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Objectives 
Prolog’s graph search representations were described and built: 
 Lists 
A recursive tree-walk algorithm 
The cut predicate, !, for Prolog was presented: 
 Controls the interpreter’s backtracking 
Limits variable instantiations, and thus 
 May prevent the interpreter from computing good solutions 
Demonstrated procedural abstraction and information hiding with Abstract Data 
Types   
The stack operators 
 The queue operators 
 The priority queue operators 
 Sets 
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 3.1 Introduction 

Recursion-
Based Graph 

Search 

We next introduce the 3 x 3 knight’s tour problem, create a predicate 
calculus based representation of problem states, and a recursive search of 
its state space. The chess knight can move on a restricted board as on any 
regular chessboard: two squares one direction (horizontally or vertically) 
and one in the other (vertically or horizontally). Thus, the knight can go 
from square 1 to either square 6 or 8 or from square 9 to either 2 or 4. We 
ask if the knight can generate a sequence on legal moves from one square 
to another on this restricted chessboard, from square 1 to 9, for example. 
The knight’s moves are represented in Prolog using move facts, Figure 3.1.  

The path predicate defines an algorithm for a path between its two 
arguments, the present state, X, and the goal that it wants to achieve, Y. To 
do this it first tests whether it is where it wants to be, path(Z, Z), and 
if not, looks for a state, W, to move to 

The Prolog search defined by path is a recursive, depth-first, left-to-right, 
tree walk. As shown in Section 2.3, assert is a built-in Prolog predicate 
that always succeeds and has the side effect of placing its argument in the 
database of specifications. The been predicate is used to record each state 
as it is visited and then not(been(X)) determines, with each new state 
found whether that state has been previously visited, thus avoiding looping 
within the search space. 
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Figure 3.1. The 3 x 3 chessboard and set of legal moves expressed as 
Prolog facts. 

path(Z, Z). 

path(X, Y) :-  

     move(X, W), not(been(W)), assert(been(W)),  

     path(W, Y). 

This use of the been predicate violates good programming practice in that 
it uses global side-effects to control search. been(3), when asserted into 
the database, is a fact available to any other predicate and, as such, has 
global extension. We created been to modify the program execution. 

A more sophisticated method for control of search is to create a list that 
keeps track of visited states. We create this list and make it the third 
argument of the path predicate. As each new state is encountered, the 
member predicate, Section 2.3, checks whether or not it is already a visited 
state. If the state is not a member of the list we put it on this list in the 
order in which it was encountered, the most recent state encountered the 
head of the list. If the new state is on the list of already visited states, the 
path predicate backtracks looking for new non-visited states. This 
approach remedies the problems of using global been(W). The following 
clauses implement depth-first left-to right graph search with backtracking. 

path(Z, Z, L). 

path(X, Y, L) :-  

     move(X, Z), not(member(Z, L)),  

     path(Z, Y, [Z|L]). 

The third parameter of path is the variable representing the list of visited 
states. When a new state not already on the list of visited states L, it is 
placed on the front of the state list [Z | L] for the next path call. It 
should be noted that all the parameters of path are local and their current 
values depend on where they are called in the graph search. Each 
successful recursive call adds a state to this list. If all continuations from a 
certain state fail, then that particular path call fails and the interpreter 
backs up to the parent call. Thus, states are added to and deleted from this 
state list as the backtracking search moves through the graph. 

When the path call finally succeeds, the first two parameters are identical 
and the third parameter is the list of states visited, in reverse order. Thus 
we can print out the steps of the solution. The call to the Prolog interpreter 
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path(X,Y,[X]), where X and Y are replaced by numbers between 1 
and 9, finds a path from state X to state Y, if the path exists. The third 
parameter initializes the path list with the starting state X. Note that there is 
no typing distinction in Prolog: the first two parameters are any 
representation of states in the problem space and the third is a list of states. 
Unification makes this generalization of pattern matching across data types 
possible. Thus, path is a general depth-first search algorithm that may be 
used with any graph. In Chapter 4 we use this algorithm to implement a 
solution to the farmer, wolf, goat, and cabbage problem, with different 
state specifications of state in the call to path. 

We now present a solution for the 3 x 3 knight’s tour. (It is an exercise to 
solve the full 8 x 8 knight’s tour problem in Prolog. We refer to the two 
parts of the path algorithm by number: 

1. is path(Z, Z, L). 

2. is path(X, Y, L)  :-  

        move(X, Z), not(member(Z, L)),  

        path(Z, Y, [Z | L]). 
 
?- path(1, 3, [1]). 

   path(1, 3, [1]) attempts to match 1. fail 1<>3. 

   path(1, 3, [1]) matches 2. X=1, Y=3, L=[1] 

        move(1, Z) matches, Z=6,  

        not(member(6,[1]))=true,  

        call path(6, 3, [6,1]    

   path(6, 3, [6,1]) trys to match 1. fail 6<>3. 

   path(6, 3, [6,1]) calls 2. X=6, Y=3, L=[6, 1]. 

        move(6, Z) matches, Z=7,  

        not(member(7, [6,1]))=true,    

        call path(7, 3, [7,6,1]) 

   path(7, 3, [7,6,1]) trys to match 1. fail 7<>3. 

   path(7, 3, [7,6,1]) in 2: X=7, Y=3, L=[7,6,1]. 

        move(7, Z) matches Z=6,  

        not(member(6, [7,6,1])) fails,   backtrack! 

        move(7, Z) matches, Z = 2,  

        not(member(2, [7,6,1])) is true 

        call path(2, 3, [2,7,6,1]) 

   path(2, 3, [2,7,6,1]) attempts 1, fail, 2 <> 3. 

   path matches 2, X in 2: Y is 3, L is [2, 7, 6, 1] 

        move(2, Z) matches, Z=7,  

        not(member(…)) fails, backtrack! 

        move(2, Z) matches Z=9,  

        not(member(…)) is true,  

        call path(9, 3, [9,2,7,6,1]) 

   path(9, 3, [9,2,7,6,1]) fails 1, 9<>3. 
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   path matches 2, X=9, Y=3, L=[9,2,7,6,1] 

        move(9, Z) matches Z = 4,  

        not(member(…)) is true, 

        call path(4, 3, [4,9,2,7,6,1]) 

   path(4, 3, [4,9,2,7,6,1])fails 1, 4<>3. 

   path matches 2, X=4, Y=3, L is [4,9,2,7,6,1] 

        move(4, Z) matches Z = 3,  

        not(member(…)) true,    

        call path(3, 3, [3,4,9,2,7,6,1]) 

   path(3, 3, [3,4,9,2,7,6,1]) attempts 1, true, 3=3 

The recursive path call then returns yes for each of its calls. 

In summary, the recursive path call is a shell or general control structure 
for search in a graph: in path(X, Y, L), X is the present state; Y is the 
goal state. When X and Y are identical, the recursion terminates. L is the 
list of states on the current path towards state Y, and as each new state Z is 
found with the call move(X, Z) it is placed on front of the list: [Z | 
L]. The state list is checked, using not(member(Z, L)), to be sure 
the path does not loop. 

In Chapter 4, we generalize this approach creating a closed list that retains 
all the states visited and does not remove visited states when the path 
predicate backtracks from a state that has no “useful” children. The 
difference between the state list L in the path call above and the closed 
set in Chapter 4 is that closed records all states visited, while the state list L 
keeps track of only the present path of states. 

 3.2 Using cut to Control Search in Prolog 

 The predicate cut is represented by an exclamation point, !. The syntax for 
cut is that of a goal with no arguments. Cut has several side effects: first, 
when originally encountered it always succeeds, and second, if it is “failed 
back to” in backtracking, it causes the entire goal in which it is contained to 
fail. For a simple example of the effect of the cut, we create a two-move 
path call from the knight’s tour example that we just presented. Consider 
the predicate path2: 

path2(X, Y) :- move(X, Z), move(Z, Y). 

There is a two-move path between X and Y if there exists an intermediate 
state Z between them. We assume part of the knight’s tour database: 

move(1, 6). 

move(1, 8). 

move(6, 7). 

move(6, 1). 

move(8, 3). 

move(8, 1). 

The interpreter finds all the two-move paths from 1; there are four: 
?- path2(1, W). 

W = 7 
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; 

W = 1 

; 
W = 3 
; 
W = 1 
; 
no 

When path2 is altered with cut, only two answers result: 
path2(X, Y) :- move(X, Z), !, move(Z, Y) 

?- path2(1, W). 

W = 7 

; 

W = 1 

; 

no 

The no response happens because variable Z takes on only one value (the 
first value it is bound to), namely 6. Once the first subgoal succeeds, Z is 
bound to 6 and the cut is encountered. This prohibits further backtracking 
using the first move subgoal and allowing any further bindings for the 
variable Z.  

There are several justifications for the use of cut in Prolog programming. 
First, as this example demonstrated, it allows the programmer to control 
precisely the shape of the search tree. When further (exhaustive) search is 
not required, the tree can be explicitly pruned at that point. This allows 
Prolog code to have the flavor of function calling: when one set of values 
(bindings) is “returned” by a Prolog predicate (or set of predicates) and the 
cut is encountered, the interpreter does not search for any other 
unifications. Thus, if that set of values does not lead to a solution then no 
further values are attempted. Of course, in the context of the mathematical 
foundations of the predicate calculus itself, cut may prevent the 
computation of possible interpretations of the particular predicate calculus 
and as a result eliminate a possible answer or model, (Luger 2009, Sections 
2.3, 14.3). 

A second use of the cut controls recursive calls. For example, in the path 
call: 

path(Z, Z, L). 
path(X, Z, L) :- move(X, Y), not(member(Y, L)),  
      path(Y, Z, [Y|L]),!.  

The addition of cut means that (at most) one solution to the graph search 
is produced. This single solution is produced because further solutions 
occur after the clause path(Z, Z, L) is satisfied. If the user asks for 
more solutions, path(Z, Z, L) fails, and the second path call is 
reinvoked to continue the (exhaustive) search of the graph. When the cut is 
placed after the recursive path call, the call cannot be reentered (backed 
into) for further search. 

Important side effects of the cut are to make the program run faster and to 
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conserve memory locations. When cut is used within a predicate, the 
pointers in memory needed for backtracking to predicates to the left of the 
cut are not created. This is, of course, because they will never be needed. 
Thus, cut produces the desired solution, and only the desired solution, with 
a more efficient use of memory. 

The cut can also be used with recursion to reinitialize the path call for 
further search within the graph. This will be demonstrated with the general 
search algorithms presented in Chapter 4. For this purpose we also need to 
develop several abstract data types. 

                3.3   Abstract Data Types (ADTs) in Prolog 

 Programming, in almost any environment, is enhanced by creating 
procedural abstractions and by hiding information. Because the set, stack, 
queue, and priority queue data structures are important support constructs for 
graph search algorithms, a major component of AI problem solving, we 
build them in Prolog in the present section. We will use these ADTs in the 
design of the Prolog search algorithms presented in Chapter 4. 

Since lists, recursion, and pattern matching, as emphasized throughout this 
book, are the primary tools for building and searching graph structures. 
These are the pieces with which we build our ADTs. All list handling and 
recursive processing that define the ADT are “hidden” within the ADT 
abstraction, quite different than the normal static data structure. 

The ADT Stack A stack is a linear structure with access at one end only. Thus all elements 
must be added to, pushed, and removed, popped, from the structure at that 
access end. The stack is sometimes referred to as a last-in-first-out (LIFO) 
data structure. We will see its use with depth-first search in Chapter 4. The 
operators that we will define for a stack are: 

1.    Test whether the stack is empty. 

2.    Push an element onto the stack. 

3.    Pop or remove, the top element from the stack. 

4. Peek (often called Top) to see the top element on the stack  
           without popping it. 

5.    Member_stack, checks whether an element is in the stack. 

6.    Add_list_to stack, adds a list of elements to the stack. 

Operators 5 and 6 may be built from 1–4. 

We now build these operators in Prolog, using the list primitives: 

1. empty_stack([ ]).  
This predicate can be used either to test a stack to see whether it is empty or 
to generate a new empty stack. 

2–4. stack(Top, Stack, [Top | Stack]).  
This predicate performs the push, pop, and peek predicates depending on the 
variable bindings of its arguments. For instance, push produces a new stack as 
the third argument when the first two arguments are bound. Likewise, pop 
produces the top element of the stack when the third argument is bound to 
the stack. The second argument will then be bound to the new stack, once the 
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top element is popped. Finally, if we keep the stack as the third argument, the 
first argument lets us peek at its top element. 

5. member_stack(Element, Stack) :-  
      member(Element, Stack).  

This allows us to determine whether an element is a member of the stack. Of 
course, the same result could be produced by creating a recursive call that 
peeked at the next element of the stack and then, if this element did not match 
Element, popped the stack. This would continue until the empty stack 
predicate was true. 

6. add_list_to_stack(List, Stack, Result) :-  
      append(List, Stack, Result).  

List is added to Stack to produce Result, a new stack. Of course, 
the same result could be obtained by popping List (until empty) and 
pushing each element onto a temporary stack. We would then pop the 
temporary stack and push each element onto the Stack until 
empty_stack is true for the temporary stack. append is described in 
detail in Chapter 10. 

A final predicate for printing a stack in reverse order is 
reverse_print_stack. This is very useful when a stack has, in 
reversed order, the current path from the start state to the present state of 
the graph search. We will see several examples of this in Chapter 4. 

reverse_print_stack(S) :-  

     empty_stack(S). 

reverse_print_stack(S) :- 

     stack(E, Rest, S), 

     reverse_print_stack(Rest), 

     write(E), nl. 
The ADT Queue A queue is a first-in-first-out (FIFO) data structure. It is often characterized 

as a list where elements are taken off or dequeued from one end and 
elements are added to or enqueued at the other end. The queue is used for 
defining breadth-first search in Chapter 4. The queue operators are: 

1. empty_queue([ ]).  
This predicate tests whether a queue is empty or initializes a new empty queue. 

2. enqueue(E, [ ], [E]). 

enqueue(E, [H | T], [H | Tnew]) :-  

    enqueue(E, T, Tnew).  
This recursive predicate adds the element E to a queue, the second argument. 
The new augmented queue is the third argument. 

3. dequeue(E, [E | T], T).  
This predicate produces a new queue, the third argument, which is the result 
of taking the next element, the first argument, off the original queue, the 
second argument. 

4. dequeue(E, [E | T], _).  
This predicate lets us peek at the next element, E, of the queue. 
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5. member_queue(Element, Queue) :-  
          member(Element, Queue).  

This tests whether Element is a member of Queue. 

6. add_list_to_queue(List, Queue, Newqueue) :-  
                     append(Queue, List, Newqueue).  
This predicate enqueues an entire list of elements. Of course, 5 and 6 can 
be created using 1–4; append is presented in Chapter 10. 

The ADT 
Priority Queue 

A priority queue orders the elements of a regular queue so that each new 
element added to the priority queue is placed in its sorted order, with the 
“best” element first. The dequeue operator removes the “best” sorted 
element from the priority queue. We will use the priority queue in the 
design of the best-first search algorithm in Chapter 4. 

Because the priority queue is a sorted queue, many of its operators are the 
same as the queue operators, in particular, empty_queue, 
member_queue, and dequeue (the “best” of the sorted elements will 
be next for the dequeue). enqueue in a priority queue is the 
insert_pq operator, as each new item is placed in its proper sorted 
order. 

insert_pq(State, [ ], [State]) :- !. 

insert_pq(State, [H | Tail], [State, H | Tail]) :- 

     precedes(State, H). 

insert_pq(State, [H | T], [H | Tnew]) :- 

     insert_pq(State, T, Tnew). 

precedes(X, Y) :- X < Y.     % < depends on problem 

The first argument of this predicate is the new element that is to be 
inserted. The second argument is the previous priority queue, and the third 
argument is the augmented priority queue. The precedes predicate 
checks that the order of elements is preserved. Another priority queue 
operator is insert_list_pq. This predicate is used to merge an 
unsorted list or set of elements into the priority queue, as is necessary when 
adding the children of a state to the priority queue for best-first search, 
Chapter 4. insert_list_pq uses insert_pq to put each individual 
new item into the priority queue: 

insert_list_pq([ ], L, L). 

insert_list_pq([State | Tail], L, New_L) :- 

     insert_pq(State, L, L2), 

     insert_list_pq(Tail, L2, New_L). 
The ADT Set Finally, we describe the ADT set. A set is a collection of elements with no 

element repeated. Sets can be used for collecting all the children of a state 
or for maintaining the set of all states visited while executing a search 
algorithm.  

In Prolog a set of elements, e.g., {a,b}, may be represented as a list, 
[a,b], with the order of the list not important. The set operators include 
empty_set, member_set, delete_if_in, and 
add_if_not_in. We also include the traditional operators for 
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combining and comparing sets, including union, intersection, 
set_difference, subset, and equal_set. 

empty_set([ ]). 

member_set(E, S) :- 

     member(E, S). 

delete_if_in_set(E, [ ], [ ]).  

delete_if_in_set(E, [E | T], T) :- !. 

delete_if_in_set(E, [H | T], [H | T_new]) :- 

     delete_if_in_set(E, T, T_new), !. 

add_if_not_in_set(X, S, S) :- 

     member(X, S), !. 

add_if_not_in_set(X, S, [X | S]). 

union([ ], S, S). 

union([H | T], S, S_new) :- 

     union(T, S, S2), 

     add_if_not_in_set(H, S2, S_new),!. 

subset([ ], _). 

subset([H | T], S) :- 

     member_set(H, S), 

     subset(T, S). 

intersection([ ], _, [ ]). 

intersection([H | T], S, [H | S_new]) :- 

     member_set(H, S), 

     intersection(T, S, S_new), !. 

intersection([_ | T], S, S_new) :- 

     intersection(T, S, S_new), !. 

set_difference([ ], _, [ ]). 

set_difference([H | T], S, T_new) :- 

     member_set(H, S), 

     set_difference(T, S, T_new), !. 

set_difference([H | T], S, [H | T_new]) :- 

     set_difference(T, S, T_new), !. 

equal_set(S1, S2) :- 

     subset(S1, S2), 

     subset(S2, S1). 

In Chapters 4 and 5 we use many of these abstract data types to build more 
complex graph search algorithms and meta-interpreters in Prolog. For 
example, the stack and queue ADTs are used to build the “open” list that 
organizes depth-first and breadth-first search. The set ADTs coordinate 
the “closed” list that helps prevent cycles in a search. 
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                         Exercises 

 1. Write Prolog code to solve the full 8 X 8 knight’s tour problem. This will 
require a lot of effort if all the move(X, Y) facts on the full chessboard 
are itemized. It is much better to create a set of eight predicates that 
capture the general rules for moving the knight on the full chessboard. You 
will also have to create a new representation for the squares on the board. 
Hint: consider a predicate containing the two element order pair, for 
example, state(Row, Column). 

2. Take the path algorithm presented for the knight’s tour problem in the 
text. Rewrite the path call of the recursive code given in Section 3.1 to 
the following form: 

path(X, Y) :- path(X, W), move(W, Y). 

Examine the trace of this execution and describe what is happening. 

3.  Create a three step path predicate for the knight’s tour: 
path3(X, Y) :- move(X, Z), move(Z, W), move (W, Y). 

Create a tree that demonstrates the full search for the path3 predicate. 
Place the cut operator between the second and third move predicates. 
Show how this prunes the tree. Next place the cut between the first and 
second move predicates and again demonstrate how the tree is pruned. 
Finally, put two cuts within the path3 predicate and show how this 
prunes the search. 

4. Write and test the ADTs presented in Section 3.3. trace will let you 
monitor the Prolog environment as the ADTs execute. 

 


