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 4 Depth-, Breadth-, and Best-First Search 
Using the Production System Design 
Pattern 
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 Production rule sets 
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 A rule set and control strategy for the Farmer Wolf, Goat, and Cabbage 
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 Sets were used for the closed list in all searches 
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 4.1 Production System Search in Prolog 

The Production 
System 

The production system (Luger 2009, Section 6.2) is a model of computation that has 
proved particularly important in AI, both for implementing search algorithms 
and for modeling human problem solving behavior. A production system 
provides pattern-directed control of a problem-solving process and consists of a 
set of production rules, a working memory, and a recognize–act control cycle. 

A production system is defined by: 

The set of production rules. These are often simply called productions. A production is 
a condition–action pair and defines a single chunk of problem-solving 
knowledge. The condition part of the rule is a pattern that determines when 
that rule may be applied by matching data in the working memory. The 
action part of the rule defines the associated problem-solving step. 

Working memory contains a description of the current state of the world in a reasoning 
process. This description is a pattern that, in data-driven reasoning, is matched 
against the condition part of a production to select appropriate problem-
solving actions. The actions of production rules are specifically designed to 
alter the contents of working memory, leading to the next phase of the 
recognize-act cycle. 

The recognize–act cycle. The control structure for a production system is simple: 
working memory is initialized with the beginning problem description. The 
current state of the problem solving is maintained as a set of patterns in 
working memory. These patterns are matched against the conditions of the 
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production rules; this produces a subset of the production rules, called the 
conflict set, whose conditions match the patterns in working memory. One of 
the productions in the conflict set is then selected (conflict resolution) and the 
production is fired. After the selected production rule is fired, the control 
cycle repeats with the modified working memory. The process terminates 
when the contents of working memory do not match any rule conditions. 

Conflict resolution chooses a rule from the conflict set for firing. Conflict 
resolution strategies may be simple, such as selecting the first rule whose 
condition matches the state of the world, or may involve complex rule 
selection heuristics. The pure production system model has no mechanism 
for recovering from dead ends in the search; it simply continues until no 
more productions are enabled and halts. Many practical implementations 
of production systems allow backtracking to a previous state of working 
memory in such situations. A schematic drawing of a production system is 
presented in Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. The production system. Control loops from the 
working memory through the production rules until no rule 

matches a working memory pattern. 
 

Example 4.1: 
The Knight’s 

Tour Revisited 

The 3 x 3 knight’s tour problem may be solved with a production system, 
Figure 4.1. Each move can be represented as a rule whose condition is the 
location of the knight on a particular square and whose action moves the 
knight to another square. Sixteen productions, presented in Table 4.1, 
represent all possible moves of the knight. 

We next specify a recursive procedure to implement a control algorithm for 
the production system. We will use the recursive path algorithm of Section 
3.1, where the third argument of the path predicate is the list of already 
visited states. Because path(Z, Z, L) will unify only with predicates 
whose first two arguments are identical, such as path(3, 3, _) or 
path(5, 5, _), it defines the desired terminating condition. If 
path(X, X, L) does not succeed we look at the production rules for a 
next state and then recur.  
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RULE #       CONDITION       ACTION 

   1                knight on square 1   move knight to square 8 

   2                knight on square 1   move knight to square 6  

    3                knight on square 2   move knight to square 9  

    4                 knight on square 2      move knight to square 7  

    5     knight on square 3   move knight to square 4  

    6    knight on square 3   move knight to square 8  

    7     knight on square 4   move knight to square 9  

    8     knight on square 4   move knight to square 3  

    9     knight on square 6   move knight to square 1  

   10     knight on square 6    move knight to square 7  

   11     knight on square 7                move knight to square 2  

   12    knight on square 7   move knight to square 6  

   13     knight on square 8    move knight to square 3  

   14                knight on square 8   move knight to square 1  

   15     knight on square 9    move knight to square 2   

   16     knight on square 9   move knight to square 4 

Table 4.1. Production rules for the 3 x 3 knight tour problem. 

The general recursive path definition is given by two predicate calculus 
formulas: 

path(Z, Z, L). 

path(X, Y, L) :-  

     move(X, Z), not(member(Z, L)),  

     path(Z, Y, [Z | L]). 

Working memory, represented by the parameters of the recursive path 
predicate, contains both the current board state and the goal state. The 
control regime applies rules until the current state equals the goal state and 
then halts. A simple conflict resolution scheme would fire the first rule that 
did not cause the search to loop. Because the search may lead to dead ends 
(from which every possible move leads to a previously visited state and thus 
a loop), the control regime must also allow backtracking; an execution of 
this production system that determines whether a path exists from square 1 
to square 2 is charted in Table 4.2.  
Production systems are capable of generating infinite loops when searching 
a state space graph. These loops are particularly difficult to spot in a 
production system because the rules can fire in any order. That is, looping 
may appear in the execution of the system, but it cannot easily be found 
from a syntactic inspection of the rule set.  
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LOOP    CURRENT    GOAL    CONFLICT RULES       USE RULE 

    0  1     2   1, 2   1 

    1  8     2   13, 14   13 

    2  3     2   5, 6   5 

    3  4              2   7, 8   7 

    4  9     2   15, 16   15 

    5  2     2    No Rules Match Halt 
Table 4.2.  The iterations of the production system finding a path from  

square 1 to square 2. 

For example, with the “move” rules of the knight’s tour problem ordered as 
in Table 4.1 and a conflict resolution strategy of selecting the first match, the 
pattern move(2, X) would match with move(2, 9), indicating a 
move to square 9. On the next iteration, the pattern move(9, X) would 
match with move(9, 2), taking the search back to square 2, causing a 
loop. The not(member(Z, L)) will check the list of visited states. The 
actual conflict resolution strategy was therefore: select the first matching move that 
leads to an unvisited state. In a production system, the proper place for 
recording such case-specific data as a list of previously visited states is not a 
global closed list but within the working memory itself, as we see in the next 
sections where the parameters of the path call make up the content of 
working memory. 

 4.2 A Production System Solution to the FWGC Problem 

Example 4.2: The 
Farmer, Wolf, 

Goat, and 
Cabbage Problem 

In Section 4.1 we described the production system and demonstrated a 
simple depth-first search for the restricted Knight’s Tour problem. In this 
section we write a production system solution to the farmer, wolf, goat, and 
cabbage (FWGC) problem. In Section 4.3 we use the simple abstract data 
types created in Chapter 3 to create depth-, breadth-, and best-first solutions 
for production system problems. The FWGC problem is stated as follows: 

A farmer with his wolf, goat, and cabbage come to the edge of a 
river they wish to cross. There is a boat at the river’s edge, but, of 
course, only the farmer can row. The boat also can carry only two 
things (including the rower) at a time. If the wolf is ever left alone 
with the goat, the wolf will eat the goat; similarly, if the goat is left 
alone with the cabbage, the goat will eat the cabbage. Devise a 
sequence of crossings of the river so that all four characters arrive 
safely on the other side of the river. 

We now create a production system solution to this problem. First, we 
observe that the problem may be represented as a search through a graph. 
To do this we consider the possible moves that might be available at any 
time in the solution process. Some of these moves are eventually ruled out 
because they produce states that are unsafe (something will be eaten). 

For the moment, suppose that all states are safe, and simply consider the 
graph of possible states. We often take this approach to problem solving, 
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relaxing various constraints so that we can see the general structure of the 
search problem. After we have described the full graph then it is often 
straightforward to add constraints that prohibit parts of the graph – the 
“illegal” states –  from further exploration. The boat can be used in four 
ways: to carry the farmer and wolf, the farmer and goat, the farmer and 
cabbage, or the farmer alone. A state of the world is some combination of 
the characters on the two banks. Several states of the search are represented 
in Figure 4.2. States of the world may be represented using the predicate, 
state(F, W, G, C), with the location of the farmer as first 
parameter, location of the wolf as second parameter, the goat as third, and 
the cabbage as fourth. We assume that the river runs “north to south” and 
that the characters are on either the east, e, or west, w, bank. Thus, 
state(w, w, w, w) has all characters on the west bank to start the 
problem. 

 

 

 

 

 

 

 

 

 

Figure 4.2. State representation and sample crossings of the F, W, G, C 
problem. 

It must be pointed out that these choices are conventions that have been 
arbitrarily chosen by the authors. Indeed, as researchers in AI continually 
point out, the selection of an appropriate representation is often the most 
critical aspect of problem solving. These conventions are selected to fit the 
predicate calculus representation in Prolog. Different states of the world are 
created by different crossings of the river, represented by changes in the 
values of the parameters of the state predicate, as in Figure 4.2. Other 
representations are certainly possible. 

We next describe a general graph for this river-crossing problem. For the 
time being, we ignore the fact that some states are unsafe. In Figure 4.3 we 
see the beginning of the graph of possible moves back and forth across the 
river. Since the farmer always rows, it is not necessary to have a separate 
representation for the location of the boat. Figure 4.3 represents part of the 
graph that is to be searched for a solution path. 
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The recursive path call described in Section 4.1 provides the control 
mechanism for the production system search. The production rules change 
state in the search. We define these if… then… rules in Prolog form. We take 
a direct approach here requiring that the pattern for the present state and the 
pattern for the next state both be placed in the head of the Horn clause, or 
to the left of :-. These are the arguments to the move predicate. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. The beginning portion of the state space graph in the  

FWGC problem, including unsafe states. 

The constraints that the production rule requires to fire and return the next 
state are placed to the right of :-. As shown in the following example, these 
conditions are expressed as unification constraints. The first rule is for the 
farmer to take the wolf across the river. This rule must account for both the 
transfer from east to west and the transfer from west to east, and it must not 
be applicable when the farmer and wolf are on opposite sides of the river. 
Thus, it must transform state(e, e, G, C) to state(w, w, G, 
C) and state(w, w, G, C) to state(e, e, G, C). It must 
also fail for state(e, w, G, C) and state(w, e, G, C). The 
variables G and C represent the fact that the third and fourth parameters can 
be bound to either e or w. Whatever their values, they remain the same after 
the move of the farmer and wolf to the other side of the river. Some of the 
states produced may indeed be “unsafe.” 

The following rule operates only when the farmer and wolf are in the same 
location and takes them to the opposite side of the river. Note that the goat 
and cabbage do not change their present location, whatever it might be. 

move(state(X, X, G, C), state(Y, Y, G, C)) :-  

     opp(X, Y). 
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opp(e, w). 

opp(w, e). 

This rule fires when a state (the present location in the graph) is presented to 
the first parameter of move in which the farmer and wolf are at the same 
location. When the rule fires, a new state, the second parameter of move, is 
produced with the value of X opposite, opp, the value of Y. Two conditions 
are satisfied to produce the new state: first, that the values of the first two 
parameters are the same and, second, that both of their new locations are 
opposite their old. 

The first condition was checked implicitly in the unification process, in that 
move is not matched unless the first two parameters are the same. This test 
may be done explicitly by using the following rule: 

move(state(F, W, G, C), state(Z, Z, G, C)) :-  

    F = W, opp(F, Z). 

This equivalent move rule first tests whether F and W are the same and, only 
if they are (on the same side of the river), assigns the opposite value of F to 
Z. Note that Prolog can do “assignment” by the binding of variable values in 
unification. Bindings are shared by all occurrences of a variable in a clause, 
and the scope of a variable is limited to the clause in which it occurs. 

Pattern matching, a powerful tool in AI programming, is especially 
important in pruning search. States that do not fit the patterns in the rule are 
automatically pruned. In this sense, the first version of the move rule offers 
a more efficient representation because unification does not even consider 
the state predicate unless its first two parameters are identical. 

Next, we create a predicate to test whether each new state is safe, so that 
nothing is eaten in the process of crossing the river. Again, unification plays 
an important role in this definition. Any state where the second and third 
parameters are the same and opposite the first parameter is unsafe: the 
wolf eats the goat. Alternatively, if the third and fourth parameters are the 
same and opposite the first parameter, the state is unsafe: the goat eats 
the cabbage. These unsafe situations may be represented with the 
following rules. 

unsafe(state(X, Y, Y, C)) :- opp(X, Y). 

unsafe(state(X, W, Y, Y)) :- opp(X, Y). 

Several points should be mentioned. First, if a state is to be not unsafe (i.e., 
safe), according to the definition of not in Prolog, neither of these unsafe 
predicates can be true. Thus, neither of these predicates can unify with the 
current state or, if they do unify, their conditions are not satisfied. Second, 
not in Prolog is not exactly equivalent to the logical ~ of the first-order 
predicate calculus; not is rather “negation by failure of its opposite.” The 
reader should test a number of states to verify that unsafe does what it is 
intended to do. Now, not unsafe is added to the previous production 
rule: 

move(state(X, X, G, C), state(Y, Y, G, C)) :- 

     opp(X, Y), not(unsafe(state(Y, Y, G, C))). 

 



 Part II: Programming in Prolog 

 

50 

The not unsafe test calls unsafe, as mentioned above, to see whether 
the generated state is an acceptable new state in the search. When all 
criteria are met, including the check in the path algorithm that the new 
state is not a member of the visited-state list, path is (recursively) called on 
this state to go deeper into the graph. When path is called, the new state is 
added to the visited-state list. 

In a similar fashion, we can create the three other production rules to 
represent the farmer taking the goat, cabbage, and himself across the river. 
We have added a writelist command to each production rule to print a 
trace of the current rule. The reverse_print_stack command is 
used in the terminating condition of path to print out the final solution 
path.  

Finally, we add a fifth “pseudorule” that always fires, because no conditions 
are placed on it, when all previous rules have failed; it indicates that the 
path call is backtracking from the current state, and then that rule itself 
fails. This pseudorule is added to assist the user in seeing what is going on as 
the production system is running. We now present the full production 
system program in Prolog to solve the farmer, wolf, goat, and cabbage 
problem. The Prolog predicates unsafe, writelist, and the ADT 
stack predicates of Section 3.3.1, must also be included: 

move(state(X, X, G, C), state(Y, Y, G, C)) :- 

     opp(X, Y), not(unsafe(state(Y, Y, G, C))), 

     writelist([`try farmer - wolf’, Y, Y, G, C]). 

move(state(X, W, X, C), state(Y, W, Y, C)) :- 

     opp(X, Y), not(unsafe(state(Y, W, Y, C))), 

     writelist([`try farmer - goat’, Y, W, Y, C]). 

move(state(X, W, G, X), state(Y, W, G, Y)) :- 

     opp(X, Y), not(unsafe(state(Y, W, G, Y))), 

     writelist([`try farmer - cabbage’, Y, W, G, Y]). 

move(state(X, W, G, C), state(Y, W, G, C)) :- 

     opp(X, Y), not(unsafe(state(Y, W, G, C))), 

     writelist([`try farmer by self’, Y, W, G, C]). 
 
move(state(F, W, G, C), state(F, W, G, C)) :- 

     writelist([ `BACKTRACK at:’, F, W, G, C]), fail. 
 
path(Goal, Goal, Been_stack) :- 

     write(`Solution Path Is: ‘ ), nl, 

     reverse_print_stack(Been_stack). 
 
path(State, Goal, Been_stack) :- 

     move(State, Next_state), 

     not(member_stack(Next_state, Been_stack)), 

     stack(Next_state, Been_stack, New_been_stack), 

     path(Next_state, Goal, New_been_stack), !. 

opp(e, w). 

opp(w, e). 
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The code is called by requesting go, which initializes the recursive path 
call. To make running the program easier, we can create a predicate, called 
test, that simplifies the input: 

go(Start, Goal) :- 

     empty_stack(Empty_been_stack), 

     stack(Start, Empty_been_stack, Been_stack), 

     path(Start, Goal, Been_stack). 

test :- go(state(w,w,w,w), state(e,e,e,e)). 

The algorithm backtracks from states that allow no further progress. You 
may also use trace to monitor the various variable bindings local to each 
call of path. It may also be noted that this program is a general program 
for moving the four creatures from any (legal) position on the banks to any 
other (legal) position, including asking for a path from the goal back to the 
start state. Other interesting features of production systems, including the 
fact that different orderings of the rules can produce different searches 
through the graph, are presented in the exercises. A partial trace of the 
execution of the F, W, G, C program, showing only rules actually used to 
generate new states, is presented next: 

?- test. 

try farmer takes goat e w e w 

try farmer takes self w w e w 

try farmer takes wolf e e e w 

try farmer takes goat w e w w 

try farmer takes cabbage e e w e 

try farmer takes wolf w w w e 

try farmer takes goat e w e e 

 BACKTRACK from e,w,e,e 

 BACKTRACK from w,w,w,e 

try farmer takes self w e w e 

try farmer takes goat e e e e 

Solution Path Is: 

state(w,w,w,w) 

state(e,w,e,w) 

state(w,w,e,w) 

state(e,e,e,w) 

state(w,e,w,w) 

state(e,e,w,e) 

state(w,e,w,e) 

state(e,e,e,e) 

In summary, this Prolog program implements a production system solution 
to the farmer, wolf, goat, and cabbage problem. The move rules make up 
the content of the production memory. The working memory is represented 
by the arguments of the path call. The production system control 
mechanism is defined by the recursive path call. Finally, the ordering of 
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rules for generation of children from each state (conflict resolution) is 
determined by the order in which the rules are placed in the production 
memory. We next present depth-, breadth-, and best-first search algorithms 
for production system based graph search. 

                4.3   Designing Alternative Search Strategies 

 As the previous subsection demonstrated, Prolog itself uses depth-first 
search with backtracking. We now show how alternative search strategies 
can be implemented in Prolog. Our implementations of depth-first, breadth-
first, and best-first search use open and closed lists to record states in the 
search. The open list contains all potential next states in the search. How the 
open list is maintained, as a stack, as a queue, or as a priority queue, 
determines which particular state is next, that is, search is in either depth-
first, breadth-first, or as best-first modes. The closed set keeps track of all 
the states that have been previously visited, and is used primarily to 
preventing looping in the graph as well as to keep track of the current path 
through the space. The details of how the open and closed data structures 
organize a search space can be found in Luger (2009, Chapter 3 and 4). 
When search fails at any point we do not backtrack. Instead, open and 
closed are updated within the path call and the search continues with these 
revised values. The cut is used to keep Prolog from storing the old versions 
of the open and closed lists. 

Depth-first 
Search 

Because the values of variables are restored when recursion backtracks, the 
list of visited states in the depth-first path algorithm of Section 4.2 records 
states only if they are on the current path to the goal. Although the testing 
each “new” state for membership in this list prevents loops, it still allows 
branches of the space to be reexamined if they are reached along paths 
generated earlier but abandoned at that time as unfruitful. A more efficient 
implementation keeps track of all the states that have ever been 
encountered. This more complete collection of states made up the members 
of the set we call closed (see Luger 2009, Chapter 3), and Closed_set in 
the following algorithm. 

Closed_set holds all states on the current path plus the states that were 
rejected when the algorithm determined they had no usable children; thus, it 
no longer represents the path from the start to the current state. To capture 
this path information, we create the ordered pair [State, Parent] to 
keep track of each state and its parent; the Start state is represented by 
[Start, nil]. These state–parent pairs will be used to re-create the 
solution path from the Closed_set. 

We now present a shell structure for depth-first search in Prolog, keeping 
track of both open and closed and checking each new state to be sure it was 
not previously visited. path has three arguments, the Open_stack, 
Closed_set, maintained as a set, and the Goal state. The current state, 
State, is the next state on the Open_stack. The stack and set operators 
are found in Section 3.3. 

Search starts by calling a go predicate that initializes the path call. Note 
that go places the Start state with the nil parent, [Start, nil], 
alone on Open_stack; the Closed_set is empty: 
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go(Start, Goal) :- 

     empty_stack(Empty_open), 

     stack([Start, nil], Empty_open, Open_stack), 

     empty_set(Closed_set), 

     path(Open_stack, Closed_set, Goal). 

The three-argument path call is: 
path(Open_stack, _, _) :- 

     empty_stack(Open_stack), 

     write(’No solution found with these rules’). 

path(Open_stack, Closed_set, Goal) :- 

     stack([State, Parent], _, Open_stack),  

     State = Goal, 

     write(`A Solution is Found!’), nl, 

     printsolution([State, Parent], Closed_set). 

path(Open_stack, Closed_set, Goal) :- 

     stack([State, Parent], Rest_open_stack,   
          Open_stack), 

     get_children(State, Rest_open_stack, Closed_set,  
          Children), 

     add_list_to_stack(Children, Rest_open_stack,  
          New_open_stack), 

union([[State, Parent]], Closed_set,  
          New_closed_set), 

path(New_open_stack, New_closed_set, Goal), !. 
 
get_children(State, Rest_open_stack, Closed_set,  
          Children) :- 

bagof(Child, moves(State, Rest_open_stack, 
    Closed_set, Child), Children). 
 
moves(State, Rest_open_stack, Closed_set, [Next,  

      State]) :- 

move(State, Next), 

not(unsafe(Next)),  % test depends on problem 

not(member_stack([Next,_], Rest_open_stack)), 

not(member_set([Next,_], Closed_set)). 

We assume a set of move rules appropriate to the problem, and, if 
necessary, an unsafe predicate: 

move(Present_state, Next_state) :- …     % test rules 

move(Present_state, Next_state) :- …    

… 

The first path call terminates search when the Open_stack is empty, 
which means there are no more states on the open list to continue the 
search. This usually indicates that the graph has been exhaustively searched. 
The second path call terminates and prints out the solution path when the 
solution is found. Since the states of the graph search are maintained as 
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[State, Parent] pairs, printsolution will go to the 
Closed_set and recursively rebuild the solution path. Note that the 
solution is printed from start to goal. 

printsolution([State, nil], _) :- write(State), nl. 

printsolution([State, Parent], Closed_set) :- 

    member_set([Parent, Grandparent], Closed_set), 

    printsolution([Parent, Grandparent], Closed_set), 

    write(State), nl. 

The third path call uses bagof, a Prolog built-in predicate standard to most 
interpreters. bagof lets us gather all the unifications of a pattern into a 
single list. The second parameter to bagof is the pattern predicate to be 
matched in the database. The first parameter specifies the components of 
the second parameter that we wish to collect. For example, we may be 
interested in the values bound to a single variable of a predicate. All bindings 
of the first parameter resulting from these matches are collected in a list, the 
bag, and bound to the third parameter. 

In this program, bagof collects the states reached by firing all of the 
enabled production rules. Of course, this is necessary to gather all 
descendants of a particular state so that we can add them, in proper order, to 
open. The second argument of bagof, a new predicate named moves, 
calls the move predicates to generate all the states that may be reached using 
the production rules. The arguments to moves are the present state, the 
open list, the closed set, and a variable that is the state reached by a good 
move. Before returning this state, moves checks that the new state, Next, 
is not a member of either rest_open_stack, open once the present 
state is removed, or closed_set. bagof calls moves and collects all 
the states that meet these conditions. The third argument of bagof 
represents the new states that are to be placed on the Open_stack. 

For some Prolog interpreters, bagof fails when no matches exist for the 
second argument and thus the third argument, List, is empty. This can be 
remedied by substituting (bagof(X, moves(S, T, C, X), 
List); List = [ ]) for the current calls to bagof in the code. 

Finally, because the states of the search are represented as state–parent pairs, 
member check predicates, e.g., member_set, must be revised to reflect 
the structure of pattern matching. We test if a state–parent pair is identical 
to the first element of the list of state–parent pairs and then recur if it isn’t: 

member_set([State, Parent], [[State, Parent]|_]). 

member_set(X, [_|T]) :- member_set(X, T). 

Breadth-first 
Search 

We now present the shell of an algorithm for breadth-first search using 
explicit open and closed lists. This algorithm is called by: 

go(Start, Goal) :- 

     empty_queue(Empty_open_queue), 

     enqueue([Start, nil], Empty_open_queue,  
          Open_queue),  

     empty_set(Closed_set), 

     path(Open_queue, Closed_set, Goal). 
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Start and Goal have their obvious values. The shell can be used with the 
move rules and unsafe predicates for any search problem. Again we create 
the ordered pair [State, Parent], as we did with depth-first search, 
to keep track of each state and its parent; the start state is represented by 
[Start, nil]. This will be used by printsolution to re-create the 
solution path from the Closed_set. The first parameter of path is the 
Open_queue, the second is the Closed_set, and the third is the 
Goal. Don’t care variables, those whose values are not used in a clause, are 
written as “_”. 

path(Open_queue, _, _) :- 

     empty_queue(Open_queue), 

     write(’Graph searched, no solution found.’). 

path(Open_queue, Closed_set, Goal) :- 

     dequeue([State, Parent], Open_queue, _),  

     State = Goal, 

     write(’Solution path is: ‘), nl, 

     printsolution([State, Parent], Closed_set). 

path(Open_queue, Closed_set, Goal) :- 

     dequeue([State, Parent], Open_queue,  
          Rest_open_queue), 

get_children(State, Rest_open_queue,  
          Closed_set, Children), 

     add_list_to_queue(Children, Rest_open_queue,                        
          New_open_queue), 

     union([[State, Parent]], Closed_set, 
          New_closed_set), 

     path(New_open_queue, New_closed_set, Goal), !. 

get_children(State, Rest_open_queue, Closed_set,  
          Children) :- 

     bagof(Child, moves(State, Rest_open_queue,  
          Closed_set, Child), Children). 

moves(State, Rest_open_queue, Closed_set, [Next,  
          State]) :- 

     move(State, Next), 

     not(unsafe(Next)),     %test depends on problem 

     not(member_queue([Next,_], Rest_open_queue)), 

     not(member_set([Next,_], Closed_set)). 

This algorithm is a shell in that no move rules are given. These must be 
supplied to fit the specific problem domain, such as the FWGC problem of 
Section 4.2. The queue and set operators are found in Section 3.3. 

The first path termination condition is defined for the case that path is 
called with its first argument, Open_queue, empty. This happens only 
when no more states in the graph remain to be searched and the solution 
has not been found. A solution is found in the second path predicate when 
the head of the open_queue and the Goal state are identical. When 
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path does not terminate, the third call, with bagof and moves 
predicates, gathers all the children of the current state and maintains the 
queue. (The detailed actions of these two predicates were described in 
Section 4.3.2.) In order to recreate the solution path, we saved each state as a 
state–parent pair, [State, Parent]. The start state has the parent 
nil. As noted in Section 4.3.1, the state–parent pair representation makes 
necessary a slightly more complex pattern matching in the member, 
moves, and printsolution predicates. 

Best-first 
Search 

Our shell for best-first search is a modification of the breadth-first algorithm 
in which the open queue is replaced by a priority queue, ordered by heuristic 
merit, which supplies the current state for each new call to path. In our 
algorithm, we attach a heuristic measure permanently to each new state on 
open and use this measure for ordering the states on open. We also retain 
the parent of each state. This information is used by printsolution, as 
in depth- and breadth-first search, to build the solution path once the goal is 
found. 

To keep track of all required search information, each state is represented as 
a list of five elements: the state description, the parent of the state, an integer 
giving the depth in the graph of the state’s discovery, an integer giving the 
heuristic measure of the state, and the integer sum of the third and fourth 
elements. The first and second elements are found in the usual way; the third 
is determined by adding one to the depth of its parent; the fourth is 
determined by the heuristic measure of the particular problem. The fifth 
element, used for ordering the states on the open_pq, is f(n) = g(n) 
+ h(n). A justification for using this approach to order states for heuristic 
search, usually referred to as the A Algorithm, is presented in Luger (2009, 
Chapter 4). 

As before, the move rules are not specified; they are defined to fit the 
specific problem. The ADT operators for set and priority queue are presented 
in Section 3.3. heuristic, also specific to each problem, is a measure 
applied to each state to determine its heuristic weight, the value of the 
fourth parameter in its descriptive list. 

This best-first search algorithm has two termination conditions and is called 
by: 

go(Start, Goal) :- 

     empty_set(Closed_set), 

     empty_pq(Open), 

     heuristic(Start, Goal, H), 

     insert_pq([Start, nil, 0, H, H], Open, Open_pq), 

     path(Open_pq, Closed_set, Goal). 

nil is the parent of Start and H its heuristic evaluation. The code for 
best-first search is: 

path(Open_pq, _,_) :- 

     empty_pq(Open_pq), 

     write(’Graph searched, no solution found.’). 
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path(Open_pq, Closed_set, Goal) :- 
     dequeue_pq([State, Parent, _, _, _], Open_pq,_), 
     State = Goal, 
     write(’The solution path is: ‘), nl, 
     printsolution([State, Parent, _, _, _],  
          Closed_set). 

path(Open_pq, Closed_set, Goal) :- 

     dequeue_pq([State, Parent, D, H, S], Open_pq,  
          Rest_open_pq), 

     get_children([State, Parent, D, H, S],  
          Rest_open_pq, Closed_set, Children, Goal), 

     insert_list_pq(Children, Rest_open_pq,  
          New_open_pq), 

     union([[State, Parent, D, H, S]], Closed_set,  
          New_closed_set), 

     path(New_open_pq, New_closed_set, Goal), !. 

get_children is a predicate that generates all the children of State. It 
uses bagof and moves predicates as in the previous searches, with details 
earlier this Section. A set of move rules, a safe check for legal moves, and 
a heuristic must be specifically defined for each application. The 
member check must be specifically designed for five element lists. 

get_children([State,_,D,_, _],Rest_open_pq, 
          Closed_set,Children,Goal)  :-    

     bagof(Child, moves([State, _, D, _, _],  
          Rest_open_pq, Closed_set, Child,Goal),  
          Children). 

moves([State, _, Depth, _, _], Rest_open_pq,  
          Closed_set,[Next,State,New_D,H,S], Goal) :- 

     move(State, Next),  

     not(unsafe(Next)),      % application specific 

     not(member_pq([Next, _, _, _, _],Rest_open_pq)),  

     not(member_set([Next, _, _, _, _],Closed_set)), 

     New_D is Depth + 1, 

     heuristic(Next, Goal, H), % application specific 

     S is New_D + H. 

printsolution prints the solution path, recursively finding state–parent 
pairs by matching the first two elements in the state description with the 
first two elements of the five element lists that make up the Closed_set.  

printsolution([State, nil, _, _, _], _) :- 

     write(State), nl. 

printsolution([State, Parent, _, _, _], Closed_set):- 

     member_set([Parent, Grandparent, _, _, _],  
          Closed_set), 

     printsolution([Parent, Grandparent, _, _, _],     
          Closed_set), 

     write(State), nl. 
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In Chapter 5 we further generalize the approach taken so far in that we 
present a set of built-in Prolog meta-predicates, predicates like bagof, that 
explicitly manipulate other Prolog predicates. This will set the stage for 
creating meta-interpreters in Chapter 6. 

                         Exercises 

 1. Take the path algorithm presented for the knight’s tour problem in the 
text. Rewrite the path call in the recursive code to the following form: 

path(X, Y) :- path(X, W), move(W, Y). 

Examine the trace of this execution and describe what is happening. 

2. Write the Prolog code for the farmer, wolf, goat, and cabbage problem, 
Section 4.2: 

A. Execute this code and draw a graph of the search space. 
B. Alter the rule ordering to produce alternative solution paths. 
C. Use the shell in the text to produce a breadth-first problem. 
D. Describe a heuristic that might be appropriate for this problem. 
E. Build the heuristic search solution. 

3. Do A - E as in Exercise 2 to create a production system solution for the 
Missionary and Cannibal problem. Hint: you may want the is operator, 
see Section 5.3. 

Three missionaries and three cannibals come to the bank of a 
river they wish to cross. There is a boat that will hold only 
two, and any of the group is able to row. If there are ever 
more missionaries than cannibals on any side of the river the 
cannibals will get converted. Devise a series of moves to get 
all the people across the river with no conversions. 

4. Use and extend your code to check alternative forms of the missionary 
and cannibal problem—for example, when there are four missionaries and 
four cannibals and the boat holds only two. What if the boat can hold 
three? Try to generalize solutions for the whole class of missionary and 
cannibal problems.  

5. Write a production system Prolog program to solve the full 8 x 8 
Knight’s Tour problem. Do tasks A - E as described in Exercise 2. 

6. Do A - E as in Exercise 2 above for the Water Jugs problem: 

There are two jugs, one holding 3 and the other 5 gallons of 
water. A number of things can be done with the jugs: they can 
be filled, emptied, and dumped one into the other either until 
the poured-into jug is full or until the poured-out-of jug is 
empty. Devise a sequence of actions that will produce 4 
gallons of water in the larger jug. (Hint: use only integers.) 

 

 


