
125

 9 Dynamic Programming and the Earley
Parser

Chapter

Objectives
Language parsing with dynamic programming technique
Memoization of subparses
Retaining partial solutions (parses) for reuse
 The chart as medium for storage and reuse
 Indexes for word list (sentence)
 States reflect components of parse
 Dot reflects extent parsing right side of grammar rule
 Lists of states make up components of chart
 Chart linked to word list
Prolog implementation of an Earley parser
 Context free parser
 Deterministic
 Chart supports multiple parse trees
Forwards development of chart composes components of successful parse
Backwards search of chart produces possible parses of word list
Earley parser important use of meta-interpreter technology.

Chapter
Contents

9.1 Dynamic Programming Revisited
9.2 Earley Parsing: Pseudocode and an Example
9.3 The Earley Parser in Prolog

 9.1 Dynamic Programming Revisited

 The dynamic programming (DP) approach to problem solving was
originally proposed by Richard Bellman (1956). The idea is straightforward:
when addressing a large complex problem that can be broken down into
multiple subproblems, save partial solutions as they are generated so that
they can be reused later in the solution process for the full problem. This
“save and reuse of partial solutions” is sometimes called memoizing the
subproblem solutions for later reuse.

There are many examples of dynamic programming in pattern matching
technology, for example, it has been used in determining a difference
measure between two strings of bits or characters. The overall difference
between the strings will be a function of the differences between its
specific components. An example of this is a spell checker going to its
dictionary and suggesting words that are “close” to your misspelled word.
The spell checker determines “closeness” by calculating a difference
measure between your word and words that it has in its dictionary. This
difference is often calculated, using some form of the DP algorithm, as a

126 Part II: Programming in Prolog

function of the differences between the characters in each word. Examples
of the DB comparison of character strings are found in Luger (2009,
Section 4.1.2).

A further example of the use of DP is for recognizing words in speech
understanding as a function of the possible phonemes from an input
stream. As phonemes are recognized (with associated probabilities), the
most appropriate word is often a function of the combined conjoined
probabilistic measures of the individual phones. The DP Viterbi algorithm
can be used for this task (Luger 2009, Section 13.1).

In this section, we present the Earley parser, a use of dynamic
programming to build a context-free parser that recognizes strings of
words as components of syntactically correct sentences. The presentation
and Prolog code of this chapter is based on the efforts of University of
New Mexico graduate student Stan Lee. The pseudo-code of Section 9.2 is
adapted from that of Jurafsky and Martin (2008).

 9.2 Introduction: Logic-Based Representatio The Earley Parser

 The parsing algorithms of Chapter 8 are based on a recursive, depth-first,
and left-to-right search of possible acceptable syntactic structures. This
search approach can mean that many of the possible acceptable partial
parses of the first (left-most) components of the string are repeatedly
regenerated. This revisiting of early partial solutions within the full parse
structure is the result of later backtracking requirements of the search and
can become exponentially expensive and costly in large parses. Dynamic
programming provides an efficient alternative where partial parses, once
generated, are saved for reuse in the overall final parse of a string of words.
The first DP-based parser was created by Earley (1970).

Memoization
And

 Dotted Pairs

In parsing with Earley’s algorithm the memoization of partial solutions
(partial parses) is done with a data structure called a chart. This is why the
various alternative forms of the Earley approach to parsing are sometimes
called chart parsing. The chart is generated through the use of dotted grammar
rules.

The dotted grammar rule provides a representation that indicates, in the chart,
the state of the parsing process at any given time. Every dotted rule falls into
one of three categories, depending on whether the dot's position is at the
beginning, somewhere in the middle, or at the end of the right hand side,
RHS, of the grammar rule. We refer to these three categories as the initial,
partial, or completed parsing stages, respectively:

Initial prediction: Symbol → @ RHS_unseen

Partial parse: Symbol → RHS_seen @ RHS_unseen

Completed parse: Symbol → RHS_seen @

In addition, there is a natural correspondence between states containing
different dotted rules and the edges of the parse tree(s) produced by the
parse. Consider the following very simple grammar, where terminal
symbols are surrounded by quotes, as in “mary”:

 Chapter 9 The Earley Parser 127

 Sentence → Noun Verb

 Noun → “mary”

 Verb → “runs”

As we perform a top-down, left-to-right parse of this sentence, the
following sequence of states is produced:

 Sentence → • Noun Verb predict: Noun followed by Verb

 Noun → • mary predict: mary

 Noun → mary • scanned: mary

 Sentence → Noun • Verb completed: Noun;
 predict: Verb

 Verb → • runs predict: runs

 Verb → runs • scanned: runs

 Sentence → Noun Verb • completed: Verb,
 completed: sentence

Note that the scanning and completing procedures deterministically produce a
result. The prediction procedure describes the possible parsing rules that can
apply to the current situation. Scanning and prediction creates the states in
the parse tree of Figure 9.1.

Earley's algorithm operates by generating top-down and left-to-right
predictions of how to parse a given input. Each prediction is recorded as a
state containing all the relevant information about the prediction, where the
key component of each state is a dotted rule. (A second component will be
introduced in the next section.) All of the predictions generated after
examining a particular word of the input are collectively referred to as the

state set. For a given input sentence with n words, w1 to wn, a total n + 1

state sets are generated: [S0, S1, …, Sn]. The initial state set, S0,
contains those predictions that are made before examining any input words,

S1 contains predictions made after examining W1, and so on.
 ·Noun Verb

 S

 Noun · Verb Noun Verb·

 Noun Verb

 mary· runs·
 mary runs

Figure 9.1 The relationship of dotted rules to the generation of a parse

tree.

We refer to the entire collection of state sets as the chart produced by the
parser. Figure 9.1 illustrates the relationship between state set generation
and the examination of input words.

128 Part II: Programming in Prolog

At this point we need to pause to get our terminology straight. Although,
traditionally, the sets of states that make up each component of the parse
are called state sets, the order of the generation of these states is important.
Thus we call each component of the chart the state list, and describe it as

[State1, State2, …, Staten]. This also works well with the
Prolog implementation, Section 9.3, where the state lists will be maintained
as Prolog lists. Finally, we describe each state of the state list as a sequence
of specific symbols enclosed by brackets, for example, ($ → • S).

We now consider Earley’s algorithm parsing the simple sentence mary
runs, using the grammar above. The algorithm begins by creating a

dummy start state, ($ → • S), that is the first member of state list S0.
This state represents the prediction that the input string can be parsed as a

sentence, and it is inserted into S0 prior to examining any input words. A

successful parse produces a final state list Sn, which is S2 in this example,
that contains the state ($ → S •).

Beginning with S0, the parser executes a loop in which each state, Si, in
the current state list is examined in order and used to generate new states.
Each new state is generated by one of three procedures that are called the
predictor, scanner, and completer. The appropriate procedure is determined by
the dotted rule in state S, specifically by the grammar symbol (if any)
following the dot in the rule.

In our example, the first state to be examined contains the rule ($ → •
S). Since the dot is followed by the symbol S, this state is “expecting” to
see an instance of S occur next in the input. As S is a nonterminal symbol
of the grammar, the predictor procedure generates all states corresponding
to a possible parse of S. In this case, as there is only one alternative for S,
namely that S → Noun Verb, only one state,

(S → • Noun Verb), is added to S0. As this state is expecting a part
of speech, denoted by the nonterminal symbol Noun following the dot,
the algorithm examines the next input word to verify that prediction. This
is done by the scanner procedure, and since the next word matches the
prediction, mary is indeed a Noun, the scanner generates a new state
recording the match: (Noun → mary •). Since this state depends on

input word W1, it becomes the first state in state list S1 rather than being

added to S0. At this point the chart, containing two state lists, looks as
follows, where after each state we name the procedure that generated it:

S0: [($ → • S), dummy start state
 (S → • Noun Verb)] predictor

S1: [(Noun → mary •)] scanner

Each state in the list of states S0 has now been processed, so the algorithm

moves to S1 and considers the state (Noun → mary •). Since this is a
completed state, the completer procedure is applied. For each state
expecting a Noun, that is, has the • Noun pattern, the completer

 Chapter 9 The Earley Parser 129

generates a new state that records the discovery of a Noun by advancing
the dot over the Noun symbol. In this case, the completer produces the

state (S → • Noun Verb) in S0 and generates the new state (S →

Noun • Verb) in the list S1. This state is expecting a part of speech,

which causes the scanner to examine the next input word W2. As W2 is a
Verb, the Scanner generates the state (Verb → runs •) and adds it to

S2, resulting in the following chart:

S0: [($ → • S), start
 (S → • Noun Verb)] predictor

S1: [(Noun → mary •), scanner
 (S → Noun • Verb)] completer

S2: [(Verb → runs •)] scanner

Processing the new state S2, the completer advances the dot in
(S → Noun • Verb) to produce (S → Noun Verb •), from
which the completer generates the state ($ → S •) signifying a
successful parse of a sentence. The final chart for mary runs, with
three state lists, is:

 S0: [($ → • S), start
 (S → • Noun Verb)] predictor

 S1: [(Noun → mary •), scanner
 (S → Noun • Verb)] completer

 S2: [(Verb → runs •), scanner
 (S → Noun Verb •), completer
 ($ → S •)] completer

Earley
Pseudocode

To represent computationally the state lists produced by the dotted pair
rules above, we create indices to show how much of the right hand side of
a grammar rule has been parsed. We first describe this representation and
then offer pseudo-code for implementing it within the Earley algorithm.
Each state in the state list is augmented with an index indicating how far
the input stream has been processed. Thus, we extend each state
description to a (dotted rule [i, j]) representation where the [i, j] pair denotes
how much of right hand side, RHS, of the grammar rule has been seen or
parsed to the present time. For the right hand side of a parsed rule that
includes zero or more seen and unseen components indicated by the •, we
have (A → Seen • Unseen, [i,j]), where i is the start of
Seen and j is the position of • in the word sequence.

We now add indices to the parsing states discussed earlier for the sentence
mary runs:

($ → • S, [0, 0])
 produced by predictor, i = j = 0, nothing yet parsed

(Noun → mary •, [0,1])
 scanner sees word[1] between word indices 0 and 1

130 Part II: Programming in Prolog

(S → Noun • Verb, [0,1])
 completer has seen Noun (mary) between chart 0 and 1

(S → Noun Verb •, [0,2])
 completer has seen sentence S between chart 0 and 2

Thus, the state indexing pattern shows the results produced by each of the

three state generators using the dotted rules along with the word index Wi.

To summarize, the three procedures for generating the states of the state
list are: predictor generating states with index [j, j] going into

chart[j], scanner considering word Wj+1 to generate states indexed by
[j, j+1] into chart[j+1], and completer operating on rules with
index [i, j], i < j, adding a state entry to chart[j]. Note that a
state from the dotted-rule, [i, j] always goes into the state list
chart[j]. Thus, the state lists include chart[0], ...,
chart[n]for a sentence of n words.

Now that we have presented the indexing scheme for representing the
chart, we give the pseudo-code for the Earley parser. In Section 9.2.3 we
use this code to parse an example sentence and in Section 9.3 we
implement this algorithm in Prolog. We replace the “•” symbol with “@”
as this symbol will be used for the dot in the Prolog code of Section 9.3.

function EARLEY-PARSE(words, grammar) returns chart
 chart := empty

 ADDTOCHART(($ → @ S, [0, 0]), chart[0])
 % dummy start state

 for i from 0 to LENGTH(words) do
 for each state in chart[i] do

 if rule_rhs(state) = … @ A …
 and A is not a part of speech
 then PREDICTOR(state)

 else if rule_rhs(state) = … @ L …
 % L is part of speech
 then SCANNER(state)
 else OMPLETER(state)
 % rule_rhs = RHS @

 end
 end

 procedure PREDICTOR((A → … @ B …, [i, j]))

 for each (B → RHS) in grammar do

 ADDTOCHART((B → @ RHS, [j, j]), chart[j])

 end

procedure SCANNER((A → … @ L …, [i, j]))

 if (L → word[j]) is_in grammar

 then ADDTOCHART((L → word[j] @ , [j, j + 1]),
 chart[j + 1])
end

 Chapter 9 The Earley Parser 131

procedure COMPLETER((B → … @, [j, k]))

 for each (A → … @ B …, [i, j]) in chart[j] do

 ADDTOCHART((A → … B @ …, [i, k]), chart[k])

end

procedure ADDTOCHART(state, state-list)
 if state is not in state-list
 then ADDTOEND(state, state-lis

end

Earley
 Example

Our first example, the Earley parse of the sentence “Mary runs,” was
intended to be simple but illustrative, with the detailed presentation of the
state lists and their indices. We now produce a solution, along with the
details of the chart that is generated, for a more complex sentence, “John
called Mary from Denver”. This sentence is ambiguous (Did John use a
phone while he was in Denver to call, or did John call that Mary that was
from Denver). We present the two different parses of this sentence in
Figure 9.2 and describe how they may both be recovered from the chart
produced by parsing the sentence in an exercise. This retrieval process is
typical of the dynamic programming paradigm where the parsing is done in
a forward left-to-right fashion and then particular parses are retrieved from
the chart by moving backward through the completed chart.

The following set of grammar rules is sufficient for parsing the sentence:
S → NP VP

NP → NP PP

NP → Noun

VP → Verb NP

VP → VP PP

PP → Prep NP

Noun → “john”

Noun → “mary”

Noun → “denver”

Verb → “called”

Prep → “from”

In Figure 9.2 we present two parse trees for the word string john
called mary from denver. Figure 9.2a shows john called
(mary from denver), where Mary is from Denver, and in Figure
9.2b john (called mary) (from denver), where John is
calling from Denver. We now use the pseudo-code of the function
EARLEY-PARSE to address this string. It is essential that the algorithm not
allow any state to be placed in any state list more than one time, although
the same state may be generated with different predictor/scanner
applications:

1. Insert start state ($ → @ S, [0,0]) into chart[0]

2. Processing state-list S0 = chart[0] for (i = 0):
 The predictor procedure produces within chart[0]:

132 Part II: Programming in Prolog

 ($ → @ S, [0,0])) ==>
 (S → @ NP VP, [0,0])

 (S → @ NP VP, [0,0]) ==>
 (NP → @ NP PP, [0,0])

 (S → @ NP VP, [0,0]) ==>
 (NP → @ Noun, [0,0])

3. Verifying that the next word word[i + 1] =
 word[1] or “john” is a Noun:

 The scanner procedure initializes chart[1] by
 producing

 (NP → @ Noun, [0,0]) ==>
 (Noun → john @, [0,1])

4. Processing S1 = chart[1] shows the typical start
 of a new state list, with the scanner procedure
 processing the next word in the word string, and
 the algorithm then calling completer.
 The completer procedure adds the following states
 to chart[1]:

 (NP → Noun @, [0,1])

 (S → NP @ VP, [0,1]) from x1

 (NP → NP @ PP, [0,1]) from x2

5. The completer procedure ends for S1 as no more
 states have “dots” to advance, calling predictor:
 The predictor procedure generates states based on
 all newly-advanced dots:

 (VP → @ Verb NP, [1,1]) from x1

 (VP → @ VP PP, [1,1]) also from x1

 (PP → @ Prep NP, [1,1]) from x2

6. Verifying that the next word, word[i + 1] =
 word[2] or “called” is a Verb:

 The scanner procedure initializes chart[2] by
 producing:

 (VP → @ Verb NP, [1,1]) ==>
 (Verb → called @, [1,2])

Step 6 (above) initializes chart[2] by scanning word[2] in the word
string; the completer and predictor procedures then finish state list 2.

The function EARLEY-PARSE continues through the generation of
chart[5] as seen in the full chart listing produced next. In the full
listing we have annotated each state by the procedure that generated it. It
should also be noted that several partial parses, indicated by *, are
generated for the chart that are not used in the final parses of the sentence.
Note also that the fifth and sixth states in the state list of chart[1],
indicated by **, which predict two different types of VP beginning at index
1, are instrumental in producing the two different parses of the string of
words, as presented in Figure 9.2.

 Chapter 9 The Earley Parser 133

 chart[0]:

 [($ → @ S, [0,0]) start state
 (S → @ NP VP, [0,0]) predictor
 (NP → @ NP PP, [0,0]) * predictor
 (NP → @ Noun, [0,0])] predictor

 chart[1]:

 [(Noun → john @, [0,1]) scanner
 (NP → Noun @, [0,1]) completer
 (S → NP @ VP, [0,1]) completer
 (NP → NP @ PP, [0,1]) * completer
 (VP → @ Verb NP, [1,1])** predictor
 (VP → @ VP PP, [1,1]) ** predictor
 (PP → @ Prep NP, [1,1])*] predictor

 chart[2]:
 [(Verb → called @, [1,2]) scanner
 (VP → Verb @ NP, [1,2]) completer
 (NP → @ NP PP, [2,2]) predictor
 (NP → @ Noun, [2,2])[predictor

 chart[3]:
 [(Noun → mary @, [2,3]) scanner
 (NP → Noun @, [2,3]) completer
 (VP → Verb NP @, [1,3]) completer
 (NP → NP @ PP, [2,3]) completer
 (S → NP VP @, [0,3])* completer
 (VP → VP @ PP, [1,3]) completer
 (PP → @ Prep NP, [3,3]) predictor
 ($ → S @, [0,3])*] completer

 chart[4]:
 [(Prep → from @, [3,4]) scanner
 (PP → Prep @ NP, [3,4]) completer
 (NP → @ NP PP, [4,4])* predictor
 (NP → @ Noun, [4,4])] predictor

 chart[5]:
 [(Noun → denver @, [4,5]) scanner
 (NP → Noun @, [4,5]) completer
 (PP → Prep NP @, [3,5]) completer
 (NP → NP @ PP, [4,5])* completer
 (NP → NP PP @, [2,5]) completer
 (VP → VP PP @, [1,5]) completer
 (PP → @ Prep NP, [5,5])* predictor
 (VP → Verb NP @, [1,5]) completer
 (NP → NP @ PP, [2,5])* completer
 (S → NP VP @, [0,5]) completer
 (VP → VP @ PP, [1,5])* completer
 ($ → S @, [0,5])] completer

134 Part II: Programming in Prolog

The complete chart generated by the EARLEY-PARSE algorithm contains 39
states separated into six different state lists, charts 0 – 5. The final state list
contains the success state ($ → S @, [0,5]) showing that the
string containing five words has been parsed and is indeed a sentence. As
pointed out earlier, there are states in the chart, ten indicated by *, that are
not part of either of the final parse trees, as seen in Figure 9.2.

 9.3 Introduction: Logic-Based Representation The Earley Parser in Prolog

 Finally, we present the Earley parser in Prolog. Our Prolog code, designed
by Stan Lee, a graduate student in Computer Science at the University of
New Mexico, is a direct implementation of the EARLEY-PARSE pseudo-code
given in Section 9.2.2. When looking at the three procedures that follow -
scanner, predictor, and completer – it is important to note that similarity.

The code begins with initialization, including reading in the word string,
parsing, and writing out the chart after it is created:

go :- go(s).
go(NT) :

 input(Words),

 earley(NT, Words, Chart),

 writesln(Chart).

The earley predicate first generates the start state, StartS for the
parser and then calls the state generator state_gen which produces the
chart, Chart. state_gen checks first if the wordlist is exhausted and
terminates if it is, next it checks if the current state list is completed and if
it is, begins working on the next state, otherwise it continues to process the
current state list:

earley(NonTerminal, Words, Chart) :-

 StartS = s($, [@, NonTerminal], [0,0]),

 initial_parser_state(Words, StartS, PS),

 state_gen(PS, Chart).

state_gen(PS, Chart) :- %Si = [], Words = []

 final_state_set_done(PS, Chart)
state_gen(PS, Chart) :- %Si = [], Words not []

 current_state_set_done(PS, NextPS),

 state_gen(NextPS, Chart).
state_gen(PS, Chart) :- %Si = [S|Rest]

 current_state_rhs(S, RHS, PS, PS2),
 %PS2[Si] = Rest

 (
 append(_, [@, A|_], RHS),
 rule(A, _) -> %A not a part of speech
 predictor(S, A, PS2, NextPS)
 ;
 append(_, [@, L|_], RHS),
 lex_rule(L, _) -> %L is part of speech
 scanner(S, L, PS2, NextPS)
 ;

 Chapter 9 The Earley Parser 135

 completer(S, PS2, NextPS) %S is completed state
),
 state_gen(NextPS, Chart).

 S
(a)

 VP

 NP

 PP

 NP NP NP

 Noun Verb Noun Prep Noun

John called Mary from Denver

0 1 2 3 4 5

 S

 VP

 VP PP

 NP NP NP

Noun Verb Noun Prep Noun

 John called Mary from Denver

0 1 2 3 4 5

 (b)

Figure 9.2. Two different parse trees for the word string representing the
sentence “John called Mary from Denver”. The index

scheme for the word string is below it.

We next present the predictor procedure. This procedure takes a
dotted rule A -> ... @ B ... and predicts a new entry into the
state list for the symbol B in the grammar:

136 Part II: Programming in Prolog

predictor(S, B, PS, NewPS) :-

 S = s(_, _, [I,J]),

 Findall

 (
 s(B, [@ | RHS], [J,J]),
 rule(B, RHS),
 NewStates
),

 add_to_chart(NewStates, PS, NewPS).

The scanner procedure considers the next word in the input string. If it
is a part of speech, Lex, scanner creates a new state list and enters that
part of speech, for example, the state (Noun → denver @,
[4,5]), that begins chart[5] in Section 9.2.3. The scanner
procedure prepares the way for the completer and predictor
procedures. If the next word in the input stream is not the predicted part
of speech, it leaves the chart unchanged:

scanner(S, Lex, PS, NewPS) :-

 S = s(_, _, [I,J]),

 next_input(Word, J, J1, PS),

 lex_rule(Lex, [Word]), !,

 add_to_chart([s(Lex, [Word,@], [J,J1])], PS,
 NewPS).

scanner(_, _, PS, PS).

Finally, the completer procedure takes a completed state S that has
recognized a pattern B, and adds a new state to the list for each preceding
state that is looking for that pattern.

completer(S, PS, NewPS) :-

 S = s(B, _, [J,K]),

 Findall

 (
 s(A, BdotRHS, [I,K]),

 (
 in_chart(s(A, DotBRHS, [I,J]), PS),
 append(X, [@, B|Y], DotBRHS),
 append(X, [B, @|Y], BdotRHS % adv dot over B
),

 NewStates
),

 add_to_chart(NewStates, PS, NewPS).

We next describe the utility predicates that support the three main
procedures just presented. The most important of these are predicates for
maintaining the state of the parser itself. The parser-state, PS, is
represented by a structure ps with five arguments: PS = ps(Words,
I, Si, SNext, Chart). The first argument of ps is the current
string of words maintained as a list and the second argument, I, is the
current index of Words. Si and SNext are the current and next state

 Chapter 9 The Earley Parser 137

lists, and Chart is the current chart. Thus, Si and SNext are always
subsets of the current Chart. Notice that the “assignment” that creates
the next state-list is done with unification (=).

The PS utilities perform initial and final state checks, determine if the
current state list is complete, extract components of the current state and
get the next input value. Parsing is finished when the Word list and the
current state list Si, the first and third arguments of PS, are both empty. If
Si is empty but the Word list is not, then the next state list becomes the
new current state list and the parser moves to the next index as is seen in
the current_state_set_done predicate:

initial_parser_state(Words, StartState, InitPS) :-

 InitPS = ps(Words, 0, [StartState], [],
 [StartState]).

final_state_set_done(ps([], _, [], _, FinalChart),
 FinalChart).

current_state_set_done(ps([_|Words], I, [], SNext,
 Chart), ps(Words, J, SNext, [],
 Chart)) :-

 J is I+1.

current_state_rhs(S, RHS, ps(Words, I, [S|Si],
 SNext, Chart), ps(Words, I, Si, SNext,
 Chart)) :-

S = s(_, RHS, _).

In the final predicate, S is the first state of the current state list (the third
argument of ps, maintained as a list). This is removed, and the patterns of
the right hand side of the current dotted grammar rule, RHS, are isolated
for interpretation. The current state list Si is the tail of the previous list.

More utilities: The next element of Words in PS is between the current
and next indices. The chart is maintained by checking to see if states are
already in its state lists. Finally, there are predicates for adding states to the
current chart.

next_input(Word, I, I1, ps([Word|_], I, _, _, _)) :-

 I1 is I+1.

add_to_chart([], PS, PS).

add_to_chart([S|States], PS, NewPS) :-

 in_chart(S, PS),!,

 add_to_chart(States, PS, NewPS).

add_to_chart([S|States], PS, NewPS) :-

 add_to_state_set(S, PS, NextPS),

 add_to_chart(States, NextPS, NewPS).

in_chart(S, ps(_, _, _, _, Chart)) :-

 member(S, Chart).

138 Part II: Programming in Prolog

add_to_state_set(S, PS, NewPS) :-

 PS = ps(Words, I, Si, SNext, Chart),

 S = s(_, _, [_,J]),

 add_to_end(S, Chart, NewChart),

 (
 I == J -> %S is not a scan
state

 add_to_end(S, Si, NewSi),
 NewPS = ps(Words, I, NewSi, SNext, NewChart)
 ;
 add_to_end(S, SNext, NewSNext),
 NewPS = ps(Words, I, Si, NewSNext, NewChart)
).

add_to_end(X, List, NewList) :-

 append(List, [X], NewList).

The add_to_state_set predicate, first places the new state in the
new version of the chart, NewChart. It then checks whether the current
word list index I is the same as the second index J of the pair of indices of
the state being added to the state list, testing whether I == J. When this
is true, that state is added to the end (made the last element) of the current

state list Si. Otherwise, the new state was generated by the scanner
procedure after reading the next word in the input word list. This new
state will begin a new state list, SNext.

Finally, we present the output of the Prolog go and earley predicates
running on the word list “John called Mary from Denver”:

?- listing([input, rule, lex_rule]).

input([john, called, mary, from, denver]).

rule(s, [np, vp]).

rule(np, [np, pp]).

rule(np, [noun]).

rule(vp, [verb, np]).

rule(vp, [vp, pp]).

rule(pp, [prep, np]).

lex_rule(noun, [john]).

lex_rule(noun, [mary]).

lex_rule(noun, [denver]).

lex_rule(verb, [called]).

lex_rule(prep, [from]).

?- go.

s($, [@, s], [0, 0])
s(s, [@, np, vp], [0, 0])
s(np, [@, np, pp], [0, 0])
s(np, [@, noun], [0, 0])
s(noun, [john, @], [0, 1])
s(np, [noun, @], [0, 1])
s(s, [np, @, vp], [0, 1])
s(np, [np, @, pp], [0, 1])

 Chapter 9 The Earley Parser 139

s(vp, [@, verb, np], [1, 1])
s(vp, [@, vp, pp], [1, 1])
s(pp, [@, prep, np], [1, 1])
s(verb, [called, @], [1, 2])
s(vp, [verb, @, np], [1, 2])
s(np, [@, np, pp], [2, 2])
s(np, [@, noun], [2, 2])
s(noun, [mary, @], [2, 3])
s(np, [noun, @], [2, 3])
s(vp, [verb, np, @], [1, 3])
s(np, [np, @, pp], [2, 3])
s(s, [np, vp, @], [0, 3])
s(vp, [vp, @, pp], [1, 3])
s(pp, [@, prep, np], [3, 3])
s($, [s, @], [0, 3])
s(prep, [from, @], [3, 4])
s(pp, [prep, @, np], [3, 4])
s(np, [@, np, pp], [4, 4])
s(np, [@, noun], [4, 4])
s(noun, [denver, @], [4, 5])
s(np, [noun, @], [4, 5])
s(pp, [prep, np, @], [3, 5])
s(np, [np, @, pp], [4, 5])
s(np, [np, pp, @], [2, 5])
s(vp, [vp, pp, @], [1, 5])
s(pp, [@, prep, np], [5, 5])
s(vp, [verb, np, @], [1, 5])
s(np, [np, @, pp], [2, 5])
s(s, [np, vp, @], [0, 5])
s(vp, [vp, @, pp], [1, 5])
s($, [s, @], [0, 5])

Yes

?-

We present the Earley parser again in Java, Chapter 30. Although the
control procedures in Java are almost identical to those just presented in
Prolog, it is interesting to compare the representational differences
between declarative and an object-oriented languages.

Next, in the final chapter of Part I, we discuss important features of Prolog
and declarative programming. We present Lisp and functional
programming in Part III.

 Exercises

 1. Describe the role of the dot within the right hand side of the grammar
rules as they are processed by the Earley parser. How is the location of the
dot changed as the parse proceeds? What does it mean when we say that
the same right hand side of a grammar rule can have dots at different
locations?

2. In the Earley parser the input word list and the states in the state lists
have indices that are related. Explain how the indices for the states of the
state list are created.

3. Describe in your own words the roles of the predictor,
completer, and scanner procedures in the algorithm for Earley

140 Part II: Programming in Prolog

parsing. What order are these procedures called in when parsing a sentence,
and why is that ordering important? Explain your answers to the order of
procedure invocation in detail.

4. Augment the Earley Prolog parser to consider the sentence “John saw
the burglar with the telescope”. Create two different possible pare trees
from interpreting this string and comment on how the different possible
parses are retrieved them from the chart.

5. Create an 8 – 10 word sentence of your own and send it to the Earley
parser. Produce the chart as it changes with each additional word of the
sentence that is scanned.

6. Create a grammar that includes adjectives and adverbs in its list of rules.
What changes are needed for the Earley parser to handle these new rules?
Test the Early parser with sentences that contain adjectives and adverbs.

7. In the case of “John called Mary from Denver” the parser produced two
parse trees. Analyze Figure 9.4 and show which components of the full
parse are shared between both trees and where the critical differences are.

8. Analyze the complexity of the Earley algorithm. What was the cost of
the two parses that we considered in detail in this chapter? What are the
worst- and best-case complexity limits? What type sentences force the
worst case? Alternatively, what types of sentences are optimal?

