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 12.1 Functions, Lists, and Symbolic Computing 

Symbolic 
Computing 

Although the Chapter 11 introduced Lisp syntax and demonstrated a few 
useful Lisp functions, it did so in the context of simple arithmetic 
examples. The real power of Lisp is in symbolic computing and is based on 
the use of lists to construct arbitrarily complex data structures of symbolic 
and numeric atoms, along with the forms needed for manipulating them. 
We illustrate the ease with which Lisp handles symbolic data structures, as 
well as the naturalness of data abstraction techniques in Lisp, with a simple 
database example. Our database application requires the manipulation of 
employee records containing name, salary, and employee number fields. 

These records are represented as lists, with the name, salary, and number fields 
as the first, second, and third elements of a list. Using nth, it is possible to 
define access functions for the various fields of a data record. For example: 

(defun name-field (record) 

    (nth 0 record)) 

will have the behavior: 
> (name-field ‘((Ada Lovelace) 45000.00 38519)) 

(Ada Lovelace) 

Similarly, the functions salary-field and number-field may be 
defined to access the appropriate fields of a data record. Because a name is 
itself a list containing two elements, a first name and a last name, it is useful 
to define functions that take a name as argument and return either the first 
or last name as a result. 
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(defun first-name (name) 

    (nth 0 name)) 

will have the behavior: 
> (first-name (name-field ‘((Ada Lovelace) 45000.00 
338519))) 

Ada 

In addition to accessing individual fields of a data record, it is also 
necessary to implement functions to create and modify data records. These 
are defined using the built-in Lisp function list. list takes any number 
of arguments, evaluates them, and returns a list containing those values as 
its elements. For example:  

> (list 1 2 3 4) 

(1 2 3 4) 

> (list ‘(Ada Lovelace) 45000.00 338519) 

((Ada Lovelace) 45000.00 338519) 

As the second of these examples suggests, list may be used to define a 
constructor for records in the database: 

(defun build-record (name salary emp-number) 

    (list name salary emp-number)) 

will have the behavior: 
> (build-record ‘(Alan Turing) 50000.00 135772) 

((Alan Turing) 50000.00 135772) 

Now, using build-record and the access functions, we may construct 
functions that return a modified copy of a record. For example 
replace-salary will behave: 

(defun replace-salary-field (record new-salary) 

(build-record (name-field record) 

    new-salary 

    (number-field record))) 

> (replace-salary-field ‘((Ada Lovelace) 45000.00 
338519) 50000.00) 

((Ada Lovelace) 50000.00 338519) 

Note that this function does not actually update the record itself but 
produces a modified copy of the record. This updated version may be 
saved by binding it to a global variable using setf (Section 13.1). 
Although Lisp provides forms that allow a particular element in a list to be 
modified in the original structure (i.e., without making a copy), good Lisp 
programming style generally avoids their use, and they are not covered in 
this text. For Lisp applications involving all but extremely large structures, 
modifications are generally done by creating a new copy of the structure. 

In the above examples, we created an abstract data type for employee 
records. The various access and update functions defined in this section 
implement a specialized language appropriate to the meaning of the 
records, freeing the programmer from concerns about the actual list 
structures being used to implement the records. This simplifies the 
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development of higher-level code, as well as making that code much easier 
to maintain and understand. 

Generally, AI programs manipulate large amounts of varied knowledge 
about problem domains. The data structures used to represent this 
knowledge, such as objects and semantic networks, are complex, and 
humans generally find it easier to relate to this knowledge in terms of its 
meaning rather than the particular syntax of its internal representation. 
Therefore, data abstraction techniques, always good practice in computer 
science, are essential tools for the AI programmer. Because of the ease 
with which Lisp supports the definition of new functions, it is an ideal 
language for data abstraction. 

              12.2   Lists as Recursive Structures 

Car/cdr 
Recursion 

In the previous section, we used nth and list to implement access 
functions for records in a simple “employee” database. Because all 
employee records were of a determinate length (three elements), these two 
functions were sufficient to access the fields of records. However, these 
functions are not adequate for performing operations on lists of unknown 
length, such as searching through an unspecified number of employee 
records. To do this, we must be able to scan a list iteratively or recursively, 
terminating when certain conditions are met (e.g., the desired record is 
found) or the list is exhausted. In this section we introduce list operations, 
along with the use of recursion to create list-processing functions. 

The basic functions for accessing the components of lists are car and cdr. 
car takes a single argument, which must be a list, and returns the first 
element of that list. cdr also takes a single argument, which must also be a 
list, and returns that list with its first argument removed: 

> (car ‘(a b c))       ;note that the list is quoted 

a 

> (cdr ‘(a b c)) 

(b c) 

> (car ‘((a b) (c d)))         ;the first element of  

(a b)                 ;a list may be a list 

> (cdr ‘((a b) (c d))) 

((c d)) 

> (car (cdr ‘(a b c d))) 

b 

The way in which car and cdr operate suggests a recursive approach to 
manipulating list structures. To perform an operation on each of the elements of a list: 

If the list is empty, quit. 

Otherwise, operate on the first element and recurse on the 
remainder of the list. 

Using this scheme, we can define a number of useful list-handling 
functions. For example, Common Lisp includes the predicates member, 
which determines whether one s-expression is a member of a list, and 
length, which determines the length of a list. We define our own 
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versions of these functions: my-member takes two arguments, an 
arbitrary s-expression and a list, my-list. It returns nil if the s-
expression is not a member of my-list; otherwise it returns the list 
containing the s-expression as its first element:  

(defun my-member (element my-list) 

  (cond ((null my-list) nil)          

    ((equal element (car my-list)) my-list)      

   (t (my-member element (cdr my-list)))))  

my-member has the behavior: 
> (my-member 4 ‘(1 2 3 4 5 6)) 

(4 5 6) 

> (my-member 5 ‘(a b c d)) 

nil 

Similarly, we may define our own versions of length and nth: 
(defun my-length (my-list) 

    (cond ((null my-list) 0) 

         (t (+ (my-length (cdr my-list)) 1)))) 

(defun my-nth (n my-list) 

    (cond ((zerop n) (car my-list))  

    ; zerop tests if argument is zero 

         (t (my-nth (– n 1) (cdr my-list))))) 

It is interesting to note that these examples, though presented here to illustrate 
the use of car and cdr, reflect the historical development of Lisp. Early 
versions of the language did not include as many built-in functions as 
Common Lisp does; programmers defined their own functions for checking 
list membership, length, etc. Over time, the most generally useful of these 
functions have been incorporated into the language standard. As an easily 
extensible language, Common Lisp makes it easy for programmers to create 
and use their own library of reusable functions. 

In addition to the functions car and cdr, Lisp provides a number of 
functions for constructing lists. One of these, list, which takes as 
arguments any number of s-expressions, evaluates them, and returns a list 
of the results, was introduced in Section 10.1. A more primitive list 
constructor is the function cons, that takes two s-expressions as 
arguments, evaluates them, and returns a list whose car is the value of the 
first argument and whose cdr is the value of the second: 

> (cons 1 ‘(2 3 4)) 

(1 2 3 4) 

> (cons ‘(a b) ‘(c d e)) 

((a b) c d e) 

 

cons bears an inverse relationship to car and cdr in that the car of the 
value returned by a cons form is always the first argument to the cons, and 
the cdr of the value returned by a cons form is always the second argument 
to that form: 
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> (car (cons 1 ‘(2 3 4))) 

1 

> (cdr (cons 1 ‘(2 3 4))) 

(2 3 4) 

An example of the use of cons is seen in the definition of the function 
filter-negatives, which takes a list of numbers as an argument and 
returns that list with any negative numbers removed. filter-negatives 
recursively examines each element of the list; if the first element is negative, it 
is discarded and the function returns the result of filtering the negative 
numbers from the cdr of the list. If the first element of the list is positive, it 
is “consed” onto the result of filter-negatives from the rest of the 
list: 

(defun filter-negatives (number-list) 

    (cond ((null number-list) nil)         
      ((plusp (car number-list))  

      (cons (car number-list) 

     (filter-negatives  

         (cdr number-list)))) 

  (t (filter-negatives (cdr number-list))))) 

This function behaves: 
> (filter-negatives ‘(1 –1 2 –2 3 –4)) 

(1 2 3) 

This example is typical of the way cons is often used in recursive functions 
on lists. car and cdr tear lists apart and “drive” the recursion; cons 
selectively constructs the result of the processing as the recursion “unwinds.” 
Another example of this use of cons is in redefining the built-in function 
append: 

(defun my-append (list1 list2) 

    (cond ((null list1) list2) 

         (t (cons (car list1)  

      (my-append (cdr list1) list2))))) 

which yields the behavior: 
> (my-append ‘(1 2 3) ‘(4 5 6)) 

(1 2 3 4 5 6) 

Note that the same recursive scheme is used in the definitions of my-
append, my-length, and my-member. Each definition uses the car 
function to remove (and process) the first element of the list, followed by a 
recursive call on the shortened (tail of the) list; the recursion “bottoms 
out” on the empty list. As the recursion unwinds, the cons function 
reassembles the solution. This particular scheme is known as cdr recursion, 
because it uses the cdr function to linearly scan and process the elements 
of a list. 
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              12.3 Nested Lists, Structure, and car/cdr Recursion 

Car/cdr 
Recursion and 

Nested 
Structure 

Although both cons and append may be used to combine smaller lists 
into a single list, it is important to note the difference between these two 
functions. If cons is called with two lists as arguments, it makes the first 
of these a new first element of the second list, whereas append returns a 
list whose elements are the elements of the two arguments: 

> (cons ‘(1 2) ‘(3 4)) 

((1 2) 3 4) 

> (append ‘(1 2) ‘(3 4)) 

(1 2 3 4) 

The lists (1 2 3 4) and ((1 2) 3 4) have fundamentally different 
structures. This difference may be noted graphically by exploiting the 
isomorphism between lists and trees. The simplest way to map lists onto trees 
is to create an unlabeled node for each list, with descendants equal to the 
elements of that list. This rule is applied recursively to the elements of the list 
that are themselves lists; elements that are atoms are mapped onto leaf nodes 
of the tree. Thus, the two lists mentioned above generate the different tree 
structures illustrated in Figure 12.1. 

 
 
 
 
 

 

 

 

 

 

Figure 12.1. Mapping lists onto trees showing structural differences. 

This example illustrates the representational power of lists, particularly as a 
means of representing any tree structure such as a search tree or a parse tree 
(Figure 16.1). In addition, nested lists provide a way of hierarchically 
structuring complex data. In the employee records example of Section 12.1, 
the name field was itself a list consisting of a first name and a last name. This 
list could be treated as a single entity or its individual components could be 
accessed. 

The simple cdr-recursive scheme discussed in the previous section is not 
sufficient to implement all manipulations on nested lists, because it does not 
distinguish between items that are lists and those that are simple atoms. 
Suppose, for example, that the length function defined in Section 12.2 is 
applied to a nested list structure: 

> (length ‘((1 2) 3 (1 (4 (5))))) 

3 
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In this example, length returns 3 because the list has 3 elements, (1 2), 
3, and (1 (4 (5))). This is, of course, the correct and desired behavior 
for a length function. 

On the other hand, if we want the function to count the number of atoms in 
the list, we need a different recursive scheme, one that, in addition to scanning 
along the elements of the list, “opens up” non-atomic list elements and 
recursively applies itself to the task of counting their atoms. We define this 
function, called count-atoms, and observe its behavior: 

(defun count-atoms (my-list) 

    (cond ((null my-list) 0) 

        ((atom my-list) 1) 

        (t (+ (count-atoms (car my-list))  

            (count-atoms  

          (cdr my-list)))))) 

> (count-atoms ‘((1 2) 3 (((4 5 (6)))))) 

6 

The above definition is an example of car-cdr recursion. Instead of just 
recurring on the cdr of the list, count-atoms also recurs on the car of 
its argument, with the + function combining the two components into an 
answer. Recursion halts when it encounters an atom or empty list (null). 
One way of thinking of this scheme is that it adds a second dimension to 
simple cdr recursion, that of “going down into” each of the list elements. 
Compare the diagrams of calls to length and count-atoms in Figure 
12.2. Note the similarity of car-cdr recursion and the recursive definition 
of s-expressions given in Section 11.1.1. 

Another example of the use of car-cdr recursion is in the definition of 
the function flatten. flatten takes as argument a list of arbitrary 
structure and returns a list that consists of the same atoms in the same 
order but with all the atoms at the same level. Note the similarity between 
the definition of flatten and that of count-atoms: both use car-
cdr recursion to tear apart lists and drive the recursion, both terminate 
when the argument is either null or an atom, and both use a second 
function (append or +) to construct an answer from the results of the 
recursive calls. 

(defun flatten (lst) 

    (cond ((null lst) nil) 

        ((atom lst) (list lst)) 

        (t (append (flatten (car lst)) 

         (flatten (cdr lst)))))) 

Examples of the behavior of flatten include: 
> (flatten ‘(a (b c) (((d) e f)))) 

(a b c d e f) 

> (flatten ‘(a b c)) ; already flattened 

(a b c) 
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> (flatten ‘(1 (2 3) (4 (5 6) 7))) 

(1 2 3 4 5 6 7) 

car-cdr recursion is the basis of our implementation of unification in 
Section 15.2. In Chapter 13, we introduce variables and design algorithms for 
search. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.2. Tree representations of linear and tree-recursive functions. 

 Exercises 

 1. Create trees, similar to those of Figure 12.1, which show the structures 
of the following lists. 

(+ 4 (* 5 (+ 6 7 8))) 

(+ (* (+ 4 5) 6 7 8)) 

(+ (* (+ 4 (* 5 6)) 7) 8) 
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2. Write a recursive Lisp function that will reverse the elements of a list. 
(Do not use the built-in reverse function.) What is the complexity of 
your implementation? It is possible to reverse a list in linear time; can you 
do so? 
3. Write a Lisp function that will take a list nested to any depth and print 
the mirror image of that list. For instance, the function should have the 
behavior: 

> (mirror ‘((a b) (c (d e)))) 

(((e d) c) (b a)) 

Note that the mirroring operation operates at all levels of the list’s 
representation. 

4. Consider the database example of section 12.1. Write a function, find, 
to return all records that have a given value particular value for a particular 
field. To make this more interesting, allow users to specify the fields to be 
searched by name. For example, evaluating the expression: 

(find ‘salary-field ‘50000.00  

  ‘(((Alan Turing) 50000.00 135772) 

   ((Ada Lovelace) 45000.00 338519))) 

should return: 
((Alan Turing) 50000.00 135772) 

5. The Towers of Hanoi problem is based on the following legend: 

In a Far Eastern monastery, there is a puzzle consisting of three 
diamond needles and 64 gold disks. The disks are of graduated 
sizes. Initially, the disks are all stacked on a single needle in 
decreasing order of size. The monks are attempting to move all the 
disks to another needle under the following rules: 

    Only one disk may be moved at a time. 

    No disk can ever rest on a smaller disk. 

Legend has it that when the task has been completed, the universe will end. 
Write a Lisp program to solve this problem. For safety’s sake (and to write 
a program that will finish in your lifetime) do not attempt the full 64-disk 
problem. Four or five disks is more reasonable.  

6. Write a compiler for arithmetic expressions of the form: 
(op operand1 operand2) 

where op is either +, –, *, or / and the operands are either numbers or 
nested expressions. An example is (* (+ 3 6) (– 7 9)). Assume 
that the target machine has instructions: 

(move value register) 

(add register-1 register-2) 

(subtract register-1 register-2) 

(times register-1 register-2) 

(divide register-1 register-2) 
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All the arithmetic operations will leave the result in the first register 
argument. To simplify, assume an unlimited number of registers. Your 
compiler should take an arithmetic expression and return a list of these 
machine operations. 

 

 


