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 13.1 Variables and Datatypes 

 We begin this chapter by demonstrating the creation of variables using 
set and let and discussing the scope of their bindings. We then 
introduce datatypes and discuss run-time type checking. We finish this 
chapter with a sample search, where we use variables for state and 
recursion for generation of the state-space graph. 

Binding 
Variables Using 

Set 

Lisp is based on the theory of recursive functions; early Lisp was the first 
example of a functional or applicative programming language. An important 
aspect of purely functional languages is the lack of any side effects as a 
result of function execution. This means that the value returned by a 
function call depends only on the function definition and the value of the 
parameters in the call. Although Lisp is based on mathematical functions, it 
is possible to define Lisp forms that violate this property. Consider the 
following Lisp interaction: 

> (f 4) 

5 

> (f 4) 

6 

> (f 4) 

7 

Note that f does not behave as a true function in that its output is not 
determined solely by its actual parameter: each time it is called with 4, it 
returns a different value. This implies that f is retaining its state, and that 
each execution of the function creates a side effect that influences the 
behavior of future calls. f is implemented using a Lisp built-in function 
called set: 
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(defun f (x) 

    (set ‘inc (+ inc 1)) 

    (+ x inc)) 

set takes two arguments. The first must evaluate to a symbol; the second 
may be an arbitrary s-expression. set evaluates the second argument and 
assigns this value to the symbol defined by the first argument. In the above 
example, if inc is first set to 0 by the call (set ‘inc 0), each 
subsequent evaluation will increment its parameter by one. 

set requires that its first argument evaluate to a symbol. In many cases, 
the first argument is simply a quoted symbol. Because this is done so often, 
Lisp provides an alternative form, setq, which does not evaluate its first 
argument. Instead, setq requires that the first argument be a symbol. For 
example, the following forms are equivalent: 

> (set ‘x 0) 

0 

> (setq x 0) 

0 

Although this use of set makes it possible to create Lisp objects that are 
not pure functions in the mathematical sense, the ability to bind a value to 
a variable in the global environment is a useful feature. Many programming 
tasks are most naturally implemented using this ability to define objects 
whose state persists across function calls. The classic example of this is the 
“seed” in a random number generator: each call to the function changes 
and saves the value of the seed. Similarly, it would be natural for a database 
program (such as was described in Section 11.3) to store the database by 
binding it to a variable in the global environment. 

So far, we have seen two ways of giving a value to a symbol: explicitly, by 
assignment using set or setq, or implicitly, when a function call binds 
the calling parameters to the formal parameters in the definition. In the 
examples seen so far, all variables in a function body were either bound or 
free. A bound variable is one that appears as a formal parameter in the 
definition of the function, while a free variable is one that appears in the 
body of the function but is not a formal parameter. When a function is 
called, any bindings that a bound variable may have in the global 
environment are saved and the variable is rebound to the calling parameter. 
After the function has completed execution, the original bindings are 
restored. Thus, setting the value of a bound variable inside a function body 
has no effect on the global bindings of that variable, as seen in the Lisp 
interaction: 

> (defun foo (x) 

    (setq x (+ x 1))    ;increment bound variable x 

    x)                           ;return its value. 

foo 

> (setq y 1) 

1 
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> (foo y) 

2 

> y             ;note that value of y is unchanged. 

1 

In the example that began this section, x was bound in the function f, 
whereas inc was free in that function. As we demonstrated in the 
example, free variables in a function definition are the primary source of 
side effects in functions. 

An interesting alternative to set and setq is the generalized assignment 
function, setf. Instead of assigning a value to a symbol, setf evaluates 
its first argument to obtain a memory location and places the value of the 
second argument in that location. When binding a value to a symbol, 
setf behaves like setq: 

> (setq x 0) 

0 

> (setf x 0) 

0 

However, because we may call setf with any form that corresponds to a 
memory location, it allows a more general semantics. For example, if we 
make the first argument to setf a call to the car function, setf will 
replace the first element of that list. If the first argument to setf is a call 
to the cdr function, setf will replace the tail of that list. For example: 

> (setf x ‘(a b c))           ;x is bound to a list. 

(a b c) 

> x            ;The value of x is a list. 

(a b c) 

> (setf (car x) 1)  ;car of x is a memory location.  

1 

> x                ;setf changed value of car of x. 

(1 b c) 

> (setf (cdr x) ‘(2 3)) 

(2 3) 

> x                ;Note that x now has a new tail. 

(1 2 3) 

We may call setf with most Lisp forms that correspond to a memory 
location; these include symbols and functions such as car, cdr, and nth. 
Thus, setf allows the program designer great flexibility in creating, 
manipulating, and even replacing different components of Lisp data 
structures. 

Defining Local 
Variables Using 

let 

let is a useful function for explicitly controlling the binding of 
variables. let allows the creation of local variables.  
As an example, consider a function to compute the roots of a quadratic 
equation. The function quad-roots will take as arguments the three 
parameters a, b, and c of the equation ax2 + bx + c = 0 and 
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return a list of the two roots of the equation. These roots will be 
calculated from the formula: 

x = -b +/- sqrt(b2 – 4ac) 

             2a 

For example: 
> (quad-roots 1 2 1) 

(–1.0 –1.0) 

> (quad-roots 1 6 8) 

(–2.0 –4.0) 

In computing quad-roots, the value of 

sqrt(b2 – 4ac) 

is used twice. For reasons of efficiency, as well as elegance, we should 
compute this value only once, saving it in a variable for use in computing 
the two roots. Based on this idea, an initial implementation of quad-
roots might be: 

(defun quad-roots-1 (a b c) 

    (setq temp (sqrt (– (* b b) (* 4 a c)))) 

       (list (/ (+ (– b) temp) (* 2 a)) 

           (/ (– (– b) temp) (* 2 a)))) 

Note that the above implementation assumes that the equation does not have 
imaginary roots, as attempting to take the square root of a negative number 
would cause the sqrt function to halt with an error condition. Modifying the 
code to handle this case is straightforward and not relevant to this discussion. 

Although, with this exception, the code is correct, evaluation of the function 
body will have the side effect of setting the value of temp in the global 
environment: 

> (quad-roots-1 1 2 1) 

(–1.0 –1.0) 

> temp 

0.0 

It is much more desirable to make temp local to the function quad-roots, 
thereby eliminating this side effect. This can be done through the use of a let 
block. A let expression has the syntax: 

(let (<local-variables>) <expressions>) 

where the elements of (<local-variables>) are either symbolic atoms 
or pairs of the form: 

(<symbol> <expression>) 

When a let form (or block as it is usually called) is evaluated, it establishes a 
local environment consisting of all of the symbols in (<local-
variables>). If a symbol is the first element of a pair, the second element 
is evaluated and the symbol is bound to this result; symbols that are not 
included in pairs are bound to nil. If any of these symbols are already bound 
in the global environment, these global bindings are saved and restored when 
the let block terminates. 
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After these local bindings are established, the <expressions> are 
evaluated in order within this environment. When the let statement 
terminates, it returns the value of the last expression evaluated within the 
block. The behavior of the let block is illustrated by the following 
example: 

> (setq a 0) 

0 

> (let ((a 3) b) 

    (setq b 4) 

    (+ a b)) 

7 

> a 

0 

> b 

ERROR – b is not bound at top level. 

In this example, before the let block is executed, a is bound to 0 and b is 
unbound at the top-level environment. When the let is evaluated, a is bound 
to 3 and b is bound to nil. The setq assigns b to 4, and the sum of a and 
b is returned by the let statement. Upon termination of the let, a and b 
are restored to their previous values, including the unbound status of b. 
Using the let statement, quad-roots can be implemented with no global 
side effects: 

(defun quad-roots-2 (a b c) 

     (let (temp) (setq temp (sqrt (– (* b b)  

                                  (* 4 a c)))) 

          (list (/ (+ (–b) temp) (* 2 a)) 

              (/ (– (– b) temp) (* 2 a))))) 

Alternatively, temp may be bound when it is declared in the let statement, 
giving a somewhat more concise implementation of quad-roots. In this 
final version, the denominator of the formula, 2a, is also computed once and 
saved in a local variable, denom: 

(defun quad-roots-3 (a b c) 

     (let ((temp (sqrt (–. (* b b) (* 4 a c)))) 

         (denom (* 2 a))) 

              (list (/ (+ (– b) temp) denom) 

                  (/ (– (– b) temp) denom)))) 

In addition to avoiding side effects, quad-roots-3 is the most efficient of 
the three versions, because it does not recompute values unnecessarily. 

Data Types in 
Common Lisp 

Lisp provides a number of built-in data types. These include integers, 
floating-point numbers, strings, and characters. Lisp also includes such 
structured types as arrays, hash tables, sets, and structures. All of these 
types include the appropriate operations on the type and predicates for 
testing whether an object is an instance of the type. For example, lists are 
supported by such functions as listp, which identifies an object as a list; 
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null, which identifies the empty list, and constructors and accessors such 
as list, nth, car, and cdr. 

However, unlike such strongly typed languages as C or Pascal, where all 
expressions can be checked for type consistency before run time, in Lisp it 
is the data objects that are typed, rather than variables. Any Lisp symbol 
may bind to any object. This provides the programmer with the power of 
typing but also with a great deal of flexibility in manipulating objects of 
different or even unknown types. For example, we may bind any object to 
any variable at run time. This means that we may define data structures 
such as frames, without fully specifying the types of the values stored in 
them. To support this flexibility, Lisp implements run-time type checking. 
So if we bind a value to a symbol, and try to use this value in an erroneous 
fashion at run time, the Lisp interpreter will detect an error: 

> (setq x ‘a) 

a 

> (+ x 2) 

> > Error: a is not a valid argument to +. 

> > While executing: + 

Users may implement their own type checking using either built-in or user-
defined type predicates. This allows the detection and management of type 
errors as needed. 

The preceding pages are not a complete description of Lisp. Instead, they 
are intended to call the reader’s attention to interesting features of the 
language that will be of use in implementing AI data structures and 
algorithms. These features include: 

• The naturalness with which Lisp supports a data abstraction 
approach to programming. 

• The use of lists to create symbolic data structures. 

• The use of cond and recursion to control program flow. 

• The recursive nature of list structures and the recursive 
schemes involved in their manipulation. 

• The use of quote and eval to control function evaluation 

• The use of set and let to control variable bindings and side 
effects. 

The remainder of the Lisp section builds on these ideas to demonstrate the 
use of Lisp for typical AI programming tasks such as pattern matching and 
the design of graph search algorithms. We begin with a simple example, the 
Farmer, Wolf, Goat, and Cabbage problem, where an abstract datatype is 
used to describe states of the world. 
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 13.2 Search: The Farmer, Wolf, Goat, and Cabbage Problem 

A Functional 
Approach to 

Search 

To introduce graph search programming in Lisp, we next represent and 
solve the farmer, wolf, goat, and cabbage problem: 

A farmer with his wolf, goat, and cabbage come to the edge of a 
river they wish to cross. There is a boat at the river’s edge, but, of 
course, only the farmer can row it. The boat also can carry only 
two things (including the rower) at a time. If the wolf is ever left 
alone with the goat, the wolf will eat the goat; similarly, if the goat 
is left alone with the cabbage, the goat will eat the cabbage. Devise 
a sequence of crossings of the river so that all four characters 
arrive safely on the other side of the river. 

This problem was first presented in Prolog in Section 4.2. The Lisp version 
searches the same space and has structural similarities to the Prolog solution; 
however, it differs in ways that reflect Lisp’s imperative/functional orientation. 
The Lisp solution searches the state space in a depth-first fashion using a list 
of visited states to avoid loops. 

The heart of the program is a set of functions that define states of the world as 
an abstract data type. These functions hide the internals of state representation 
from higher-level components of the program. States are represented as lists 
of four elements, where each element denotes the location of the farmer, wolf, 
goat, or cabbage, respectively. Thus, (e w e w) represents the state in 
which the farmer (the first element) and the goat (the third element) are on the 
east bank and the wolf and cabbage are on the west. The basic functions 
defining the state data type will be a constructor, make-state, which takes 
as arguments the locations of the farmer, wolf, goat, and cabbage and returns a 
state, and four access functions, farmer-side, wolf-side, goat-
side, and cabbage-side, which take a state and return the location of an 
individual. These functions are defined: 

(defun make-state (f w g c) (list f w g c)) 

(defun farmer-side (state) 

    (nth 0 state)) 

(defun wolf-side (state) 

    (nth 1 state)) 

(defun goat-side (state) 

    (nth 2 state)) 

(defun cabbage-side (state) 

    (nth 3 state)) 

The rest of the program is built on these state access and construction 
functions. In particular, they are used to implement the four possible actions 
the farmer may take: rowing across the river alone or with either of the wolf, 
goat, or cabbage. 

Each move uses the access functions to tear a state apart into its components. 
A function called opposite (to be defined shortly) determines the new 
location of the individuals that cross the river, and make-state reassembles 
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these into the new state. For example, the function farmer-takes-self 
may be defined: 

(defun farmer-takes-self (state) 

    (make-state (opposite (farmer-side state)) 

        (wolf-side state) 

        (goat-side state) 

        (cabbage-side state))) 

Note that farmer-takes-self returns the new state, regardless of whether 
it is safe or not. A state is unsafe if the farmer has left the goat alone with the 
cabbage or left the wolf alone with the goat. The program must find a solution 
path that does not contain any unsafe states. Although this “safe” check may 
be done at a number of different stages in the execution of the program, our 
approach is to perform it in the move functions. This is implemented by using 
a function called safe, which we also define shortly. safe has the following 
behavior: 

> (safe ‘(w w w w)) ;safe state, return unchanged 

(w w w w) 

> (safe ‘(e w w e)) ;wolf eats goat, return nil 

nil 

> (safe ‘(w w e e)) ;goat eats cabbage, return nil 

nil 

safe is used in each move-across-the-river function to filter out the unsafe 
states. Thus, any move that moves to an unsafe state will return nil instead 
of that state. The recursive path algorithm can check for this nil and use it 
to prune that state. In a sense, we are using safe to implement a production 
system style condition-check prior to determining if a move rule can be applied. 
For a detailed discussion of the production system pattern for computation 
see Luger (2009, Chapter 6). Using safe, we next present a final definition 
for the four move functions: 

(defun farmer-takes-self (state) 

    (safe  

          (make-state (opposite (farmer-side state)) 

         (wolf-side state) 

         (goat-side state) 

         (cabbage-side state)))) 

(defun farmer-takes-wolf (state) 

    (cond ((equal (farmer-side state)  

          (wolf-side state)) 

     (safe  (make-state  

         (opposite (farmer-side state)) 

     (opposite (wolf-side state)) 

     (goat-side state) 

     (cabbage-side state)))) 

    (t nil))) 
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(defun farmer-takes-goat (state) 

    (cond ((equal (farmer-side state)  

           (goat-side state)) 

     (safe (make-state  

         (opposite (farmer-side state)) 

          (wolf-side state) 

          (opposite (goat-side state)) 

          (cabbage-side state)))) 

      (t nil))) 

(defun farmer-takes-cabbage (state) 

    (cond ((equal (farmer-side state) 

          (cabbage-side state)) 

         (safe (make-state 

         (opposite (farmer-side state)) 

     (wolf-side state) 

     (goat-side state) 

          (opposite 

            (cabbage-side state))))) 

    (t nil))) 

Note that the last three move functions include a conditional test to determine 
whether the farmer and the prospective passenger are on the same side of the 
river. If they are not, the functions return nil. The move definitions use the 
state manipulation functions already presented and a function opposite, 
which, for any given side, returns the other side of the river: 

(defun opposite (side) 

    (cond ((equal side ‘e) ‘w) 

        ((equal side ‘w) ‘e))) 

Lisp provides a number of different predicates for equality. The most 
stringent, eq, is true only if its arguments evaluate to the same object, i.e., 
point to the same memory location. equal is less strict: it requires that its 
arguments be syntactically identical, as in: 

> (setq l1 ‘(1 2 3)) 

(1 2 3) 

> (setq l2 ‘(1 2 3)) 

(1 2 3) 

> (equal l1 l2) 

t 

> (eq l1 l2) 

nil 

> (setq l3 l1) 

(1 2 3) 

> (eq l1 l3) 

t 
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We define safe using a cond to check for the two unsafe conditions: (1) the 
farmer on the opposite bank from the wolf and the goat and (2) the farmer on 
the opposite bank from the goat and the cabbage. If the state is safe, it is 
returned unchanged; otherwise, safe returns nil: 

(defun safe (state) 

    (cond ((and (equal (goat-side state)  

                  (wolf-side state))          

                  (not (equal (farmer-side state)  

                  (wolf-side state))))  

     nil) 

        ((and (equal (goat-side state)  

                  (cabbage-side state))  

            (not (equal (farmer-side state)  

                  (goat-side state))))  

     nil) 

       (t state))) 

path implements the backtracking search of the state space. It takes as 
arguments a state and a goal and first checks to see whether they are 
equal, indicating a successful termination of the search. If they are not 
equal, path generates all four of the neighboring states in the state space 
graph, calling itself recursively on each of these neighboring states in turn to 
try to find a path from them to a goal. Translating this simple definition 
directly into Lisp yields: 

(defun path (state goal) 

    (cond ((equal state goal) ‘success) 

        (t (or  

         (path (farmer-takes-self state) goal) 

        (path (farmer-takes-wolf state) goal) 

        (path (farmer-takes-goat state) goal) 

        (path (farmer-takes-cabbage state)  

      goal))))) 

This version of the path function is a simple translation of the recursive path 
algorithm from English into Lisp and has several “bugs” that need to be 
corrected. It does, however, capture the essential structure of the algorithm 
and should be examined before continuing to correct the bugs. The first test in 
the cond statement is necessary for a successful completion of the search 
algorithm. When the equal state goal pattern matches, the recursion 
stops and the atom success is returned. Otherwise, path generates the 
four descendant nodes of the search graph and then calls itself on each of the 
nodes in turn. 

In particular, note the use of the or form to control evaluation of its 
arguments. Recall that an or evaluates its arguments in turn until one of them 
returns a non-nil value. When this occurs, the or terminates without 
evaluating the other arguments and returns this non-nil value as a result. 
Thus, the or not only is used as a logical operator but also provides a way of 
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controlling branching within the space to be searched. The or form is used 
here instead of a cond because the value that is being tested and the value 
that should be returned if the test is non-nil are the same. 

One problem with using this definition to change the problem state is that a 
move function may return a value of nil if the move may not be made or if it 
leads to an unsafe state. To prevent path from attempting to generate the 
children of a nil state, it must first check whether the current state is nil. If 
it is, path should return nil. 
The other issue that needs to be addressed in the implementation of path is 
that of detecting potential loops in the search space. If the above 
implementation of path is run, the farmer will soon find himself going back 
and forth alone between the two banks of the river; that is, the algorithm will 
be stuck in an infinite loop between identical states, both of which it has 
already visited.  

To prevent this looping from happening, path is given a third parameter, 
been-list, a list of all the states that have already been visited. Each time 
that path is called recursively on a new state of the world, the parent state 
will be added to been-list. path uses the member predicate to make 
sure the current state is not a member of been-list, i.e., that it has not 
already been visited. This is accomplished by checking the current problem 
state for membership in been-list before generating its descendants. 
path is now defined: 

   (defun path (state goal been-list) 

    (cond ((null state) nil) 

     ((equal state goal)  

      (reverse (cons state been-list))) 

     ((not (member state been-list  

     :test #’equal)) 

     (or (path (farmer-takes-self state) goal  

                         (cons state been-list)) 

    (path (farmer-takes-wolf state) goal  

                         (cons state been-list)) 
    (path (farmer-takes-goat state) goal  

                         (cons state been-list)) 
    (path (farmer-takes-cabbage state)  

             goal  
                         (cons state been-list)))))) 

In the above implementation, member is a Common Lisp built-in function 
that behaves in essentially the same way as the my-member function defined 
in Section 12.2. The only difference is the inclusion of :test #’equal in 
the argument list. Unlike our “home-grown” member function, the Common 
Lisp built-in form allows the programmer to specify the function that is used 
in testing for membership. This wrinkle increases the flexibility of the function 
and should not cause too much concern in this discussion. 

Rather than having the function return just the atom success, it is better to 
have it return the actual solution path. Because the series of states on the 
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solution path is already contained in the been-list, this list is returned 
instead. Because the goal is not already on been-list, it is consed onto 
the list. Also, because the list is constructed in reverse order (with the start 
state as the last element), the list is reversed (constructed in reverse order using 
another Lisp built-in function, reverse) prior to being returned. 

Finally, because the been-list parameter should be kept “hidden” from 
the user, a top-level calling function may be written that takes as arguments a 
start and a goal state and calls path with a nil value of been-list: 

(defun solve-fwgc (state goal)  

    (path state goal nil)) 

Finally, let us compare our Lisp version of the farmer, wolf, goat, and 
cabbage problem with the Prolog solution presented in Section 4.2. Not 
only does the Lisp program solve the same problem, but it also searches 
exactly the same state space as the Prolog version. This underscores the 
point that the state space conceptualization of a problem is independent of 
the implementation of a program for searching that space. Because both 
programs search the same space, the two implementations have strong 
similarities; the differences tend to be subtle but provide an interesting 
contrast between declarative and procedural programming styles. 

States in the Prolog version are represented using a predicate, 
state(e,e,e,e), and the Lisp implementation uses a list. These two 
representations are more than syntactic variations on one another. The Lisp 
representation of state is defined not only by its list syntax but also by the 
access and move functions that constitute the abstract data type “state.” In the 
Prolog version, states are patterns; their meaning is determined by the way in 
which they match other patterns in the Prolog rules. 

The Lisp version of path is slightly longer than the Prolog version. One 
reason for this is that the Lisp version must implement a search strategy, 
whereas the Prolog version takes advantage of Prolog’s built-in search 
algorithm. The control algorithm is explicit in the Lisp version but is 
implicit in the Prolog version. Because Prolog is built on declarative 
representation and theorem-proving techniques, the Prolog program is 
more concise and has a flavor of describing the problem domain, without 
directly implementing the search algorithm. The price paid for this 
conciseness is that much of the program’s behavior is hidden, determined 
by Prolog’s built-in inference strategies. Programmers may also feel more 
pressure to make the problem solution conform to Prolog’s 
representational formalism and search strategies. Lisp, on the other hand, 
allows greater flexibility for the programmer. The price paid here is that the 
programmer cannot draw on a built-in representation or search strategy 
and must implement this explicitly. 

 

In Chapter 14 we present higher-level functions, that is, functions that can 
take other functions as arguments. This gives the Lisp language much of 
the representational flexibility that meta-predicates (Chapter 5) give to 
Prolog. 
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 Exercises 

 1. Write a random number generator in Lisp. This function must maintain 
a global variable, seed, and return a different random number each time the 
function is called. For a description of a reasonable random number 
algorithm, consult any basic algorithms text. 
2. Create an “inventory supply” database. Build type checks for a set of six 
useful queries on these data tuples. Compare your results with the Prolog 
approach to this same problem as seen in Chapter 5. 2.  
3. Write the functions initialize, push, top, pop, and list-
stack to maintain a global stack. These functions should behave: 

> (initialize) 

nil 

> (push ‘foo) 

foo 

> (push ‘bar) 

bar 

> (top) 

bar 

> (list-stack) 

(bar foo) 

> (pop) 

bar 

> (list-stack) 

(foo)  

> (pop) 

foo 

> (list-stack) 

() 

4. Sets may be represented using lists. Note that these lists should not 
contain any duplicate elements. Write your own Lisp implementations of 
the set operations of union, intersection, and set difference. (Do not use 
Common Lisp’s built-in versions of these functions.) 
5. Solve the Water Jug problem, using a production system architecture 
similar to the Farmer, Wolf, Goat, and Cabbage problem presented in 
Section 13.2. 

There are two jugs, one holding 3 gallons and the other 5 gallons 
of water. A number of things that can be done with the jugs: they 
can be filled, emptied, and dumped one into the other either until 
the poured-into jug is full or until the poured-out-of jug is empty. 
Devise a sequence of actions that will produce 4 gallons of water 
in the larger jug. (Hint: only integer values of water are used.) 

6. Implement a depth-first backtracking solution (such as was used to solve 
the farmer, wolf, goat, and cabbage problem in Section 13.2) to the 
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missionary and cannibal problem: 

Three missionaries and three cannibals come to the bank of a river 
they wish to cross. There is a boat that will hold only two people, 
and any of the group can row it. If there are ever more 
missionaries than cannibals on any side of the river the cannibals 
will get converted. Devise a series of moves to get everyone across 
the river with no conversions. 

 

 

 


