1–4.

We now build these operators in Prolog, using the list primitives:

1. empty_stack([]).
This predicate can be used either to test a stack to see whether it is empty or
to generate a new empty stack.

2–4. stack(Top, Stack, [Top | Stack]).
This predicate performs the push, pop, and peek predicates depending on the
variable bindings of its arguments. For instance, push produces a new stack as
the third argument when the first two arguments are bound. Likewise, pop
produces the top element of the stack when the third argument is bound to
the stack. The second argument will then be bound to the new stack, once the

 Chapter 3: Abstract Data Types and Search

39

top element is popped. Finally, if we keep the stack as the third argument, the
first argument lets us peek at its top element.

5. member_stack(Element, Stack) :-
 member(Element, Stack).

This allows us to determine whether an element is a member of the stack. Of
course, the same result could be produced by creating a recursive call that
peeked at the next element of the stack and then, if this element did not match
Element, popped the stack. This would continue until the empty stack
predicate was true.

6. add_list_to_stack(List, Stack, Result) :-
 append(List, Stack, Result).

List is added to Stack to produce Result, a new stack. Of course,
the same result could be obtained by popping List (until empty) and
pushing each element onto a temporary stack. We would then pop the
temporary stack and push each element onto the Stack until
empty_stack is true for the temporary stack. append is described in
detail in Chapter 10.

A final predicate for printing a stack in reverse order is
reverse_print_stack. This is very useful when a stack has, in
reversed order, the current path from the start state to the present state of
the graph search. We will see several examples of this in Chapter 4.

reverse_print_stack(S) :-

 empty_stack(S).

reverse_print_stack(S) :-

 stack(E, Rest, S),

 reverse_print_stack(Rest),

 write(E), nl.
The ADT Queue A queue is a first-in-first-out (FIFO) data structure. It is often characterized

as a list where elements are taken off or dequeued from one end and
elements are added to or enqueued at the other end. The queue is used for
defining breadth-first search in Chapter 4. The queue operators are:

1. empty_queue([]).
This predicate tests whether a queue is empty or initializes a new empty queue.

2. enqueue(E, [], [E]).

enqueue(E, [H | T], [H | Tnew]) :-

 enqueue(E, T, Tnew).
This recursive predicate adds the element E to a queue, the second argument.
The new augmented queue is the third argument.

3. dequeue(E, [E | T], T).
This predicate produces a new queue, the third argument, which is the result
of taking the next element, the first argument, off the original queue, the
second argument.

4. dequeue(E, [E | T], _).
This predicate lets us peek at the next element, E, of the queue.

 Part II: Programming in Prolog

40

5. member_queue(Element, Queue) :-
 member(Element, Queue).

This tests whether Element is a member of Queue.

6. add_list_to_queue(List, Queue, Newqueue) :-
 append(Queue, List, Newqueue).
This predicate enqueues an entire list of elements. Of course, 5 and 6 can
be created using 1–4; append is presented in Chapter 10.

The ADT
Priority Queue

A priority queue orders the elements of a regular queue so that each new
element added to the priority queue is placed in its sorted order, with the
“best” element first. The dequeue operator removes the “best” sorted
element from the priority queue. We will use the priority queue in the
design of the best-first search algorithm in Chapter 4.

Because the priority queue is a sorted queue, many of its operators are the
same as the queue operators, in particular, empty_queue,
member_queue, and dequeue (the “best” of the sorted elements will
be next for the dequeue). enqueue in a priority queue is the
insert_pq operator, as each new item is placed in its proper sorted
order.

insert_pq(State, [], [State]) :- !.

insert_pq(State, [H | Tail], [State, H | Tail]) :-

 precedes(State, H).

insert_pq(State, [H | T], [H | Tnew]) :-

 insert_pq(State, T, Tnew).

precedes(X, Y) :- X < Y. % < depends on problem

The first argument of this predicate is the new element that is to be
inserted. The second argument is the previous priority queue, and the third
argument is the augmented priority queue. The precedes predicate
checks that the order of elements is preserved. Another priority queue
operator is insert_list_pq. This predicate is used to merge an
unsorted list or set of elements into the priority queue, as is necessary when
adding the children of a state to the priority queue for best-first search,
Chapter 4. insert_list_pq uses insert_pq to put each individual
new item into the priority queue:

insert_list_pq([], L, L).

insert_list_pq([State | Tail], L, New_L) :-

 insert_pq(State, L, L2),

 insert_list_pq(Tail, L2, New_L).
The ADT Set Finally, we describe the ADT set. A set is a collection of elements with no

element repeated. Sets can be used for collecting all the children of a state
or for maintaining the set of all states visited while executing a search
algorithm.

In Prolog a set of elements, e.g., {a,b}, may be represented as a list,
[a,b], with the order of the list not important. The set operators include
empty_set, member_set, delete_if_in, and
add_if_not_in. We also include the traditional operators for

 Chapter 3: Abstract Data Types and Search

41

combining and comparing sets, including union, intersection,
set_difference, subset, and equal_set.

empty_set([]).

member_set(E, S) :-

 member(E, S).

delete_if_in_set(E, [], []).

delete_if_in_set(E, [E | T], T) :- !.

delete_if_in_set(E, [H | T], [H | T_new]) :-

 delete_if_in_set(E, T, T_new), !.

add_if_not_in_set(X, S, S) :-

 member(X, S), !.

add_if_not_in_set(X, S, [X | S]).

union([], S, S).

union([H | T], S, S_new) :-

 union(T, S, S2),

 add_if_not_in_set(H, S2, S_new),!.

subset([], _).

subset([H | T], S) :-

 member_set(H, S),

 subset(T, S).

intersection([], _, []).

intersection([H | T], S, [H | S_new]) :-

 member_set(H, S),

 intersection(T, S, S_new), !.

intersection([_ | T], S, S_new) :-

 intersection(T, S, S_new), !.

set_difference([], _, []).

set_difference([H | T], S, T_new) :-

 member_set(H, S),

 set_difference(T, S, T_new), !.

set_difference([H | T], S, [H | T_new]) :-

 set_difference(T, S, T_new), !.

equal_set(S1, S2) :-

 subset(S1, S2),

 subset(S2, S1).

In Chapters 4 and 5 we use many of these abstract data types to build more
complex graph search algorithms and meta-interpreters in Prolog. For
example, the stack and queue ADTs are used to build the “open” list that
organizes depth-first and breadth-first search. The set ADTs coordinate
the “closed” list that helps prevent cycles in a search.

 Part II: Programming in Prolog

42

 Exercises

 1. Write Prolog code to solve the full 8 X 8 knight’s tour problem. This will
require a lot of effort if all the move(X, Y) facts on the full chessboard
are itemized. It is much better to create a set of eight predicates that
capture the general rules for moving the knight on the full chessboard. You
will also have to create a new representation for the squares on the board.
Hint: consider a predicate containing the two element order pair, for
example, state(Row, Column).

2. Take the path algorithm presented for the knight’s tour problem in the
text. Rewrite the path call of the recursive code given in Section 3.1 to
the following form:

path(X, Y) :- path(X, W), move(W, Y).

Examine the trace of this execution and describe what is happening.

3. Create a three step path predicate for the knight’s tour:
path3(X, Y) :- move(X, Z), move(Z, W), move (W, Y).

Create a tree that demonstrates the full search for the path3 predicate.
Place the cut operator between the second and third move predicates.
Show how this prunes the tree. Next place the cut between the first and
second move predicates and again demonstrate how the tree is pruned.
Finally, put two cuts within the path3 predicate and show how this
prunes the search.

4. Write and test the ADTs presented in Section 3.3. trace will let you
monitor the Prolog environment as the ADTs execute.

