

87

 7 Machine Learning Algorithms in Prolog

Chapter

Objectives
Two different machine learning algorithms
 Version space search
 Specific-to-general
 Candidate elimination
 Explanation-based learning
 Learning from examples
 Generalization
Prolog meta-predicates and interpreters for learning
 Version space search
 Explanation-based learning

Chapter
Contents

7.1 Machine Learning: Version Space Search
7.2 Explanation Based Learning in Prolog

 7.1 Machine Learning: Version Space Search

 In this section and the next, we implement two machine learning
algorithms: version space search and explanation-based learning. The algorithms
themselves are presented in detail in Luger (2009, Chapter 10). In this
chapter, we first briefly summarize them and then implement them in
Prolog. Prolog is used for machine learning because, as these
implementations illustrate, in addition to the flexibility to respond to novel
data elements provided by its powerful built-in pattern matching, its meta-
level reasoning capabilities simplify the construction and manipulation of
new representations.

The Version
Space Search

Algorithm

Version space search (Mitchell 1978, 1979, 1982) illustrates the
implementation of inductive learning as search through a concept space. A
concept space is a state space representation of all possible generalizations
from data in a problem domain. Version space search takes advantage of
the fact that generalization operations impose an ordering on the concepts
in a space, and then uses this ordering to guide the search.
Generalization and specialization are the most common types of operations for
defining a concept space. The primary generalization operations used in
machine learning and expressed in the predicate calculus (Luger 2009,
Chapter 2) are:
Replacing constants with variables. For example:

color(ball,red)

generalizes to
color(X,red)

88 Part II: Programming in Prolog

Dropping conditions from a conjunctive expression.
shape(X, round) ^ size(X, small) ^ color(X, red)

generalizes to

shape(X,round) ^ color(X,red)
Adding a disjunct to an expression.

shape(X,round) ^ size(X,small) ^ color(X,red)
generalizes to

shape(X,round) ^ size(X,small) ^ (color(X,red) v
 color(X,blue))

Replacing a property with its parent in a class hierarchy. If
primary_color is a superclass of red, then

color(X,red)

generalizes to

color(X, primary_color)

We may think of generalization in set theoretic terms: let P and Q be the
sets of sentences matching the predicate calculus expressions p and q,
respectively. Expression p is more general than q iff Q ⊆ P. In the above
examples, the set of sentences that match color(X, red) contains the
set of elements that match color(ball, red). Similarly, in example
2, we may think of the set of round, red things as a superset of the set of
small, red, round things. Note that the “more general than” relationship
defines a partial ordering on the space of logical sentences. We express this
using the “>” symbol, where p > q means that p is more general than q.
This ordering is a powerful source of constraints on the search performed
by a learning algorithm.

We formalize this relationship through the notion of covering. If concept p
is more general than concept q, we say that p covers q. We define the
covers relation: let p(x) and q(x) be descriptions that classify objects as
being positive examples of a concept. In other words, for an object x,
p(x) positive(x) and q(x) positive(x). p covers q
iff q(x) positive(x) is a logical consequence of p(x)
positive(x).
For example, color(X, Y) covers color(ball, Z), which in turn
covers color(ball, red). As a simple example, consider a domain
of objects that have properties and values:

Sizes = {large, small}

Colors = {red, white, blue}

Shapes = {ball, brick, cube}

These objects can be represented using the predicate obj(Sizes,
Color, Shapes). The generalization operation of replacing constants
with variables defines the space of Figure 7.1. We may view inductive
learning as searching this space for a concept that is consistent with all the
training examples.

 Chapter 7 Machine Learning 89

Figure 7.1. An example concept space.
We next present the candidate elimination algorithm (Mitchell 1982) for
searching the concept space. This algorithm relies on the notion of a version
space, which is the set of all concept descriptions consistent with the
training examples. This algorithm works by reducing the size of the version
space as more examples become available. The first two versions of this
algorithm reduce the version space in a specific to general direction and a
general to specific direction, respectively. The third version, called candidate
elimination, combines these approaches into a bi-directional search. These
versions of the candidate elimination algorithm are data driven; they
generalize based on regularities found in the training data. Also, in using
training data of known classification, these algorithms perform a variety of
supervised learning.

Version space search uses both positive and negative examples of the
target concept. Although it is possible to generalize from positive examples
only, negative examples are important in preventing the algorithm from
over generalizing. Not only must the learned concept be general enough to
cover all positive examples; it also must be specific enough to exclude all
negative examples. In the space of Figure 7.1, one concept that would
cover all sets of exclusively positive instances would simply be obj(X,
Y, Z). However, this concept is probably too general, because it implies
that all instances belong to the target concept. One way to avoid
overgeneralization is to generalize as little as possible to cover positive
examples; another is to use negative instances to eliminate overly general
concepts. As Figure 7.2 illustrates, negative instances prevent
overgeneralization by forcing the learner to specialize concepts in order to
exclude negative instances. The algorithms of this section use both of these
techniques.

We define specific to general search, for hypothesis set S, as:

90 Part II: Programming in Prolog

Figure 7.2. The role of negative examples in preventing
overgeneralization.

Begin
Initialize S to first positive training instance;

N is the set of all negative instances seen so far;

For each positive instance p

 Begin

 For every s in S, if s does not match p,

 Replace s with its most specific
 generalization that matchs p;

 Delete from S all hypotheses more general than
 some other hypothesis in S;

 Delete from S all hypotheses that match a prev-
 iously observed negative instance in N;

 End;

For every negative instance n

 Begin

 Delete all members of S that match n;

 Add n to N to check future hypotheses
 for overgeneralization;

 End;

End

Specific to general search maintains a set, S, of hypotheses, or candidate
concept definitions. To avoid overgeneralization, these candidate
definitions are the maximally specific generalizations from the training data. A
concept, c, is maximally specific if it covers all positive examples, none of
the negative examples, and for any other concept, c’, that covers the
positive examples, c < c’. Figure 7.3 shows an example of applying this
algorithm to the version space of Figure 7.1. The specific to general
version space search algorithm is built in Prolog in Section 7.1.2.

We may also search the space in a general to specific direction. This algorithm
maintains a set, G, of maximally general concepts that cover all of the positive and

 Chapter 7 Machine Learning 91

none of the negative instances. A concept, c, is maximally general if it covers
none of the negative training instances, and for any other concept, c’, that
covers no negative training instance, c > c’. In this algorithm, which we
leave as an exercise, negative instances will lead to the specialization of
candidate concepts while the algorithm uses positive instances to eliminate
overly specialized concepts.

Figure 7.3. Specific to general version space search learning the concept
“ball.”

The candidate elimination algorithm combines these two approaches into a bi-
directional search. This bi-directional approach has a number of benefits
for learning. The algorithm maintains two sets of candidate concepts: G,
the set of maximally general candidate concepts, and S, the set of
maximally specific candidates. The algorithm specializes G and generalizes
S until they converge on the target concept. The algorithm is described:

Begin

Initialize G to the most general concept in space;

Initialize S to first positive training instance;

For each new positive instance p

 Begin

 Delete all members of G that fail to match p;

 For every s in S, if s does not match p,

 replace s with its most specific

 generalizations that match p;

 Delete from S any hypothesis more general than
 some other hypothesis in S;

 Delete from S any hypothesis more general than
 some hypothesis in G;
 End;

92 Part II: Programming in Prolog

For each new negative instance n

 Begin

 Delete all members of S that match n;

 For each g in G that matches n, replace g with
 its most general specializations that do
 not match n;

 Delete from G any hypothesis more specific than
 some other hypothesis in G;

 Delete from G any hypothesis more specific than
 some hypothesis in S;

 End;

If G = S and both are singletons, then the algorithm
 has found a single concept that is consistent
 with all the data;

 If G and S become empty, then there is no concept
 that covers all positive instances and none of
 the negative instances;

End

Figure 7.4 illustrates the behavior of the candidate elimination algorithm in
searching the version space of Figure 7.1. Note that the figure does not
show those concepts that were produced through generalization or
specialization but eliminated as overly general or specific. We leave the
elaboration of this part of the algorithm as an exercise and show a partial
implementation in the next section.

Figure 7.4. The candidate elimination algorithm learning the concept “red
ball.”

 Chapter 7 Machine Learning 93

A Simple Prolog
Program

We first implement the specific to general search and then the full bi-
directional candidate elimination algorithm. We also give hints on how to
construct the general to specific version space search. These search
algorithms are independent of the representation used for concepts, as long
as that representation supports appropriate generalization and
specialization operations. We use a representation of objects as lists of
features. For example, we describe a small, red, ball with the list:

[small, red, ball]

We represent the concept of all small, red things by including a variable in
the list:

[small, red, X]

This representation we call a feature vector, It is less expressive than full logic,
e.g., it cannot represent the class “all red or green balls.” However, it
simplifies generalization, and provides a strong inductive bias (Luger 2009,
Section 10.4). We generalize a feature vector by substituting a variable for a
constant, for example, the most specific common generalization of
[small, red, ball] and [small, green, ball] is
[small, X, ball]. This vector will cover both of the specializations
and is the most specific vector to do so.
We define one feature vector as covering another if the first is either identical
to or more general than the second. Note that unlike unification, covers
is asymmetrical: values exist for which X covers Y, but Y does not cover X.
For example, [X, red, ball] covers [large, red, ball] but
the reverse is not true. We next define the predicate covers for feature
vectors as:

covers([], []).

covers([H1 | T1], [H2 | T2]) :-

 var(H1), var(H2), covers(T1, T2).

 % variables cover each other

covers([H1 | T1], [H2 | T2]) :-

 var(H1), atom(H2), covers(T1, T2).

 % a variable covers a constant

covers([H1 | T1], [H2 | T2]) :-

 atom(H1), atom(H2), H1 = H2,

 covers(T1, T2).

 % matching constants

We next need to determine whether one feature vector is strictly more
general than another; i.e., the vectors are not identical. We define the
more_general/2 predicate as:

more_general(X, Y) :- not(covers(Y,X)),covers(X,Y).

We implement generalization of feature vectors as a predicate,
generalize with three arguments, where the first argument is a feature
vector representing an hypothesis (this vector may contain variables), the
second argument is an instance, containing no variables. generalize
binds its third argument to the most specific generalization of the

94 Part II: Programming in Prolog

hypothesis that covers the instance. generalize recursively scans the
feature vectors, comparing corresponding elements. If two elements
match, the result contains the value of the hypotheses vector in that
position; if two elements do not match, it places a variable in the
corresponding position of the generalized feature vector. Note the use of
the expression not(Feature \= Inst_prop), in the second
definition of generalize; this double negative enables us to test if two
atoms will unify without actually performing the unification and forming
any unwanted variable bindings. We define generalize:

generalize([], [], []).

generalize([Feature | Rest],[Inst_prop | Rest_inst],
 [Feature | Rest_gen]) :-

 not(Feature \= Inst_prop),

 generalize(Rest, Rest_inst, Rest_gen).

generalize([Feature | Rest],[Inst_prop | Rest_inst],
 [_ | Rest_gen]) :-

 Feature \= Inst_prop,

 generalize(Rest, Rest_inst, Rest_gen).

These predicates define the essential operations on feature vector
representations. The remainder of the implementation that follows is
independent of any specific representation, and may be adapted to a variety
of representations and generalization operators.

As discussed in Section 7.1, we may search a concept space in a specific to
general direction by maintaining a list H of candidate hypotheses. The
hypotheses in H are the most specific concepts that cover all the positive
examples and none of the negative examples seen so far. The heart of the
algorithm is process with five arguments. The first argument to
process is a training instance, positive(X) or negative(X),
indicating that X is a positive or negative example. The second and third
arguments are the current list of hypotheses and the list of negative
instances. On completion, process binds its fourth and fifth arguments
to the updated lists of hypotheses and to the negative examples,
respectively.

The first clause in the definition below initializes an empty hypothesis set
to the first positive instance. The second handles positive training instances
by generalizing candidate hypotheses to cover the instance. It then deletes
all over-generalizations by removing those that are more general than some
other hypothesis and eliminating any hypothesis that covers some negative
instance. The third clause in the definition handles negative examples by
deleting any hypothesis that covers those instances.

process(positive(Instance), [], N, [Instance], N).

process(positive(Instance), H, N, Updated_H, N) :-

 generalize_set(H, Gen_H, Instance),

 delete(X, Gen_H,(member(Y, Gen_H),
 more_general(X, Y)), Pruned_H),

 delete(X, Pruned_H, (member(Y, N),

 covers(X, Y)), Updated_H).

 Chapter 7 Machine Learning 95

process(negative(Instance), H, N, Updated_H,
 [InstanceN]) :-

 delete(X, H, covers(X, Instance), Updated_H).

process(Input, H, N, H, N):- %Catches bad input

 Input \= positive(_),

 Input \= negative(_),

 write(’Enter either positive(Instance) or
 negative(Instance) ‘), nl.

An interesting aspect of this implementation is the delete predicate, a
generalization of the usual process of deleting all matches of an element
from a list. One of the arguments to delete is a test that determines
which elements to remove from the list. Using bagof, delete matches
its first argument (usually a variable) with each element of its second
argument (this must be a list). For each such binding, it then executes the
test specified in argument three: this test is any sequence of callable Prolog
goals. If a list element causes this test to fail, delete includes that
element in the resulting list. It returns the result in its final argument. The
delete predicate is an excellent example of the power of meta reasoning
in Prolog: by letting us pass in a specification of the elements we want to
remove from a list, delete gives us a general tool for implementing a
range of list operations. Thus, delete lets us define the various filters
used in process/5 in an extremely compact fashion. We define
delete:

delete(X, L, Goal, New_L) :-

 (bagof(X, (member(X, L), not(Goal)), New_L);
 New_L = []).

Generalize_set is a straightforward predicate that recursively scans a
list of hypotheses and generalizes each one against a training instance. Note
that this assumes that we may have multiple candidate generalizations at
one time. In fact, the feature vector representation of Section 7.1.1 only
allows a single most specific generalization. However, this is not true in
general and we have defined the algorithm for the general case.

generalize_set([], [], _).

generalize_set([Hypothesis | Rest],
 Updated_H, Instance):-

 not(covers(Hypothesis, Instance)),

 (bagof(X, generalize(Hypothesis, Instance, X),
 Updated_head); Updated_head = []),

 generalize_set(Rest, Updated_rest, Instance),

 append(Updated_head, Updated_rest, Updated_H).

 generalize_set([Hypothesis | Rest],

 [Hypothesis | Updated_rest], Instance) :-

 covers(Hypothesis, Instance),

 generalize_set(Rest, Updated_rest, Instance).

specific_to_general implements a loop that reads and processes training
instances:

96 Part II: Programming in Prolog

 specific_to_general(H, N) :-
 write(’H = ‘), write(H), nl, write(’N = ‘),

 write(N), nl,

 write(’Enter Instance: ‘), read(Instance),

 process(Instance, H, N, Updated_H, Updated_N),

 specific_to_general(Updated_H, Updated_N).

The following transcript illustrates the execution of this algorithm.
?- specific_to_general([], []).

H = []

N = []

Enter Instance: positive([small, red, ball]).

H = [[small, red, ball]]

N = []

Enter Instance: negative([large, green, cube]).

H = [[small, red, ball]]

N = [[large, green, cube]]

Enter Instance: negative([small, blue, brick]).

H = [[small, red, ball]]

N = [[small, blue, brick], [large, green, cube]]

Enter Instance: positive([small, green, ball]).

H = [[small, _66, ball]]

N = [[small, blue, brick], [large, green, cube]]

Enter Instance: positive([large, blue, ball]).

H = [[_116, _66, ball]]

N = [[small, blue, brick], [large, green, cube]]

The second version of the algorithm searches in a general to specific
direction, as described in Section 7.1.1. In this version, the set of candidate
hypotheses are initialized to the most general possible concept. In the case
of the feature vector representation, this is a list of variables. It then
specializes candidate concepts to prevent them from covering negative
instances. In the feature vector representation, this involves replacing
variables with constants. When given a new positive instance, it eliminates
any candidate hypothesis that fails to cover that instance.

We implement this algorithm in a way that closely parallels the specific to
general search just described, including the use of the general delete
predicate to define the various filters of the list of candidate concepts. In
defining a general to specific search, process will have six arguments. The
first five reflect the specific to general version: the first a training instance
of the form positive(Instance) or negative(Instance);
the second is a list of candidate hypotheses; these are the most general
hypotheses that cover no negative instances. The third argument is the list
of positive examples, used to delete any overly specialized candidate
hypothesis. The fourth and fifth arguments are the updated lists of
hypotheses and positive examples, respectively. The sixth argument is a list
of allowable variable substitutions for specializing concepts.

 Chapter 7 Machine Learning 97

Specialization by substituting a constant for a variable requires the
algorithm to know the allowable constant values for each field of the
feature vector. These values will have to be passed in as the sixth argument
of process. In our example of [Size, Color, Shape] vectors, a
sample list of types might be: [[small, medium, large],
[red, white, blue], [ball, brick, cube]]. Note that
the position of each sublist determines the position in a feature vector
where those values are used; for example, the first sublist defines allowable
values for the first position of a feature vector. We leave construction of
this algorithm as an exercise. For guidance we include a run of our
implementation:

?- general_to_specific([[_, _, _]], [],

 [[small, medium, large],
 [red, blue, green],
 [ball, brick, cube]]).

H = [[_0, _1, _2]]

P = []

Enter Instance: positive([small, red, ball]).

H = [[_0, _1, _2]]

P = [[small, red, ball]]

Enter Instance; negative([large, green, cube]).

H = [[small, _89, _90], [_79, red, _80],
 [_69, _70, ball]]

P = [[small, red, ball]]

Enter Instance: negative([small, blue, brick]).

H = [[_79, red, _80],[_69, _70, ball]]

P = [[small, red, ball]]

Enter Instance: positive([small, green, ball]).

H = [[_69,_70,ball]]

P = [[small, green, ball], [small, red, ball]]
The full candidate elimination algorithm, as described in Section 7.1.1, is a
combination of the two single direction searches. As before, the heart of
the algorithm is the definition of process, with six arguments. The first
argument to process is a training instance. Arguments two and three are
G and S, the sets of maximally general and maximally specific hypotheses
respectively. The fourth and fifth arguments are bound to the updated
versions of these sets. The sixth argument of process lists allowable
variable substitutions for specializing feature vectors.

On positive instances, process generalizes S, the set of most specific
generalizations, to cover the training instance. It then eliminates any
elements of S that have been over generalized. It also eliminates any
elements of G that fail to cover the training instance. It is interesting to
note that an element of S is overly general if there is no element of G that
covers it; this is true because G contains those candidate hypotheses that
are both maximally general and cover no negative instances. process
uses delete to eliminate these hypotheses.

98 Part II: Programming in Prolog

On a negative training instance, process specializes all hypotheses in G
to exclude that instance. It also eliminates any candidates in S that cover
the negative instance. As discussed above, specialization of feature vectors
requires replacing variables with constants. This requires that we pass a list
of allowable substitutions as the sixth argument to process. We define
process:

process(negative(Instance), G, S, Updated_G,
 Updated_S, Types) :-

 delete(X, S, covers(X, Instance), Updated_S),

 specialize_set(G, Spec_G, Instance, Types),

 delete(X, Spec_G, (member(Y, Spec_G),
 more_general(Y, X)), Pruned_G),

 delete(X, Pruned_G, (member(Y, Updated_S),
 not(covers(X, Y))), Updated_G).

 process(positive(Instance), G, [],
 Updated_G, [Instance],_) :- %Initialize S

 delete(X, G, not(covers(X, Instance)),
 Updated_G).

process(positive(Instance), G, S,
 Updated_G, Updated_S,_) :-

 delete(X, G, not(covers(X, Instance)),
 Updated_G),

 generalize_set(S, Gen_S, Instance),

 delete(X, Gen_S, (member(Y, Gen_S),
 more_general(X, Y)), Pruned_S),

 delete(X, Pruned_S, not((member(Y, Updated_G),
 covers(Y, X))), Updated_S).

 process(Input, G, P, G, P,_) :-

 Input \= positive(_), Input \= negative(_),

 write(`Enter a positive(Instance) or
 negative(Instance): ‘), nl.

generalize_set generalizes all members of a set of candidate
hypotheses to cover a training instance. It is identical to the version defined
for the specific to general search. specialize_set takes a set of
candidate hypotheses and computes all maximally general specializations of
those hypotheses that exclude (do not cover) a training instance. Note the
use of bagof to get all specializations.

specialize_set([], [], _, _).

specialize_set([HypothesisRest],
 Updated_H, Instance, Types) :-

 covers(Hypothesis, Instance),

 (bagof(Hypothesis, specialize(Hypothesis,
 Instance,Types), Updated_head) ;
 Updated_head = []),

 specialize_set(Rest, Updated_rest, Instance,
 Types),

 append(Updated_head, Updated_rest, Updated_H).

 Chapter 7 Machine Learning 99

specialize_set([HypothesisRest],
 [HypothesisUpdated_rest],Instance,Types):-

 not (covers(Hypothesis, Instance)),

 specialize_set(Rest, Updated_rest,
 Instance, Types).

specialize finds an element of a feature vector that is a variable. It
binds that variable to a constant value that it selects from the list of
allowable values, and which does not match the training instance. Recall
that specialize_set called specialize with bagof to get all
specializations. If we call specialize once, it will substitute a constant
into the first variable; bagof causes it to produce all specializations.

specialize([Prop_], [Inst_prop_],
 [Instance_values_]) :-

 var(Prop), member(Prop, Instance_values),

 Prop \= Inst_prop.

specialize([_Tail], [_Inst_tail], [_Types]) :-

 specialize(Tail, Inst_tail, Types).

The definitions of generalize, more_general, covers, and
delete are the same as in the specific to general algorithm defined
above. candidate_elim implements a top-level read-process loop,
printing out the current G set, the S set, and calls process on the input:

candidate_elim([G],[S],_) :-

 covers(G,S),covers(S,G),

 write(’target concept is: ‘), write(G),nl.

candidate_elim(G, S, Types) :-

 write(’G= ‘), write(G), nl, write(’S= ‘),

 write(S), nl, write(’Enter Instance: ‘),

 read(Instance),

 process(Instance, G, S, Updated_G,
 Updated_S, Types),

 candidate_elim(Updated_G, Updated_S, Types).

To conclude this section we present a trace of the candidate elimination
algorithm. Note initializations of G, S, and the list of allowable
substitutions:

?- candidate_elim([[_, _, _]], [],
 [[small, medium, large],
 [red, blue, green],
 [ball, brick, cube]]).

G= [[_0, _1, _2]]

S= []

Enter Instance: positive([small, red, ball]).

G= [[_0, _1, _2]]

S= [[small, red, ball]]

Enter Instance: negative([large, green, cube]).

G= [[small, _96, _97], [_86, red, _87],
 [_76, _77, ball]]

100 Part II: Programming in Prolog

S= [[small, red, ball]]

Enter Instance: negative([small, blue, brick]).

G= [[_86, red, _87], [_76, _77, ball]]

S= [[small, red, ball]]

Enter Instance: positive([small, green, ball]).

G= [[_76, _77, ball]]

S= [[small, _351, ball]]

Enter Instance: positive([large, red, ball]).

target concept is: [_76, _77, ball]	
yes

 7.2 Introduction: Logic-Based Representatio Explanation Based Learning in Prolog

The Explanation
Based Learning

Algorithm

In this section, we describe briefly the algorithms for explanation-based
learning, Section 7.2.1 and then present a Prolog implementation of the
explanation-based learning in Section 7.2.2. Our implementation is based
upon Kedar-Cabelli and McCarty’s formulation (Kedar-Cabelli and
McCarty 1987; Luger 2009, Section 10.5.2), called prolog_ebg, and
illustrates the power of unification in Prolog. Even though it is quite
difficult to implement explanation-based learning in many languages, the
Prolog version is fairly simple.

Explanation-based learning uses an explicitly represented domain theory
to construct an explanation of a training example, usually a proof that the
example logically follows from the theory. By generalizing from the
explanation of the instance, rather than from the instance itself,
explanation-based learning filters noise, selects relevant aspects of
experience, and organizes training data into a coherent structure.

There are several alternative formulations of this idea. For example, the
STRIPS program for representing general operators for planning (see
Section 6.3) has exerted a powerful influence on this research (Fikes et al.
1972). Meta-DENDRAL established the power of theory-based
interpretation of training instances (Luger 2009, Section 10.5.1). A number
of authors (DeJong and Mooney 1986, Minton 1988) have proposed
alternative formulations of this idea. The Explanation-Based
Generalization algorithm of Mitchell et al. (1986) is also typical of the
genre. In this section, we examine a variation of the explanation-based
learning (EBL) algorithm developed by DeJong and Mooney (1986).

EBL begins with:
1. A target concept. The learner’s task is to determine an effective

definition of this concept. Depending upon the specific
application, the target concept may be a classification, a
theorem to be proven, a plan for achieving a goal, or a heuristic
for a problem solver.

2. A training example, an instance of the target.

3. A domain theory, a set of rules and facts that are used to explain
how the training example is an instance of the goal concept.

4. Operationality criteria, some means of describing the form
concept definitions may take.

 Chapter 7 Machine Learning 101

To illustrate EBL, we present an example of learning about when an object
is a cup. This is a variation of a problem explored by Winston et al. (1983)
and adapted to explanation-based learning by Mitchell et al. (1986). The
target concept is a rule that may be used to infer whether an object is a cup;
again, we adopt a predicate calculus representation:

premise(X) cup(X)

where premise is a conjunctive expression containing the variable X.

Assume a domain theory that includes the following rules about cups:

liftable(X) ^ holds_liquid(X) cup(X)

part(Z, W) ^ concave(W) ^ points_up(W)
 holds_liquid(Z)

light(Y) ^ part(Y, handle) liftable(Y)

small(A) light(A)

made_of(A, feathers) light(A)

The training example is an instance of the goal concept. That is, we are
given:

cup(obj1)

small(obj1)

part(obj1, handle)

owns(bob, obj1)

part(obj1, bottom)

part(obj1, bowl)

points_up(bowl)

concave(bowl)

color(obj1, red)

Finally, assume the operationality criteria require that target concepts be
defined in terms of observable, structural properties of objects, such as
part and points_up. We may provide domain rules that enable the
learner to infer whether a description is operational, or we may simply list
operational predicates.

A theorem prover constructs an explanation of why the example is an
instance of the training concept: a proof that the target concept logically
follows from the example, as in Figure 7.5. Note that this explanation
eliminates such irrelevant concepts as color(obj1, red) from the
training data and captures (only) those aspects of the example known to be
relevant to the goal.

The next stage of explanation-based learning generalizes the explanation to
produce a concept definition that may be used to recognize other cups.
EBL accomplishes this by substituting variables for those constants in the
proof tree that depend solely on the particular training instance, as may be
seen in Figure 7.5 (bottom). Based on the generalized tree, EBL defines a
new rule whose conclusion is the root of the tree and whose premise is the
conjunction of the leaves:

102 Part II: Programming in Prolog

Figure 7.5. A specific (top) and generalized (bottom) proof that an object,
X, is a cup.

small(X) ^ part(X, handle) ^ part(X, W) ^ concave(W)

 ^ points_up(W) cup(X).

In constructing a generalized proof tree, our goal is to substitute variables
for those constants that are part of the training instance while at the same
time retaining those constants and constraints that are part of the domain
theory. In this example, the constant handle originated in the domain
theory rather than the training instance. We have retained it as an essential
constraint in the acquired rule.

We may construct a generalized proof tree in a number of ways using a
training instance as a guide. Mitchell et al. (1986) accomplish this by first
constructing a proof tree that is specific to the training example and
subsequently generalizing the proof through a process called goal regression.
Goal regression matches the generalized goal (in our example, cup(X))
with the root of the proof tree, replacing constants with variables as
required for the match. The algorithm applies these substitutions
recursively through the tree until all appropriate constants have been
generalized. See Mitchell et al. (1986) for a detailed description of this
process. We next implement the explanation based learning algorithm in
Prolog.

 Chapter 7 Machine Learning 103

Prolog
Implementation

of EBL

Instead of building an explanation structure and maintaining separate sets
of specific and general substitutions as done in Section 7.2.1, our algorithm
will build both the proof of the training instance and the generalized proof
tree concurrently.

For this example, we represent proof trees as we did in exshell (Section
6.2). When prolog_ebg discovers a fact, it returns this fact as the leaf of
a proof tree. The proof of conjunctive goals is the conjunction of the proof
of the conjuncts. The proof of a goal that requires rule chaining is
represented as (Goal :- Proof), where Proof becomes bound to
the proof tree for the rule premise.

The heart of the algorithm is prolog_ebg. This predicate takes four
arguments: the first is the goal being proved in the training example, the
second is the generalization of that goal. If the domain theory enables a
proof of the specific goal, it binds the third and fourth arguments to a
proof tree for the goal and the generalization of that proof. For instance,
implementing the cup example from Section 7.2.1, we would call
prolog_ebg with the arguments:

prolog_ebg(cup(obj1), cup(X), Proof, Gen_proof).

We assume that Prolog has the domain theory and training instance of
Section 7.2.1. When prolog_ebg succeeds; Proof and Gen_proof
are the proof trees of Figure 7.5.

prolog_ebg is a straightforward variation of the exshell meta-
interpreter of Section 6.2. The primary difference is that prolog_ebg
solves the goal and the generalized goal in parallel. A further interesting
aspect of the algorithm is the use of the predicate duplicate to create
two versions of each rule: the first version is the rule as it appears in the
domain theory, the second binds variables in the rule to the values in the
training instance. We define prolog_ebg:

prolog_ebg(A, GenA, A, GenA) :- clause(A, true).

prolog_ebg((A, B), (GenA, GenB), (AProof, BProof),
 (GenAProof, GenBProof)) :- !,

 prolog_ebg(A, GenA, AProof, GenAProof),

 prolog_ebg(B, GenB, BProof, GenBProof).

prolog_ebg(A, GenA, (A :- Proof), (GenA :-
 GenProof)) :-

 clause(GenA, GenB),

 duplicate((GenA :- GenB), (A :- B)),

 prolog_ebg(B, GenB, Proof, GenProof).

Duplicate relies upon the behavior of assert and retract to
create a copy of a Prolog expression with all new variables.

duplicate(Old, New) :-

 assert(’$marker’(Old)),

 retract(’$marker’(New)).

extract_support returns the sequence of the highest level
operational nodes, as defined by the predicate operational. The

104 Part II: Programming in Prolog

extract_support predicate implements a recursive tree walk,
terminating the recursion when it finds nodes in the proof tree that
qualifies as operational.

extract_support(Proof, Proof) :- operational(Proof).

extract_support((A :- _), A) :- operational(A).

extract_support((AProof, BProof), (A, B)) :-

 extract_support(AProof, A),

 extract_support(BProof, B).

extract_support((_ :- Proof), B) :-

 extract_support(Proof, B).

The final component of the explanation based generalization algorithm
constructs the learned rule, using the prolog_ebg and
extract_support predicates:

ebg(Goal, Gen_goal, (Gen_goal :- Premise)) :-

 prolog_ebg(Goal, Gen_goal, _, Gen_proof),

 extract_support(Gen_proof, Premise).

We illustrate the execution of these predicates with the example of learning
structural definitions of cups from Section 7.2.1, as described originally by
Mitchell et al. (1986). We begin with a domain theory for cups and other
physical objects. The theory includes the rules:

cup(X) :- liftable(X), holds_liquid(X).

holds_liquid(Z) :-

 part(Z, W), concave(W), points_up(W).

liftable(Y) :-

 light(Y), part(Y, handle).

 light(A):- small(A).

 light(A):- made_of(A, feathers).

The learner is also given the following example, in which obj1 is known
to be a cup:

small(obj1).

part(obj1, handle).

owns(bob, obj1).

part(obj1, bottom).

part(obj1, bowl).

points_up(bowl).

concave(bowl).

color(obj1, red).

The operationality criteria define predicates that may be used in a rule:

operational(small(_)).

operational(part(_, _)).

 Chapter 7 Machine Learning 105

operational(owns(_, _)).

operational(points_up(_)).

operational(concave(_)).

A run of the algorithm on the cup example illustrates the behavior of these
predicates. Of course, symbols such as “_0” and “_106” indicate specific
variables in Prolog, i.e., all uses of _106 represent the same variable:

?- prolog_ebg(cup(obj1), cup(X), Proof, Gen_proof).

X = _0,

Proof = cup(obj1) :-
 ((liftable(obj1) :-
 ((light(obj1) :-
 small(obj1)),
 part(obj1, handle))),
 (holds_liquid(obj1) :-
 (part(obj1, bowl),
 concave(bowl),
 points_up(bowl))))

Gen_prooof = cup(_0) :-
 ((liftable(_0) :-
 ((light(_0) :-
 small(_0)),
 part(_0, handle))),
 (holds_liquid(_0) :-
 (part(_0, _106),
 concave(_106),
 points_up(_106))))

When we give extract_support the generalized proof from the
previous execution of prolog_ebg, it returns the operational nodes of
the proof, in left-to-right order:

?- extract_support((cup(_0) :-
 ((liftable(_0) :-
 ((light(_0) :-
 small(_0)),
 part(_0, handle))),
 (holds_liquid(_0) :-
 (part(_0,_106),
 concave(_106),
 points_up(_106))))), Premise),
_0 = _0, _106 = _1,
Premise = (small(_0), part(_0,handle)), part(_0,_1),
 concave(_1), points_up(_1)

Finally, ebg uses these predicates to construct a new rule from the
example.

?- ebg(cup(obj1), cup(X), Rule).

X = _0,

Rule = cup(_0) :-
 ((small(_0), part(_0, handle)), part(_0,_110),
 concave(_110), points_up(_110))

In the next two chapters we address the problem of understanding natural
language. We first, in Chapter 8, discuss issues in semantic (or language

106 Part II: Programming in Prolog

meaning) representations, building Prolog structures for conceptual
dependencies. We then build several recursive descent parsers to capture
syntactic relationships in sentences. These meta-interpreters demonstrate
context free, context sensitive, deterministic, and probabilistic parsing. In
Chapter 9 we present the Earley parser in Prolog, which uses techniques
from dynamic programming. The Earley parser is often called a chart
parser.

 Exercises

 1. The run of the candidate elimination algorithm shown in Figure 7.4 does
not show candidate concepts that were produced but eliminated because
they were either overly general, overly specific, or subsumed by some other
concept. Re-do the execution trace, showing these concepts and the
reasons each was eliminated.

2. Develop a domain theory for explanation-based learning in some
problem area of your choice. Trace the behavior of an explanation-based
learner in applying this theory to several training instances.

3. Implement a general to specific search of the version space using the
feature vector representation of Section 7.2. We can specialize feature
vectors by replacing variables with constants; since this requires telling the
algorithm of allowable values for each field of the feature vector, we must
pass this in as an extra argument. The following definition of
run_general, the top-level goal, illustrates the necessary initializations
for the example used in the text: objects may be small, medium, or
large, their color may be red, blue, green, and their shape may be
ball, brick, or cube.

run_general :-

 general_to_specific([[_, _, _]], [],
 [[small,medium,large], [red,blue,green],
 [ball,brick,cube]]).

4. Create another domain theory example, as proposed in exercise 2 above,
and run it with prolog_ebg.

5. Extend the definition of ebg so that, after it constructs a new rule, it
asserts it to the logic database where it may be used in future queries. Test
the performance of the resulting system using a theory for a suitably rich
domain. You might do this by constructing a theory for a domain of your
choice, or extending the theory from the cup example to allow it to explain
different types of cups such as Styrofoam cups, cups without handles, etc.

