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 15.1 Pattern Matching: Introduction 

 In Chapter 15 we first design an algorithm for matching patterns in general 
list structures. This is the basis for the unify function which supports full 
pattern matching and the return of sets of unifying substitutions for 
matching patterns in predicate calculus expressions. We will see this as the 
basis for interpreters for logic programming and rule-based systems in 
Lisp, presented in Chapters 16 and 17. 

Pattern 
Matching in 

Lisp 

Pattern matching is an important AI methodology that has already been 
discussed in the Prolog chapters and in the presentation of production 
systems. In this section we implement a recursive pattern matcher and use 
it to build a pattern-directed retrieval function for a simple database. 

The heart of this retrieval system is a function called match, which takes 
as arguments two s-expressions and returns t if the expressions match. 
Matching requires that both expressions have the same structure as well as 
having identical atoms in corresponding positions. In addition, match 
allows the inclusion of variables, denoted by ?, in an s-expression. 
Variables are allowed to match with any s-expression, either a list or an 
atom, but do not save bindings, as with full unification (next). Examples of 
the desired behavior for match appear below. If the examples seem 
reminiscent of the Prolog examples in Part II, this is because match is 
actually a simplified version of the unification algorithm that forms the 
heart of the Prolog environment, as well as of many other pattern-directed 
AI systems. We will later expand match into the full unification algorithm 
by allowing named variables and returning a list of bindings required for a 
match. 
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> (match ‘(likes bill wine) ‘(likes bill wine)) 

t 

> (match ‘(likes bill wine) ‘(likes bill milk)) 

nil 

> (match ‘(likes bill ?) ‘(likes bill wine))        

t 

> (match ‘(likes ? wine) ‘(likes bill ?))            
t 

> (match ‘(likes bill ?) ‘(likes bill (prolog lisp 
smalltalk)) 

t 

> (match ‘(likes ?) ‘(likes bill wine)) 

nil 

match is used to define a function called get-matches, which takes as 
arguments two s-expressions. The first argument is a pattern to be matched 
against elements of the second s-expression, which must be a list. get-
matches returns a list of the elements of the list that match the first 
argument. In the example below, get-matches is used to retrieve 
records from an employee database as described earlier in Part III. 

Because the database is a large and relatively complex s-expression, we 
have bound it to the global variable *database* and use that variable as 
an argument to get-matches. This was done to improve readability of 
the examples. 

> (setq *database* ‘(((lovelace ada) 50000.00 1234) 

        ((turing alan) 45000.00 3927) 

        ((shelley mary) 35000.00 2850) 

        ((vonNeumann john) 40000.00 7955) 

        ((simon herbert) 50000.00 1374) 

        ((mccarthy john) 48000.00 2864) 

        ((russell bertrand) 35000.00 2950)) 

*database* 

> (get-matches ‘((turing alan) 45000.00 3927) 
*database*) 

((turing alan) 45000.00 3927) 

> (get-matches ‘(? 50000.00 ?) *database*)  

;people who make 50000 

(((lovelace ada) 50000.00 1234) ((simon herbert) 
50000.00 1374)) 

> (get-matches ‘((? john) ? ?) *database*) 

;all people named john 

(((vonNeumann john) 40000.00 7955) ((mccarthy john) 
48000.00 2864)) 

We implement get-matches using cdr recursion: each step attempts 
to match the target pattern with the first element of the database (the car 
of the list). If the is a match, the function will cons it onto the list of 
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matches returned by the recursive call to form the answer for the pattern. 
get-matches is defined:  

(defun get-matches (pattern database) 

  (cond ((null database) ( )) 

    ((match pattern (car database))           
      (cons (car database)  

          (get-matches pattern  

            (cdr database)))) 

        (t (get-matches pattern  

            (cdr database))))) 

The heart of the system is the match function, a predicate that determines 
whether or not two s-expressions containing variables actually match. 
match is based on the idea that two lists match if and only if their 
respective cars and cdrs match, suggesting a car-cdr recursive 
scheme for the algorithm.  

The recursion terminates when either of the arguments is atomic (this 
includes the empty list, nil, which is both an atom and a list). If both 
patterns are the same atom or if one of the patterns is a variable atom, ?, 
which can match with anything, then termination is with a successful 
match; otherwise, the match will fail. Notice that if either of the patterns is 
a variable, the other pattern need not be atomic; variables may match with 
variables or with s-expressions of arbitrary complexity. 

Because the handling of the terminating conditions is complex, the 
implementation of match uses a function called match-atom that takes 
two arguments, one or both of which is an atom, and checks to see 
whether the patterns match. By hiding this complexity in match-atom 
the car-cdr recursive structure of match is more apparent: 

(defun match (pattern1 pattern2) 

  (cond (or (atom pattern1) (atom pattern2)) 

        (match-atom pattern1 pattern2))       
    (t (and (match (car pattern1) (car pattern2))  

        (match (cdr pattern1)  

              (cdr pattern2)))))) 

The implementation of match-atom makes use of the fact that when it 
is called, at least one of the arguments is an atom. Because of this 
assumption, a simple test for equality of patterns is all that is needed to test 
that both patterns are the same atom (including both being a variable); it 
will fail either if the two patterns are different atoms or if one of them is 
nonatomic. If the first test fails, the only way match can succeed is if one 
of the patterns is a variable. This check constitutes the remainder of the 
function definition.  

Finally, we define a function variable-p to test whether or not a 
pattern is a variable. Treating variables as an abstract data type now will 
simplify later extensions to the function, for example, the extension of the 
function to named variables as in Prolog. 
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(defun match-atom (pattern1 pattern2) 

    (or (equal pattern1 pattern2)           
      (variable-p pattern1) 

      (variable-p pattern2))) 

(defun variable-p (x) (equal x ‘?)) 

A Recursive 
Unification 

Function 

We have just completed the implementation of a recursive pattern-
matching algorithm that allowed the inclusion of unnamed variables in 
patterns. Our next step will be to extend this simple pattern matcher into 
the full unification algorithm. See Luger (2009, Section 2.3) for a 
pseudocode version of this algorithm.  

The function, unify, allows named variables in both of the patterns to be 
matched, and returns a substitution list of the variable bindings required 
for the match. This unification function is the basis of the inference 
systems for logic and expert system interpreters developed later in 
Chapters 16 and 17. 

As follows the definition of unification, patterns are either constants, 
variables, or list structures. We will distinguish variables from one another 
by their names. Named variables will be represented as lists of the form 
(var <name>), where <name> is usually an atomic symbol. (var 
x), (var y), and (var newstate) are all examples of legal 
variables. 

The function unify takes as arguments two patterns to be matched and a 
set of variable substitutions (bindings) to be employed in the match. 
Generally, this set will be empty (nil) when the function is first called. On 
a successful match, unify returns a (possibly empty) set of substitutions 
required for a successful match. If no match was possible, unify returns 
the symbol failed; nil is used to indicate an empty substitution set, 
i.e., a match in which no substitutions were required. An example of the 
behavior of unify, with comments, is: 

> (unify ‘(p a (var x)) ‘(p a b) ( )) 

(((var x) . b))   

             ;Returns substitution of b for (var x). 

> (unify ‘(p (var y) b) ‘(p a (var x)) ( )) 

(((var x) . b) ((var y) . a)) 

                 ;Variables appear in both patterns. 

> (unify ‘(p (var x)) ‘(p (q a (var y))) ( )) 

(((var x) q a (var y))) 

            ;Variable is bound to a complex pattern. 

> (unify ‘(p a) ‘(p a) ( ))  

nil 

            ;nil indicates no substitution required. 

> (unify ‘(p a) ‘(q a) ( ))  

failed 

         ;Returns atom “failed” to indicate failure. 
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We will explain the “.” notation, as in ((var x) . b), after we 
present the function unify. unify, like the pattern matcher of earlier in 
this section, uses a car-cdr recursive scheme and is defined by: 

(defun unify (pattern1 pattern2 substitution-list) 

    (cond ((equal substitution-list ‘failed)  

          ‘failed) 

        ((varp pattern1)  

        (match-var pattern1  

                  pattern2 substitution-list)) 

        ((varp pattern2)  

        (match-var pattern2  

           pattern1 substitution-list))  

            ((is-constant-p pattern1) 

         (cond ((equal pattern1 pattern2)  

       substitution-list) 

           (t ‘failed))) 

        ((is-constant-p pattern2) ‘failed) 

         (t (unify (cdr pattern1)  

          (cdr pattern2) 

          (unify (car pattern1)  

           (car pattern2)  

       substitution-list))))) 

On entering unify, the algorithm first checks whether the 
substitution-list is equal to failed. This could occur if a 
prior attempt to unify the cars of two patterns had failed. If this 
condition is met, the entire unification operation fails, and the function 
returns failed. 
Next, if either pattern is a variable, the function match-var is called to 
perform further checking and possibly add a new binding to 
substitution-list. If neither pattern is a variable, unify tests 
whether either is a constant, returning the unchanged substitution list if 
they are the same constant, otherwise it returns failed. 
The last item in the cond statement implements the tree-recursive 
decomposition of the problem. Because all other options have failed, the 
function concludes that the patterns are lists the must be unified 
recursively. It does this using a standard tree-recursive scheme: first, the 
cars of the patterns are unified using the bindings in substitution-
list. The result is passed as the third argument to the call of unify on 
the cdrs of both patterns. This allows the variable substitutions made in 
matching the cars to be applied to other occurrences of those variables in 
the cdrs of both patterns. 
match-var, for the case of matching a variable and a pattern, is defined: 
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(defun match-var (var pattern substitution-list) 

  (cond ((equal var pattern) substitution-list) 

        (t (let ((binding  

            (get-binding var substitution-list))) 

        (cond (binding (unify 

                  (get-binding-value binding)  

                       pattern substitution-list)) 

        ((occursp var pattern) ‘failed) 

         (t (add-substitution var pattern  

           substitution-list))))))) 

match-var first checks whether the variable and the pattern are the same; 
unifying a variable with itself requires no added substitutions, so 
substitution-list is returned unchanged. 

If var and pattern are not the same, match-var checks whether the 
variable is already bound. If a binding exists, unify is called recursively to 
match the value of the binding with pattern. Note that this binding 
value may be a constant, a variable, or a pattern of arbitrary complexity; 
requiring a call to the full unification algorithm to complete the match. 

If no binding currently exists for var, the function calls occursp to test 
whether var appears in pattern. As explained in (Luger 2009), the 
occurs check is needed to prevent attempts to unify a variable with a 
pattern containing that variable, leading to a circular structure. For 
example, if (var x) was bound to (p (var x)), any attempt to apply 
those substitutions to a pattern would result in an infinite structure. If var 
appears in pattern, match-var returns failed; otherwise, it adds the 
new substitution pair to substitution-list using add-
substitution. 

unify and match-var are the heart of the unification algorithm. 
occursp (which performs a tree walk on a pattern to find any 
occurrences of the variable in that pattern), varp, and is-constant-
p (which test whether their argument is a variable or a constant, 
respectively) appear below. Functions for handling substitution sets are 
discussed below. 

(defun occursp (var pattern) 

  (cond ((equal var pattern) t) 

    ((or (varp pattern)  

        (is-constant-p pattern))  

   nil) 

   (t (or (occursp var (car pattern)) 

      (occursp var (cdr pattern)))))) 

(defun is-constant-p (item) 

    (atom item)) 

 

 



 Chapter 15 Unification and Embedded Languages 201 

 

(defun varp (item) 

    (and (listp item) 

       (equal (length item) 2) 

       (equal (car item) ‘var))) 

Sets of substitutions are represented using a built-in Lisp data type called 
the association list or a-list. This is the basis for the functions add-
substitutions, get-binding, and binding-value. An 
association list is a list of data records, or key/data pairs. The car of each 
record is a key for its retrieval; the cdr of each record is called the datum. 
The datum may be a list of values or a single atom. Retrieval is 
implemented by the function assoc, which takes as arguments a key and 
an association list and returns the first member of the association list that 
has the key as its car. An optional third argument to assoc specifies the 
test to be used in comparing keys. The default test is the Common Lisp 
function eql, a form of equality test requiring that two arguments be the 
same object (i.e., either the same memory location or the same numeric 
value). In implementing substitution sets, we specify a less strict test, 
equal, which requires only that the arguments match syntactically (i.e., 
are designated by identical names). An example of assoc’s behavior 
appears next: 

> (assoc 3 ‘((1 a) (2 b) (3 c) (4 d))) 

(3 c) 

> (assoc ‘d ‘((a b c) (b c d e) (d e f) (c d e)) 
:test #’equal) 

(d e f) 

> (assoc ‘c ‘((a . 1) (b . 2) (c . 3) (d . 4)) :test 
#’equal) 

(c . 3) 

Note that assoc returns the entire record matched on the key; the datum 
may be retrieved from this list by the cdr function. Also, notice that in the 
last call the members of the a-list are not lists but a structure called dotted 
pairs, e.g., (a . 1). 
The dotted pair, or cons pair, is actually the fundamental constructor in 
Lisp. It is the result of consing one s-expression onto another; the list 
notation that we have used throughout the chapter is just a notational 
variant of dotted pairs. For example, the value returned by (cons 1 
nil) is actually (1 . nil); this is equivalent to (1). Similarly, the list 
(1 2 3) may be written in dotted pair notation as (1 . (2 . ( 3 
. nil))). Although the actual effect of a cons is to create a dotted 
pair, the list notation is cleaner and is generally preferred. 

If two atoms are consed together, the result is always written using dotted 
pair notation. The cdr of a dotted pair is the second element in the pair, 
rather than a list containing the second atom. For example: 

> (cons ‘a ‘b) 

(a . b) 
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> (car ‘(a . b)) 

a 

> (cdr ‘(a . b)) 

b 

Dotted pairs occur naturally in association lists when one atom is used as a 
key for retrieving another atom, as well as in other applications that require 
the formation and manipulation of pairs of atomic symbols. Because 
unifications often substitute a single atom for a variable, dotted pairs 
appear often in the association list returned by the unification function. 

Along with assoc, Common Lisp defines the function acons, which 
takes as arguments a key, a datum, and an association list and returns a new 
association list whose first element is the result of consing the key onto 
the datum. For example: 

> (acons ‘a 1 nil) 

((a . 1))  

Note that when acons is given two atoms, it adds their cons to the 
association list:   

> (acons ‘pets ‘(emma jack clyde) 

   ‘((name . bill) (hobbies music skiing movies)  

        (job . programmer))) 

((pets emma jack clyde) (name . bill) (hobbies music  
skiing movies)(job . programmer)) 

The members of an association list may themselves be either dotted pairs 
or lists. 

Association lists provide a convenient way to implement a variety of tables 
and other simple data retrieval schemes. In implementing the unification 
algorithm, we use association lists to represent sets of substitutions: the 
keys are the variables, and the data are the values of their bindings. The 
datum may be a simple variable or constant or a more complicated 
structure. 

Using association lists, the substitution set functions are defined: 

(defun get-binding (var substitution-list) 

    (assoc var substitution-list :test #’equal)) 

(defun get-binding-value (binding) (cdr binding)) 

(defun add-substitution (var pattern  

    substitution-list) 

    (acons var pattern substitution-list)) 

This completes the implementation of the unification algorithm. We will 
use the unification algorithm again in Section 15.1 to implement a simple 
Prolog in Lisp interpreter, and again in Section 16.2 to build an expert 
system shell. 
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              15.2  Interpreters and Embedded Languages 

 The top level of the Lisp interpreter is known as the read-eval-print loop. 
This describes the interpreter’s behavior in reading, evaluating, and printing 
the value of s-expressions entered by the user. The eval function, defined 
in Section 11.2, is the heart of the Lisp interpreter; using eval, it is 
possible to write Lisp’s top-level read-eval-print loop in Lisp itself. 
In the next example, we develop a simplified version of this loop. This 
version is simplified chiefly in that it does not have the error-handling 
abilities of the built-in loop, although Lisp does provide the functionality 
needed to implement such capabilities. 

To write the read-eval-print loop, we use two more Lisp functions, 
read and print. read is a function that takes no parameters; when it is 
evaluated, it returns the next s-expression entered at the keyboard. print 
is a function that takes a single argument, evaluates it, and then prints that 
result to standard output. Another function that will prove useful is 
terpri, a function of no arguments that sends a newline character to 
standard output. terpri also returns a value of nil on completion. 
Using these functions, the read-eval-print loop is based on a 
nested s-expression: 

(print (eval (read))) 

When this is evaluated, the innermost s-expression, (read), is evaluated 
first. The value returned by the read, the next s-expression entered by the 
user, is passed to eval, where it is evaluated. The result of this evaluation 
is passed to print, where it is sent to the display screen. To complete the 
loop we add a print expression to output the prompt, a terpri to 
output a newline after the result has been printed, and a recursive call to 
repeat the cycle. Thus, the final read-eval-print loop is defined: 

(defun my-read-eval-print ( )  

    (print ‘:) ;output a prompt (“:”) 

    (print (eval (read)))  

    (terpri) ;output a newline 

    (my-read-eval-print)) ;do it all again 

This may be used “on top of” the built-in interpreter: 
> (my-read-eval-print) 

:(+ 1 2) ;note the alternative prompt 

3 

:                                              ;etc 

As this example illustrates, by making functions such as quote and eval 
available to the user, Lisp gives the programmer a high degree of control 
over the handling of functions. Because Lisp programs and data are both 
represented as s-expressions, we may write programs that perform any 
desired manipulations of Lisp expressions prior to evaluating them. This 
underlies much of Lisp’s power as an imperative representation language 
because it allows arbitrary Lisp code to be stored, modified, and evaluated 
when needed. It also makes it simple to write specialized interpreters that 
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may extend or modify the behavior of the built-in Lisp interpreter in some 
desired fashion. This capability is at the heart of many Lisp-based expert 
systems, which read user queries and respond to them according to the 
expertise contained in their knowledge base. 

As an example of the way in which such a specialized interpreter may be 
implemented in Lisp, we modify my-read-eval-print so that it 
evaluates arithmetic expressions in an infix rather than a prefix notation, as 
we see in the following example (note the modified prompt, infix->): 

infix-> (1 + 2) 

3 

infix-> (7 – 2) 

5 

infix-> ((5 + 2) * (3 – 1))   ;Loop handles nesting. 

15 

To simplify the example, the infix interpreter handles only arithmetic 
expressions. A further simplification restricts the interpreter to binary 
operations and requires that all expressions be fully parenthesized, 
eliminating the need for more sophisticated parsing techniques or worries 
about operator precedence. However, it does allow expressions to be 
nested to arbitrary depth and handles Lisp’s binary arithmetic operators. 

We modify the previously developed read-eval-print loop by 
adding a function that translates infix expressions into prefix expressions 
prior to passing them on to eval. A first attempt at writing this function 
might look like: 

(defun simple-in-to-pre (exp) 

    (list (nth 1 exp)  

                      ;Middle element becomes first element. 
  (nth 0 exp)                                       
  ;first operand 

  (nth 2 exp)                                      
  ;second operand 

simple-in-to-pre is effective in translating simple expressions; 
however, it is not able to correctly translate nested expressions, that is, 
expressions in which the operands are themselves infix expressions. To 
handle this situation properly, the operands must also be translated into 
prefix notation. Recursion is halted by testing the argument to determine 
whether it is a number, returning it unchanged if it is. The completed 
version of the infix-to-prefix translator is: 

(defun in-to-pre (exp) 

  (cond ((numberp exp) exp) 

        (t (list (nth 1 exp) 

             (in-to-pre (nth 0 exp)) 
       (in-to-pre (nth 2 exp)))))) 

Using this translator, the read-eval-print loop may be modified to 
interpret infix expressions, as defined next: 
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(defun in-eval ( ) 

    (print ‘infix->) 

    (print (eval (in-to-pre (read)))) 

    (terpri) 

    (in-eval)) 

This allows the interpretation of binary expressions in infix form: 

> (in-eval) 

infix->(2 + 2) 

4 

infix->((3 * 4) – 5) 

7 

In the above example, we have implemented a new language in Lisp, the 
language of infix arithmetic. Because of the facilities Lisp provides for 
symbolic computing (lists and functions for their manipulation) along with 
the ability to control evaluation, this was much easier to do than in many 
other programming languages. This example illustrates an important AI 
programming methodology, that of meta-linguistic abstraction.  

Very often in AI programming, a problem is not completely understood, or 
the program required to solve a problem is extremely complex. Meta-
linguistic abstraction uses the underlying programming language, in this case, 
Lisp, to implement a specialized, high-level language that may be more 
effective for solving a particular class of problems. The term “meta-
linguistic abstraction” refers to our use of the base language to implement 
this other programming language, rather than to directly solve the problem. 
As we saw in Chapter 5, Prolog also gives the programmer the power to 
create meta-level interpreters. The power of meta-interpreters to support 
programming in complex domains was discussed in Part I. 

 Exercises 

 1. Newton’s method for solving roots takes an estimate of the value of the 
root and tests it for accuracy. If the guess does not meet the required 
tolerance, it computes a new estimate and repeats. Pseudo-code for using 
Newton’s method to get the square root of a number is: 

function root-by-newtons-method (x, tolerance) 

guess := 1; 

repeat 

    guess := 1/2(guess + x/guess) 

until absolute-value(x – guess  guess) < tolerance 

Write a recursive Lisp function to compute square roots by Newton’s 
method. 
2. Write a random number generator in Lisp. This function must maintain 
a global variable, seed, and return a different random number each time the 
function is called. For a description of a reasonable random number 
algorithm, consult any basic algorithms text. 
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3. Test the unify form of Section 15.1 with five different examples of 
your own creation. 
4. Test the occursp form of Section 15.1 on five different examples of 
your own creation 

5. Write a binary post-fix interpreter that takes arbitrarily complex 
structures in post-fix form and evaluates them. Two examples of post-fix 
are (3 4 +) and (6 (5 4 +) *). 

  

 


