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 5.1 Meta-Interpreters, Types, and Unification 

Meta-Logical 
Predicates 

In this chapter we first consider a set of powerful Prolog predicates, called 
meta-predicates. These predicates take as their scope other predicates in the 
Prolog environment. Thus they offer tools for building meta-interpreters, 
interpreters in a language that are able to interpret specifications in that 
language. An example will be to build a rule interpreter in Prolog, an 
interpreter that can manipulate and interpret rule sets, specified in Prolog 
syntax. These interpreters can also be used to query the user, offer 
explanations of the interpreter’s decisions, implement multi-valued or 
fuzzy logics, and run any Prolog code. 

In Section 5.1 we introduce a useful set of meta-predicates. In Section 5.2 
we discuss data typing for Prolog and describe how type constraints can 
be added to a prolog system. An example of a typed relational database in 
Prolog is given. Finally, in Section 5.3, we discuss unification and 
demonstrate with difference lists how powerful this can be. 

Meta-logical constructs extend the expressive power of any programming 
environment. We refer to these predicates as meta because they are 
designed to match, query, and manipulate other predicates that make up 
the specifications of the problem domain. That is, they can be used to 
reason about Prolog predicates rather than the terms or objects these 
other predicates denote. We need meta-predicates in Prolog for (at least) 
five reasons: 
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 To determine the “type” of an expression; 
 To add “type” constraints to logic programming applications; 
 To build, take apart, and evaluate Prolog structures; 
 To compare values of expressions; 
 To convert predicates passed as data to executable code. 

We have actually seen a number of meta-predicates already. In Chapter 2 
we described how global structures, which are those that can be accessed 
by the entire clause set, are entered into a Prolog program. The command 
assert(C) adds the clause C to the current set of clauses. There are 
dangers associated with programming with predicates such as assert 
and retract. Because these predicates are able to create and remove 
global structures, they can introduce side effects into the program, and 
may cause other problems associated with poorly structured programs. 
Yet, it is sometimes necessary to use global structures to draw on the 
power of Prolog’s built-in database and pattern matching. We do this 
when creating semantic nets and frames in a Prolog environment, as in 
Section 2.4. We may also use global structures to describe new results as 
they are found with a rule-based expert system shell, as in Section 6.2. We 
want this information to be global so that other predicates (rules) may 
access it when appropriate. 

Other meta-predicates that are useful for manipulating representations 
include: 

var(X) succeeds only when X is an unbound variable. 
nonvar(X) succeeds only when X is bound to a nonvariable term. 

=.. creates a list from a predicate term. 

For example, foo(a, b, c) =.. Y unifies Y with [foo, a, b, 
c]. The head of the list Y is the predicate name, and its tail is the 
predicate’s arguments. =.. also can be used to bind alternative variable 
patterns, of course. Thus, if X =.. [foo, a, b, c] succeeds, then 
X has the value foo(a, b, c). 

 functor(A, B, C) succeeds with A a term whose principal    
 functor has name B and arity C. 

For example, functor(foo(a, b), X, Y) will succeed with 
variables X = foo and Y = 2. functor(A, B, C) can also be used 
with any of its arguments bound in order to produce the others, such as all 
the terms with a certain name and/or arity. 

clause(A, B) unifies B with the body of a clause whose head is A. 

For example, if p(X) :- q(X) exists in the database, then 
clause(p(a), Y) will succeed with Y = q(a). This is useful for 
controlling rule chaining in an interpreter, as seen in Chapter 6. 

any_predicate(…, X, …) :- X executes predicate X, the  
        argument of any predicate. 

Thus a predicate, here X, may be passed as a parameter and executed at 
any desired time. call(X), where X is a clause, also succeeds with the 
execution of predicate X.  
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This short list of meta-logical predicates will be very important in building 
and interpreting AI data structures. Because Prolog can manipulate its 
own structures in a straightforward fashion, it is easy to implement 
interpreters that modify the Prolog semantics, as we see next. 

 5.2 Introduction: Logic-Based Representation Types in Prolog 

 For a number of problem-solving applications, the unconstrained use of 
unification can introduce unintended error. Prolog is an untyped language, 
in that unification simply matches patterns, without restricting them 
according to data type. For example, append(nil, 6, 6) can be 
inferred from the definition of append, as we will see in Chapter 10. 
Strongly typed languages such as Pascal have shown how type checking 
helps programmers avoid these problems. Researchers have proposed 
adding types to Prolog (Neves et al. 1986, Mycroft and O’Keefe 1984). 

Typed data are particularly appropriate in a relational database (Neves et 
al. 1986, Malpas 1987). The rules of logic can be used as constraints on the 
data and the data can be typed to enforce consistent and meaningful 
interpretation of the queries. Suppose that a department store database has 
inventory, suppliers, supplier_inventory, and other 
appropriate relations. We define a database as relations with named fields 
that can be thought of as sets of tuples. For example, inventory might 
consist of 4-tuples, where: 

< Pname, Pnumber, Supplier, Weight >  inventory 

only when Supplier is the supplier name of an inventory item 
numbered Pnumber that is called Pname and has weight Weight. 
Suppose further: 

< Supplier, Snumber, Status, Location >  suppliers 

only when Supplier is the name of a supplier numbered Snumber 
who has status Status and lives in city Location. Suppose finally: 

< Supplier, Pnumber, Cost, Department >   
     supplier_inventory 

only if Supplier is the name of a supplier of part number Pnumber in 
the amount of Cost to department Department. 

We may define Prolog rules that implement various queries and perform 
type checking across these relationships. For instance, the query “are there 
suppliers of part number 1 that live in London?” is given in Prolog as: 

?- getsuppliers(Supplier,1, london). 

The rule: 
getsuppliers(Supplier, Pnumber, City) :- 

     cktype(City, suppliers, city), 

     suppliers(Supplier, _, _,City), 

     cktype(Pnumber, inventory, number), 

     supplier_inventory(Supplier, Pnumber, _, _), 

     cktype(Supplier, inventory, name). 
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implements this query and also enforces the appropriate constraints across 
the tuples of the database. First the variables Pnumber and City are 
bound when the query unifies with the head of the rule; the predicate 
cktype tests that Supplier is an element of the set of suppliers, that 
1 is a legitimate inventory number, and that london is a suppliers’ city. 

We define cktype to take three arguments: a value, a relation name, and 
a field name, and to check that each value is of the appropriate type for 
that relation. For example, we may define lists of legal values for 
Supplier, Pnumber, and City and enforce data typing by requiring 
member checks of candidate values across these lists. Alternatively, we 
may define logical constraints on possible values of a type; for example, 
we may require that inventory numbers be less than 1000. 

We should note the differences in type checking between standard 
languages such as Pascal and Prolog. We might define a Pascal data type 
for suppliers as: 

type supplier = record 

     sname: string; 

     snumber: integer; 

     status: boolean; 

     location: string 

     end 

The Pascal programmer defines new types, here supplier, in terms of 
already defined types, such as boolean or integer. When the 
programmer uses variables of this type, the compiler automatically 
enforces type constraints on their values. 

In Prolog, we can represent the supplier relation as instances of the form: 

supplier(sname(Supplier), 

     snumber(Snumber), 

     status(Status), 

     location(Location)). 

We then implement type checking by using rules such as 
getsuppliers and cktype. The distinction between Pascal and 
Prolog type checking is clear and important: the Pascal type declaration 
tells the compiler the form for both the entire structure (record) and the 
individual components (boolean, integer, string) of the data 
type. In Pascal we declare variables to be of a particular type (record) 
and then create procedures to access these typed structures. 

procedure changestatus (X: supplier); 

     begin 

          if X.status then. … 

Because it is nonprocedural, Prolog does not separate the declaration from 
the use of data types, and type checking is done as the program is 
executing. Consider the rule: 
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supplier_name(supplier(sname(Supplier), 
              snumber(Snumber), 
              status(true),  
              location (london))) :-  

     integer(Snumber), write(Supplier). 

supplier_name takes as argument an instance of the supplier 
predicate and writes the name of the Supplier. However, this rule will 
succeed only if the supplier’s number is an integer, the status is active 
(true), and the supplier lives in london. An important part of this type 
check is handled by the unification algorithm (status and 
location) and the rest is the built-in system-predicate integer. 
Further constraints could restrict values to be from a particular list; for 
example, Snumber could be constrained to be from a list of supplier 
numbers. We define constraints on database queries using rules such as 
cktype and supplier_name to implement type checking when the 
program is executed. 

So far, we have seen three ways that data may be typed in Prolog. First, 
and most powerful, is the program designer’s use of unification and 
syntactic patterns to constrain variable assignment. Second, Prolog itself 
provides predicates to do limited type checking. We saw this with meta-
predicates such as var(X), clause(X,Y), and integer(X). The 
third use of typing occurred in the inventory example where rules checked 
lists of legitimate Supplier, Pnumbers, and Cities to enforce type 
constraints. 

A fourth, and more radical approach is the complete predicate and data 
type check proposed by Mycroft and O’Keefe (1984). Here all predicate 
names are typed and given a fixed arity. Furthermore, all variable names 
are themselves typed. A strength of this approach is that the constraints 
on the constituent predicates and variables of the Prolog program are 
themselves enforced by a (meta) Prolog program. Even though the result 
may be slower program execution, the security gained through total type 
enforcement may justify this cost. 

To summarize, rather than providing built-in type checking as a default, 
Prolog allows run-time type checking under complete programmer 
control. This approach offers a number of benefits for AI programmers, 
including the following: 

1. The programmer is not forced to adhere to strong type 
checking at all times. This allows us to write predicates that 
work across any type of object. For example, the member 
predicate performs general member checking, regardless of 
the type of elements in the list. 

2. User flexibility with typing helps exploratory programming. 
Programmers can relax type checking in the early stages of 
program development and introduce it to detect errors as 
they come to better understand the problem. 

3. AI representations seldom conform to the built-in data types 
of languages such as Pascal, C++, or Java. Prolog allows 
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types to be defined using the full power of predicate 
calculus. The database example showed this flexibility. 

4. Because type checking is done at run time rather than 
compile time, the programmer determines when the 
program should perform a check. This allows programmers 
to delay type checking until it is necessary or until certain 
variables have become bound. 

5. Programmer control of type checking at run time also 
supports the creation of programs that build and enforce 
new types during execution. This can be of use in a learning 
or a natural language processing program, as we see in 
Chapters 7, 8, and 9. 

In the next section we take a closer look at unification in Prolog. As we 
noted earlier, unification is the technical name for pattern matching, 
especially when applied to expressions in the Predicate Calculus. The 
details for implementing this algorithm may be found in Luger (2009, 
Section 2.3). In Prolog, unification is implemented with backtracking that 
supports full systematic instantiation of all values defined for the problem 
domain.  To master the art of Prolog programming the sequential actions 
of the interpreter, sometimes referred to as Prolog’s “procedural 
semantics” must be fully understood. 

 5.3 Introduction: Logic-Based Representatio Unification, Engine of Variable Binding and Evaluation 

 An important feature of Prolog programming is the interpreter’s behavior 
when considering a problem’s specification and faced with a particular 
query. The query is matched with the set of specifications to see under 
what constraints it might be true. The interpreter’s action, left-to-right 
depth first backtracking across all specified variable bindings, is a variation 
of the search of a resolution-based reasoning system.  

But Prolog is NOT a full mathematically sound theorem prover, as it lacks 
several important constraints, including the occurs check, and Prolog also 
supports the use of cut. For details see Luger 2009, Section 14.3). The 
critical point is that Prolog performs a systematic search across database 
entries, rather than, as in traditional languages, a sequential evaluation of 
statements and expressions. This has an important result: variables are 
bound (assigned values or instantiated) by unification and not by an 
evaluation process, unless, of course, an evaluation is explicitly requested. 
This paradigm for programming has several implications. 

The first and perhaps most important result is the relaxation of the 
requirement to specify variables as input or output. We saw this power 
briefly with the member predicate in Chapter 2 and will see it again with 
the append predicate in Chapter 10. append can either join lists 
together, test whether two lists are correctly appended, or break a list into 
parts consistent with the definition of append. We use unification as a 
constraint handler for parsing and generating natural language sentences in 
Chapters 7 and 8. 

Unification is also a powerful technique for rule-based and frame-based 
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expert systems. All production systems require a form of this matching, 
and it is often necessary to write a unification algorithm in languages that 
don’t provide it, see, for example, Section 15.1 for a Lisp implementation 
of unification. 

An important difference between unification-based computing and the use 
of more traditional languages is that unification performs syntactic 
matches (with appropriate parameter substitutions) on structures. It does 
not evaluate expressions. Suppose, for example, we wished to create a 
successor predicate that succeeds if its second argument is the 
arithmetic successor of its first argument. Not understanding the 
unification/evaluation paradigm, we might be tempted to define 
successor: 

successor (X, Y) :- Y = X + 1. 

This will fail because the = operator does not evaluate its arguments but 
only attempts to unify the expressions on either side. This predicate 
succeeds if Y unifies with the structure X + 1. Because 4 does not unify 
with 3 + 1, the call successor(3, 4) fails! On the other hand, 
demonstrating the power of unification, = can test for equivalence, as 
defined by determining whether substitutions exist that can make any two 
expressions equivalent. For example, whether: 

friends (X, Y) = friends(george, kate). 

In order to correctly define successor (and other related arithmetic 
predicates), we need to be able to evaluate arithmetic expressions. Prolog 
provides an operator, is, for just this task. is evaluates the expression on 
its right-hand side and attempts to unify the result with the object on its 
left. Thus: 

X is Y + Z. 

unifies X with the value of Y added to Z. Because it performs arithmetic 
evaluation, if Y and Z do not have values (are not bound at execution 
time), the evaluation of is causes a run-time error.  Thus, X is Y + Z 
cannot (as one might think with a declarative programming language) give 
a value to Y when X and Z are bound. Therefore programs must use is to 
evaluate expressions with arithmetic operators, +, –, *, /, and mod. 

Finally, as in the predicate calculus, variables in Prolog may have one and 
only one binding within the scope of a single expression. Once given a 
value, through local assignment or unification, variables can never take on 
a new value, except through backtracking in the and/or search space of 
the current interpretation. Upon backtracking, all the instances of the 
variable within the scope of the expression take on the new value. Thus, 
is cannot function as a traditional assignment operator; and expressions 
such as X is X + 1 will always fail. 

Using is, we now properly define successor(X, Y) where the 
second argument has a numeric value that is one more than the first: 

successor (X, Y) :- Y is X + 1. 

successor will now have the correct behavior as long as X is bound to 
a numeric value at the time that the successor predicate is called. 
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successor can be used either to compute Y, given X, or to test values 
assigned to X and Y: 

?- successor (3, X). 

X = 4 

Yes 

?- successor (3, 4). 

Yes 

?- successor (4, 2). 

No 

?- successor (Y, 4). 

failure, error in arithmetic expression 

since Y is not bound at the time that successor is called. 

As this discussion illustrates, Prolog does not evaluate expressions as a 
default as in traditional languages such as C++ and Java. The programmer 
must explicitly call for evaluation and assignment using is. Explicit 
control of evaluation, as also found in Lisp, makes it easy to treat 
expressions as data, passed as parameters, and creating or modifying them 
as needed within the program. This feature, like the ability to manipulate 
predicate calculus expressions as data and execute them using call, 
greatly simplifies the development of different interpreters, such as the 
expert system shell of the next chapter. 

We close this discussion of the power of unification-based computing 
with an example that does string catenation through the use of difference 
lists. As an alternative to the standard Prolog list notation, we can 
represent a list as the difference of two lists. For example, [a, b] is 
equivalent to [a, b | [ ] ] – [ ] or [a, b, c] – [c]. 
This representation has certain expressive advantages over the traditional 
list syntax. When the list [a, b] is represented as the difference [a, b 
| Y] – Y, it actually describes the potentially infinite class of all lists 
that have a and b as their first two elements. Now this representation has 
an interesting property, namely addition: 

X – Z = X – Y + Y – Z 

We can use this property to define the following single-clause logic 
program where X – Y is the first list, Y – Z is the second list, and X – 
Z is the result of catenating them, as in Figure 5.1: We create the predicate 
catenate that takes two list X and Y and creates Z: 

catenate(X – Y, Y – Z, X – Z). 

This operation joins two lists of any length in constant time by unification 
on the list structures, rather than by repeated assignment based on the 
length of the lists (as with append, Chapter 10).  Thus, the catenate 
call gives: 

?- catenate ([a, b  Y] – Y, [1, 2, 3] – [ ], W). 

Y = [1, 2, 3] 

W = [a, b, 1, 2, 3] – [ ] 
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Figure 5.1 Tree diagrams: list catenation using difference lists. 

As may be seen in Figure 5.1, the (subtree) value of Y in the second 
parameter is unified with both occurrences of Y in the first parameter of 
catenate. This demonstrates the power of unification, not simply for 
substituting values for variables but also for matching general structures: 
all occurrences of Y take the value of the entire subtree. The example also 
illustrates the advantages of an appropriate representation. Thus difference 
lists represent a whole class of lists, including the desired catenation. 

In this section we have discussed a number of idiosyncrasies and 
advantages of Prolog’s unification-based approach to computing. 
Unification is at the heart of Prolog’s declarative semantics. For a more 
complete discussion of Prolog’s semantics see Luger (2009, Section 14.3). 

In Chapter 6 we use Prolog’s declarative semantics and unification-based 
pattern matching to design three meta-interpreters: Prolog in Prolog, the 
shell for an expert system, and a planner. 
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 Exercises 

 1. Create a type check that prevents the member check predicate (that 
checks whether an item is a member of a list of items) from crashing when 
called on member(a, a). Will this “fix” address the append(nil, 
6, 6) anomaly that is described in Chapter 9? Test it and see. 

2. Create the “inventory supply” database of Section 5.2. Build type checks 
for a set of six useful queries on these data tuples.  

3. Is the difference list catenate really a linear time append (Chapter 
10)? Explain. 

4. Explore the powers of unification. Use trace to see what happens 
when you query the Prolog interpreter as follows. Can you explain what is 
happening? 

 a: X = X + 1 

  b: X is X + 1 

 c:  X = foo(X) 

 

 


