
171

 13 Variables, Datatypes, and Search

Chapter

Objectives
Variables introduced
 Basic support for type systems
Fundamental to search
Creating and binding variables
 set
 let
Depth-first search in Lisp:
 Use of production system architecture
 Backtracking supports search of all options

Chapter
Contents

13.1 Variables and Datatypes
13.2 Search: The Farmer, Wolf, Goat, and Cabbage Problem

 13.1 Variables and Datatypes

 We begin this chapter by demonstrating the creation of variables using
set and let and discussing the scope of their bindings. We then
introduce datatypes and discuss run-time type checking. We finish this
chapter with a sample search, where we use variables for state and
recursion for generation of the state-space graph.

Binding
Variables Using

Set

Lisp is based on the theory of recursive functions; early Lisp was the first
example of a functional or applicative programming language. An important
aspect of purely functional languages is the lack of any side effects as a
result of function execution. This means that the value returned by a
function call depends only on the function definition and the value of the
parameters in the call. Although Lisp is based on mathematical functions, it
is possible to define Lisp forms that violate this property. Consider the
following Lisp interaction:

> (f 4)

5

> (f 4)

6

> (f 4)

7

Note that f does not behave as a true function in that its output is not
determined solely by its actual parameter: each time it is called with 4, it
returns a different value. This implies that f is retaining its state, and that
each execution of the function creates a side effect that influences the
behavior of future calls. f is implemented using a Lisp built-in function
called set:

172 Part II: Programming in LISP

(defun f (x)

 (set ‘inc (+ inc 1))

 (+ x inc))

set takes two arguments. The first must evaluate to a symbol; the second
may be an arbitrary s-expression. set evaluates the second argument and
assigns this value to the symbol defined by the first argument. In the above
example, if inc is first set to 0 by the call (set ‘inc 0), each
subsequent evaluation will increment its parameter by one.

set requires that its first argument evaluate to a symbol. In many cases,
the first argument is simply a quoted symbol. Because this is done so often,
Lisp provides an alternative form, setq, which does not evaluate its first
argument. Instead, setq requires that the first argument be a symbol. For
example, the following forms are equivalent:

> (set ‘x 0)

0

> (setq x 0)

0

Although this use of set makes it possible to create Lisp objects that are
not pure functions in the mathematical sense, the ability to bind a value to
a variable in the global environment is a useful feature. Many programming
tasks are most naturally implemented using this ability to define objects
whose state persists across function calls. The classic example of this is the
“seed” in a random number generator: each call to the function changes
and saves the value of the seed. Similarly, it would be natural for a database
program (such as was described in Section 11.3) to store the database by
binding it to a variable in the global environment.

So far, we have seen two ways of giving a value to a symbol: explicitly, by
assignment using set or setq, or implicitly, when a function call binds
the calling parameters to the formal parameters in the definition. In the
examples seen so far, all variables in a function body were either bound or
free. A bound variable is one that appears as a formal parameter in the
definition of the function, while a free variable is one that appears in the
body of the function but is not a formal parameter. When a function is
called, any bindings that a bound variable may have in the global
environment are saved and the variable is rebound to the calling parameter.
After the function has completed execution, the original bindings are
restored. Thus, setting the value of a bound variable inside a function body
has no effect on the global bindings of that variable, as seen in the Lisp
interaction:

> (defun foo (x)

 (setq x (+ x 1)) ;increment bound variable x

 x) ;return its value.

foo

> (setq y 1)

1

 Chapter 13 Variables, Datatypes, and Search 173

> (foo y)

2

> y ;note that value of y is unchanged.

1

In the example that began this section, x was bound in the function f,
whereas inc was free in that function. As we demonstrated in the
example, free variables in a function definition are the primary source of
side effects in functions.

An interesting alternative to set and setq is the generalized assignment
function, setf. Instead of assigning a value to a symbol, setf evaluates
its first argument to obtain a memory location and places the value of the
second argument in that location. When binding a value to a symbol,
setf behaves like setq:

> (setq x 0)

0

> (setf x 0)

0

However, because we may call setf with any form that corresponds to a
memory location, it allows a more general semantics. For example, if we
make the first argument to setf a call to the car function, setf will
replace the first element of that list. If the first argument to setf is a call
to the cdr function, setf will replace the tail of that list. For example:

> (setf x ‘(a b c)) ;x is bound to a list.

(a b c)

> x ;The value of x is a list.

(a b c)

> (setf (car x) 1) ;car of x is a memory location.

1

> x ;setf changed value of car of x.

(1 b c)

> (setf (cdr x) ‘(2 3))

(2 3)

> x ;Note that x now has a new tail.

(1 2 3)

We may call setf with most Lisp forms that correspond to a memory
location; these include symbols and functions such as car, cdr, and nth.
Thus, setf allows the program designer great flexibility in creating,
manipulating, and even replacing different components of Lisp data
structures.

Defining Local
Variables Using

let

let is a useful function for explicitly controlling the binding of
variables. let allows the creation of local variables.
As an example, consider a function to compute the roots of a quadratic
equation. The function quad-roots will take as arguments the three
parameters a, b, and c of the equation ax2 + bx + c = 0 and

174 Part II: Programming in LISP

return a list of the two roots of the equation. These roots will be
calculated from the formula:

x = -b +/- sqrt(b2 – 4ac)

 2a

For example:
> (quad-roots 1 2 1)

(–1.0 –1.0)

> (quad-roots 1 6 8)

(–2.0 –4.0)

In computing quad-roots, the value of

sqrt(b2 – 4ac)

is used twice. For reasons of efficiency, as well as elegance, we should
compute this value only once, saving it in a variable for use in computing
the two roots. Based on this idea, an initial implementation of quad-
roots might be:

(defun quad-roots-1 (a b c)

 (setq temp (sqrt (– (* b b) (* 4 a c))))

 (list (/ (+ (– b) temp) (* 2 a))

 (/ (– (– b) temp) (* 2 a))))

Note that the above implementation assumes that the equation does not have
imaginary roots, as attempting to take the square root of a negative number
would cause the sqrt function to halt with an error condition. Modifying the
code to handle this case is straightforward and not relevant to this discussion.

Although, with this exception, the code is correct, evaluation of the function
body will have the side effect of setting the value of temp in the global
environment:

> (quad-roots-1 1 2 1)

(–1.0 –1.0)

> temp

0.0

It is much more desirable to make temp local to the function quad-roots,
thereby eliminating this side effect. This can be done through the use of a let
block. A let expression has the syntax:

(let (<local-variables>) <expressions>)

where the elements of (<local-variables>) are either symbolic atoms
or pairs of the form:

(<symbol> <expression>)

When a let form (or block as it is usually called) is evaluated, it establishes a
local environment consisting of all of the symbols in (<local-
variables>). If a symbol is the first element of a pair, the second element
is evaluated and the symbol is bound to this result; symbols that are not
included in pairs are bound to nil. If any of these symbols are already bound
in the global environment, these global bindings are saved and restored when
the let block terminates.

 Chapter 13 Variables, Datatypes, and Search 175

After these local bindings are established, the <expressions> are
evaluated in order within this environment. When the let statement
terminates, it returns the value of the last expression evaluated within the
block. The behavior of the let block is illustrated by the following
example:

> (setq a 0)

0

> (let ((a 3) b)

 (setq b 4)

 (+ a b))

7

> a

0

> b

ERROR – b is not bound at top level.

In this example, before the let block is executed, a is bound to 0 and b is
unbound at the top-level environment. When the let is evaluated, a is bound
to 3 and b is bound to nil. The setq assigns b to 4, and the sum of a and
b is returned by the let statement. Upon termination of the let, a and b
are restored to their previous values, including the unbound status of b.
Using the let statement, quad-roots can be implemented with no global
side effects:

(defun quad-roots-2 (a b c)

 (let (temp) (setq temp (sqrt (– (* b b)

 (* 4 a c))))

 (list (/ (+ (–b) temp) (* 2 a))

 (/ (– (– b) temp) (* 2 a)))))

Alternatively, temp may be bound when it is declared in the let statement,
giving a somewhat more concise implementation of quad-roots. In this
final version, the denominator of the formula, 2a, is also computed once and
saved in a local variable, denom:

(defun quad-roots-3 (a b c)

 (let ((temp (sqrt (–. (* b b) (* 4 a c))))

 (denom (* 2 a)))

 (list (/ (+ (– b) temp) denom)

 (/ (– (– b) temp) denom))))

In addition to avoiding side effects, quad-roots-3 is the most efficient of
the three versions, because it does not recompute values unnecessarily.

Data Types in
Common Lisp

Lisp provides a number of built-in data types. These include integers,
floating-point numbers, strings, and characters. Lisp also includes such
structured types as arrays, hash tables, sets, and structures. All of these
types include the appropriate operations on the type and predicates for
testing whether an object is an instance of the type. For example, lists are
supported by such functions as listp, which identifies an object as a list;

176 Part II: Programming in LISP

null, which identifies the empty list, and constructors and accessors such
as list, nth, car, and cdr.

However, unlike such strongly typed languages as C or Pascal, where all
expressions can be checked for type consistency before run time, in Lisp it
is the data objects that are typed, rather than variables. Any Lisp symbol
may bind to any object. This provides the programmer with the power of
typing but also with a great deal of flexibility in manipulating objects of
different or even unknown types. For example, we may bind any object to
any variable at run time. This means that we may define data structures
such as frames, without fully specifying the types of the values stored in
them. To support this flexibility, Lisp implements run-time type checking.
So if we bind a value to a symbol, and try to use this value in an erroneous
fashion at run time, the Lisp interpreter will detect an error:

> (setq x ‘a)

a

> (+ x 2)

> > Error: a is not a valid argument to +.

> > While executing: +

Users may implement their own type checking using either built-in or user-
defined type predicates. This allows the detection and management of type
errors as needed.

The preceding pages are not a complete description of Lisp. Instead, they
are intended to call the reader’s attention to interesting features of the
language that will be of use in implementing AI data structures and
algorithms. These features include:

• The naturalness with which Lisp supports a data abstraction
approach to programming.

• The use of lists to create symbolic data structures.

• The use of cond and recursion to control program flow.

• The recursive nature of list structures and the recursive
schemes involved in their manipulation.

• The use of quote and eval to control function evaluation

• The use of set and let to control variable bindings and side
effects.

The remainder of the Lisp section builds on these ideas to demonstrate the
use of Lisp for typical AI programming tasks such as pattern matching and
the design of graph search algorithms. We begin with a simple example, the
Farmer, Wolf, Goat, and Cabbage problem, where an abstract datatype is
used to describe states of the world.

 Chapter 13 Variables, Datatypes, and Search 177

 13.2 Search: The Farmer, Wolf, Goat, and Cabbage Problem

A Functional
Approach to

Search

To introduce graph search programming in Lisp, we next represent and
solve the farmer, wolf, goat, and cabbage problem:

A farmer with his wolf, goat, and cabbage come to the edge of a
river they wish to cross. There is a boat at the river’s edge, but, of
course, only the farmer can row it. The boat also can carry only
two things (including the rower) at a time. If the wolf is ever left
alone with the goat, the wolf will eat the goat; similarly, if the goat
is left alone with the cabbage, the goat will eat the cabbage. Devise
a sequence of crossings of the river so that all four characters
arrive safely on the other side of the river.

This problem was first presented in Prolog in Section 4.2. The Lisp version
searches the same space and has structural similarities to the Prolog solution;
however, it differs in ways that reflect Lisp’s imperative/functional orientation.
The Lisp solution searches the state space in a depth-first fashion using a list
of visited states to avoid loops.

The heart of the program is a set of functions that define states of the world as
an abstract data type. These functions hide the internals of state representation
from higher-level components of the program. States are represented as lists
of four elements, where each element denotes the location of the farmer, wolf,
goat, or cabbage, respectively. Thus, (e w e w) represents the state in
which the farmer (the first element) and the goat (the third element) are on the
east bank and the wolf and cabbage are on the west. The basic functions
defining the state data type will be a constructor, make-state, which takes
as arguments the locations of the farmer, wolf, goat, and cabbage and returns a
state, and four access functions, farmer-side, wolf-side, goat-
side, and cabbage-side, which take a state and return the location of an
individual. These functions are defined:

(defun make-state (f w g c) (list f w g c))

(defun farmer-side (state)

 (nth 0 state))

(defun wolf-side (state)

 (nth 1 state))

(defun goat-side (state)

 (nth 2 state))

(defun cabbage-side (state)

 (nth 3 state))

The rest of the program is built on these state access and construction
functions. In particular, they are used to implement the four possible actions
the farmer may take: rowing across the river alone or with either of the wolf,
goat, or cabbage.

Each move uses the access functions to tear a state apart into its components.
A function called opposite (to be defined shortly) determines the new
location of the individuals that cross the river, and make-state reassembles

178 Part II: Programming in LISP

these into the new state. For example, the function farmer-takes-self
may be defined:

(defun farmer-takes-self (state)

 (make-state (opposite (farmer-side state))

 (wolf-side state)

 (goat-side state)

 (cabbage-side state)))

Note that farmer-takes-self returns the new state, regardless of whether
it is safe or not. A state is unsafe if the farmer has left the goat alone with the
cabbage or left the wolf alone with the goat. The program must find a solution
path that does not contain any unsafe states. Although this “safe” check may
be done at a number of different stages in the execution of the program, our
approach is to perform it in the move functions. This is implemented by using
a function called safe, which we also define shortly. safe has the following
behavior:

> (safe ‘(w w w w)) ;safe state, return unchanged

(w w w w)

> (safe ‘(e w w e)) ;wolf eats goat, return nil

nil

> (safe ‘(w w e e)) ;goat eats cabbage, return nil

nil

safe is used in each move-across-the-river function to filter out the unsafe
states. Thus, any move that moves to an unsafe state will return nil instead
of that state. The recursive path algorithm can check for this nil and use it
to prune that state. In a sense, we are using safe to implement a production
system style condition-check prior to determining if a move rule can be applied.
For a detailed discussion of the production system pattern for computation
see Luger (2009, Chapter 6). Using safe, we next present a final definition
for the four move functions:

(defun farmer-takes-self (state)

 (safe

 (make-state (opposite (farmer-side state))

 (wolf-side state)

 (goat-side state)

 (cabbage-side state))))

(defun farmer-takes-wolf (state)

 (cond ((equal (farmer-side state)

 (wolf-side state))

 (safe (make-state

 (opposite (farmer-side state))

 (opposite (wolf-side state))

 (goat-side state)

 (cabbage-side state))))

 (t nil)))

 Chapter 13 Variables, Datatypes, and Search 179

(defun farmer-takes-goat (state)

 (cond ((equal (farmer-side state)

 (goat-side state))

 (safe (make-state

 (opposite (farmer-side state))

 (wolf-side state)

 (opposite (goat-side state))

 (cabbage-side state))))

 (t nil)))

(defun farmer-takes-cabbage (state)

 (cond ((equal (farmer-side state)

 (cabbage-side state))

 (safe (make-state

 (opposite (farmer-side state))

 (wolf-side state)

 (goat-side state)

 (opposite

 (cabbage-side state)))))

 (t nil)))

Note that the last three move functions include a conditional test to determine
whether the farmer and the prospective passenger are on the same side of the
river. If they are not, the functions return nil. The move definitions use the
state manipulation functions already presented and a function opposite,
which, for any given side, returns the other side of the river:

(defun opposite (side)

 (cond ((equal side ‘e) ‘w)

 ((equal side ‘w) ‘e)))

Lisp provides a number of different predicates for equality. The most
stringent, eq, is true only if its arguments evaluate to the same object, i.e.,
point to the same memory location. equal is less strict: it requires that its
arguments be syntactically identical, as in:

> (setq l1 ‘(1 2 3))

(1 2 3)

> (setq l2 ‘(1 2 3))

(1 2 3)

> (equal l1 l2)

t

> (eq l1 l2)

nil

> (setq l3 l1)

(1 2 3)

> (eq l1 l3)

t

180 Part II: Programming in LISP

We define safe using a cond to check for the two unsafe conditions: (1) the
farmer on the opposite bank from the wolf and the goat and (2) the farmer on
the opposite bank from the goat and the cabbage. If the state is safe, it is
returned unchanged; otherwise, safe returns nil:

(defun safe (state)

 (cond ((and (equal (goat-side state)

 (wolf-side state))

 (not (equal (farmer-side state)

 (wolf-side state))))

 nil)

 ((and (equal (goat-side state)

 (cabbage-side state))

 (not (equal (farmer-side state)

 (goat-side state))))

 nil)

 (t state)))

path implements the backtracking search of the state space. It takes as
arguments a state and a goal and first checks to see whether they are
equal, indicating a successful termination of the search. If they are not
equal, path generates all four of the neighboring states in the state space
graph, calling itself recursively on each of these neighboring states in turn to
try to find a path from them to a goal. Translating this simple definition
directly into Lisp yields:

(defun path (state goal)

 (cond ((equal state goal) ‘success)

 (t (or

 (path (farmer-takes-self state) goal)

 (path (farmer-takes-wolf state) goal)

 (path (farmer-takes-goat state) goal)

 (path (farmer-takes-cabbage state)

 goal)))))

This version of the path function is a simple translation of the recursive path
algorithm from English into Lisp and has several “bugs” that need to be
corrected. It does, however, capture the essential structure of the algorithm
and should be examined before continuing to correct the bugs. The first test in
the cond statement is necessary for a successful completion of the search
algorithm. When the equal state goal pattern matches, the recursion
stops and the atom success is returned. Otherwise, path generates the
four descendant nodes of the search graph and then calls itself on each of the
nodes in turn.

In particular, note the use of the or form to control evaluation of its
arguments. Recall that an or evaluates its arguments in turn until one of them
returns a non-nil value. When this occurs, the or terminates without
evaluating the other arguments and returns this non-nil value as a result.
Thus, the or not only is used as a logical operator but also provides a way of

 Chapter 13 Variables, Datatypes, and Search 181

controlling branching within the space to be searched. The or form is used
here instead of a cond because the value that is being tested and the value
that should be returned if the test is non-nil are the same.

One problem with using this definition to change the problem state is that a
move function may return a value of nil if the move may not be made or if it
leads to an unsafe state. To prevent path from attempting to generate the
children of a nil state, it must first check whether the current state is nil. If
it is, path should return nil.
The other issue that needs to be addressed in the implementation of path is
that of detecting potential loops in the search space. If the above
implementation of path is run, the farmer will soon find himself going back
and forth alone between the two banks of the river; that is, the algorithm will
be stuck in an infinite loop between identical states, both of which it has
already visited.

To prevent this looping from happening, path is given a third parameter,
been-list, a list of all the states that have already been visited. Each time
that path is called recursively on a new state of the world, the parent state
will be added to been-list. path uses the member predicate to make
sure the current state is not a member of been-list, i.e., that it has not
already been visited. This is accomplished by checking the current problem
state for membership in been-list before generating its descendants.
path is now defined:

 (defun path (state goal been-list)

 (cond ((null state) nil)

 ((equal state goal)

 (reverse (cons state been-list)))

 ((not (member state been-list

 :test #’equal))

 (or (path (farmer-takes-self state) goal

 (cons state been-list))

 (path (farmer-takes-wolf state) goal

 (cons state been-list))
 (path (farmer-takes-goat state) goal

 (cons state been-list))
 (path (farmer-takes-cabbage state)

 goal
 (cons state been-list))))))

In the above implementation, member is a Common Lisp built-in function
that behaves in essentially the same way as the my-member function defined
in Section 12.2. The only difference is the inclusion of :test #’equal in
the argument list. Unlike our “home-grown” member function, the Common
Lisp built-in form allows the programmer to specify the function that is used
in testing for membership. This wrinkle increases the flexibility of the function
and should not cause too much concern in this discussion.

Rather than having the function return just the atom success, it is better to
have it return the actual solution path. Because the series of states on the

182 Part II: Programming in LISP

solution path is already contained in the been-list, this list is returned
instead. Because the goal is not already on been-list, it is consed onto
the list. Also, because the list is constructed in reverse order (with the start
state as the last element), the list is reversed (constructed in reverse order using
another Lisp built-in function, reverse) prior to being returned.

Finally, because the been-list parameter should be kept “hidden” from
the user, a top-level calling function may be written that takes as arguments a
start and a goal state and calls path with a nil value of been-list:

(defun solve-fwgc (state goal)

 (path state goal nil))

Finally, let us compare our Lisp version of the farmer, wolf, goat, and
cabbage problem with the Prolog solution presented in Section 4.2. Not
only does the Lisp program solve the same problem, but it also searches
exactly the same state space as the Prolog version. This underscores the
point that the state space conceptualization of a problem is independent of
the implementation of a program for searching that space. Because both
programs search the same space, the two implementations have strong
similarities; the differences tend to be subtle but provide an interesting
contrast between declarative and procedural programming styles.

States in the Prolog version are represented using a predicate,
state(e,e,e,e), and the Lisp implementation uses a list. These two
representations are more than syntactic variations on one another. The Lisp
representation of state is defined not only by its list syntax but also by the
access and move functions that constitute the abstract data type “state.” In the
Prolog version, states are patterns; their meaning is determined by the way in
which they match other patterns in the Prolog rules.

The Lisp version of path is slightly longer than the Prolog version. One
reason for this is that the Lisp version must implement a search strategy,
whereas the Prolog version takes advantage of Prolog’s built-in search
algorithm. The control algorithm is explicit in the Lisp version but is
implicit in the Prolog version. Because Prolog is built on declarative
representation and theorem-proving techniques, the Prolog program is
more concise and has a flavor of describing the problem domain, without
directly implementing the search algorithm. The price paid for this
conciseness is that much of the program’s behavior is hidden, determined
by Prolog’s built-in inference strategies. Programmers may also feel more
pressure to make the problem solution conform to Prolog’s
representational formalism and search strategies. Lisp, on the other hand,
allows greater flexibility for the programmer. The price paid here is that the
programmer cannot draw on a built-in representation or search strategy
and must implement this explicitly.

In Chapter 14 we present higher-level functions, that is, functions that can
take other functions as arguments. This gives the Lisp language much of
the representational flexibility that meta-predicates (Chapter 5) give to
Prolog.

 Chapter 13 Variables, Datatypes, and Search 183

 Exercises

 1. Write a random number generator in Lisp. This function must maintain
a global variable, seed, and return a different random number each time the
function is called. For a description of a reasonable random number
algorithm, consult any basic algorithms text.
2. Create an “inventory supply” database. Build type checks for a set of six
useful queries on these data tuples. Compare your results with the Prolog
approach to this same problem as seen in Chapter 5. 2.
3. Write the functions initialize, push, top, pop, and list-
stack to maintain a global stack. These functions should behave:

> (initialize)

nil

> (push ‘foo)

foo

> (push ‘bar)

bar

> (top)

bar

> (list-stack)

(bar foo)

> (pop)

bar

> (list-stack)

(foo)

> (pop)

foo

> (list-stack)

()

4. Sets may be represented using lists. Note that these lists should not
contain any duplicate elements. Write your own Lisp implementations of
the set operations of union, intersection, and set difference. (Do not use
Common Lisp’s built-in versions of these functions.)
5. Solve the Water Jug problem, using a production system architecture
similar to the Farmer, Wolf, Goat, and Cabbage problem presented in
Section 13.2.

There are two jugs, one holding 3 gallons and the other 5 gallons
of water. A number of things that can be done with the jugs: they
can be filled, emptied, and dumped one into the other either until
the poured-into jug is full or until the poured-out-of jug is empty.
Devise a sequence of actions that will produce 4 gallons of water
in the larger jug. (Hint: only integer values of water are used.)

6. Implement a depth-first backtracking solution (such as was used to solve
the farmer, wolf, goat, and cabbage problem in Section 13.2) to the

184 Part II: Programming in LISP

missionary and cannibal problem:

Three missionaries and three cannibals come to the bank of a river
they wish to cross. There is a boat that will hold only two people,
and any of the group can row it. If there are ever more
missionaries than cannibals on any side of the river the cannibals
will get converted. Devise a series of moves to get everyone across
the river with no conversions.

