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 17.1 Streams and Delayed Evaluation 

Why delayed 
evaluation? 

As we demonstrated in the implementation of logic-shell in Chapter 
16, a stream-oriented view can help with the organization of a complex 
program. However, our implementation of streams as lists did not provide 
the full benefit of stream processing. In particular, this implementation 
suffers from inefficiency and an inability to handle potentially infinite data 
streams. 

In the list implementation of streams, all of the elements must be computed 
before that stream (list) can be passed on to the next function. In logic-
shell this leads to an exhaustive search of the knowledge base for each 
intermediate goal in the solution process. In order to produce the first solution 
to the top-level goal, the program must produce a list of all solutions. Even if 
we want only the first solution on this list, the program must still search the 
entire solution space. What we would really prefer is for the program to 
produce just the first solution by searching only that portion of the space 
needed to produce that solution and then to delay finding the rest of the goals 
until they are needed. 

A second problem is the inability to process potentially infinite streams of 
information. Although this problem does not arise in logic-shell, it 
occurs naturally in the stream-based solution to many problems. Assume, for 
example, that we would like to write a function that returns a stream of the 
first n odd Fibonacci numbers. A straightforward implementation would use a 
generator to produce a stream of Fibonacci numbers, a filter to eliminate the 
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even-valued numbers from the stream, and an accumulator to gather these 
into a solution list of n elements, as in Figure 17.1. Unfortunately, the stream 
of Fibonacci numbers is infinite in length and we cannot decide in advance 
how long a list will be needed to produce the first n odd numbers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.1. A stream implementation that finds the first n odd 
Fibonacci numbers. 

 
Instead, we would like the generator to produce the stream of Fibonacci 
numbers one at a time and pass each number through the filter until the 
accumulator has gathered the n values required. This behavior more closely 
fits our intuitive notion of evaluating a stream than does the list-based 
implementation of Chapter 16. We accomplish this by use of delayed evaluation. 

Delayed 
Evaluation  and 

Function Closures 

Instead of letting the generator run to completion to produce the entire 
stream of results, we let the function produce the first element of the 
stream and then freeze or delay its execution until the next element is 
needed. When the program needs the next element of the stream, it causes 
the function to resume execution and produce only that element and again 
delay evaluation of the rest of the stream. Thus, instead of containing the 
entire list of numbers, the stream consists of just two components, its first 
element and the frozen computation of the rest of the stream, as shown in 
Figure 17.2. 

A list-based stream containing an indeterminate number of elements: 

(e1 e2 e3 e4 . . .) 
A stream with delayed evaluation of its tail containing two elements 
but capable of producing any number of elements: 

(e1 . <delayed evaluation of rest of stream>) 

Figure 17.2 A list-based and delayed evaluation of streams. 
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We use function closures to create the delayed portion of the stream that was 
illustrated by Figure 16.1. A closure consists of a function, along with all its 
variable bindings in the current environment; we may bind a closure to a 
variable, or pass it as a parameter, and evaluate it using funcall. Essentially, 
a closure “freezes” a function application until a later time. We can create 
closures using the Lisp form function. For example, consider the following 
Lisp transcript: 

> (setq v 10) 

10 

> (let ((v 20)) (setq f_closure (function (lambda ( 
) v)))) 

#<COMPILED-LEXICAL-CLOSURE #x28641E> 

> (funcall f_closure) 

20 

>  

10 

The initial setq binds v to 10 in the global environment. In the let block, 
we create a local binding of v to 20 and create a closure of a function that 
returns this value of v. It is interesting to note that this binding of v does not 
disappear when we exit the let block, because it is retained in the function 
closure that is bound to f_closure. It is a lexical binding, however, so it 
doesn’t shadow the global binding of v. If we subsequently evaluate this 
closure, it returns 20, the value of the local binding of v, even though the 
global v is still bound to 10. 
The heart of this implementation of streams is a pair of functions, delay and 
force. delay takes an expression as argument and does not evaluate it; 
instead it takes the unevaluated argument and returns a closure. force takes 
a function closure as argument and uses funcall to force its application. 
These functions are defined: 

(defmacro delay (exp) ‘(function (lambda ( ) ,exp))) 

(defun force (function-closure) 

    (funcall function-closure)) 

delay is an example of a Lisp form called a macro. We cannot define delay 
using defun because all functions so defined evaluate their arguments before 
executing the body. Macros give us complete control over the evaluation of 
their arguments. We define macros using the defmacro form. When a 
macro is executed, it does not evaluate its arguments. Instead, it binds the 
unevaluated s-expressions in the call to the formal parameters and evaluates its 
body twice. The first evaluation is called a macro-expansion; the second evaluates 
the resulting form. 

To define the delay macro, we introducethe backquote or ‘. Backquote 
prevents evaluation just like a quote, except that it allows us to evaluate 
selectively elements of the backquoted expression. Any element of a 
backquoted s-expression preceded by a comma is evaluated and its value 
inserted into the resulting expression. For example, assume we have the call 
(delay (+ 2 3)). The expression (+ 2 3) is not evaluated; instead it 
is bound to the formal parameter, exp. When the body of the macro is 
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evaluated the first time, it returns the backquoted expression with the formal 
parameter, exp, replaced by its value, the unevaluated s-expression (+ 2 
3). This produces the expression (function (lambda () (+ 2 
3))). This is evaluated again, returning a function closure. 

If we later pass this closure to force, it will evaluate the expression 
(lambda () (+ 2 3)). This is a function that takes no arguments and 
whose body evaluates to 5. Using force and delay, we can implement 
streams with delayed evaluation. We rewrite cons-stream as a macro that 
takes two arguments and conses the value of the first onto the delayed 
evaluation of the second. Thus, the second argument may be a function that 
will return a stream of any length; it is not evaluated. We define tail-
stream so that it forces the evaluation of the tail of a stream. These are 
defined: 

(defmacro cons-stream (exp stream) ‘(cons ,exp   
  (delay ,stream))) 

(defun tail-stream (stream) (force (cdr stream))) 

We also redefine combine-streams as a macro that takes two streams but 
does not evaluate them. Instead, it uses delay to create a closure for the 
second stream and passes this and the first stream to the function comb-f. 
comb-f is similar to our earlier definition of combine-streams, except 
that in the event that the first stream is empty, it forces evaluation of the 
second stream. If the first stream is not empty, the recursive call to comb-f is 
done using our delayed version of cons-stream. This freezes the recursive 
call in a closure for later evaluation. 

(defmacro combine-streams (stream1 stream2) 

    ‘(comb-f ,stream1 (delay ,stream2))) 

(defun comb-f (stream1 stream2) 

    (if (empty-stream-p stream1) 

      (force stream2) 

  (cons-stream (head-stream stream1) 

   (comb-f (tail-stream stream1) stream2)))) 

If we add these definitions to the versions of head-stream, make-
empty-stream, and empty-stream-p from Section 16.2, we have a 
complete stream implementation with delayed evaluation. 

We can use these functions to solve our problem of producing the first n odd 
Fibonacci numbers. fibonacci-stream returns a stream of all the 
Fibonacci numbers; note that fibonacci-stream is a nonterminating 
recursive function. Delayed evaluation prevents it from looping forever; it 
produces the next element only when needed. filter-odds takes a stream 
of integers and eliminates the even elements of the stream. accumulate 
takes a stream and a number n and returns a list of the first n elements of the 
stream. 

(defun fibonacci-stream (fibonacci-1 fibonacci-2) 

    (cons-stream (+ fibonacci-1 fibonacci-2) 

   (fibonacci-stream fibonacci-2  

        (+ fibonacci-1 fibonacci-2)))) 
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(defun filter-odds (stream) 

   (cond ((evenp (head-stream stream))  

              (filter-odds (tail-stream stream))) 

       (t (cons-stream (head-stream stream)  

              (filter-odds (tail-stream stream)))))) 

(defun accumulate-into-list (n stream) 

    (cond ((zerop n) nil) 

        (t (cons (head-stream stream)  

                  (accumulate-into-list (– n 1) 

         (tail-stream stream)))))) 

To obtain a list of the first 25 odd Fibonacci numbers, we call 
accumulate-into-list: 

(accumulate-into-list 25  

      (filter-odds (fibonacci-stream 0 1))) 

We may use these stream functions in the definition of the logic programming 
interpreter of Section 16.3 to improve its efficiency under certain 
circumstances. Assume that we would like to modify print-solutions 
so that instead of printing all solutions to a goal, it prints the first and waits for 
the user to ask for the additional solutions. Using our implementation of lists 
as streams, the algorithm would still search for all solutions before it could 
print out the first. Using delayed evaluation, the first solution will be the head 
of a stream, and the function evaluations necessary to find the additional 
solutions will be frozen in the tail of the stream. 

In the next section we modify this logic programming interpreter to 
implement a Lisp-based expert system shell called lisp-shell. Before 
presenting the expert system shell, however, we mention two additional 
stream functions that are used in its implementation. In Section 16.3, we 
presented a general mapping function and a general filter for lists. These 
functions, map-simple and filter, can be modified to function on 
streams. We use filter-stream and map-stream in the next 
section; their implementation is an exercise. 

             17.2  An Expert System Shell in Lisp 

 The expert system shell developed in this section is an extension of the 
backward-chaining engine of Section 16.3. The major modifications include 
the use of certainty factors to manage uncertain reasoning, the ability to ask 
the user for unknown facts, and the use of a working memory to save user 
responses. This expert system shell is called lisp-shell. 

Implementing 
Certainty 

Factors 

The logic programming interpreter returned a stream of the substitution 
sets under which a goal logically followed from a database of logical 
assertions. Bindings that did not allow the goal to be satisfied using the 
knowledge base were either filtered from the stream or not generated in 
the first place. In implementing reasoning with certainty factors, however, 
logic truth values (t, f) are replaced by a numeric value between –1 and 1. 
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This replacement requires that the stream of solutions to a goal not only 
contain the variable bindings that allow the goal to be satisfied; they must 
also include measures of the confidence under which each solution follows 
from the knowledge base. Consequently, instead of processing streams of 
substitution sets, lisp-shell processes streams of pairs: a set of 
substitutions and a number representing the confidence in the truth of the 
goal under those variable substitutions. 

We implement stream elements as an abstract data type: the functions for 
manipulating the substitution and certainty factor pairs are subst-
record, which constructs a pair from a set of substitutions and a 
certainty factor; subst-list, which returns the set of bindings from a 
pair; and subst-cf, which returns the certainty factor.  

Internally, records are represented as dotted pairs, of the form 
(<substitution list>. <cf>). We next create functions that 
handle these pairs, the first returning a list of bindings, the second 
returning a certainty factor, and the third creating substitution-set certainty-
factor pairs: 

 (defun subst-list (substitutions) 

    (car substitutions)) 

 (defun subst-cf (substitutions) 

    (cdr substitutions)) 

 (defun subst-record (substitutions cf) 

    (cons substitutions cf)) 

Similarly, rules and facts are stored in the knowledge base with an attached 
certainty factor. Facts are represented as dotted pairs, (<assertion>. 
<cf>), where <assertion> is a positive literal and <cf> is its 
certainty measure. Rules are in the format (rule if <premise> 
then <conclusion> <cf>), where <cf> is the certainty factor. 
We next create a sample rule for the domain of recognizing different types 
of flowers: 

(rule if (and (rose (var x)) (color (var x) red)) 

    then (kind (var x) american-beauty) 1) 

The functions for handling rules and facts are: 

 (defun premise (rule) 

    (nth 2 rule)) 

 (defun conclusion (rule) 

    (nth 4 rule)) 

 (defun rule-cf (rule) 

    (nth 5 rule)) 

 (defun rulep (pattern) 

    (and (listp pattern) 

         (equal (nth 0 pattern) ‘rule))) 
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 (defun fact-pattern (fact) 

    (car fact)) 

 (defun fact-cf (fact) 

    (cdr fact)) 

Using these functions, we implement the balance of the rule interpreter 
through a series of modifications to the logic programming interpreter first 
presented in Section 16.3. 

Architecture of 
lisp-shell 

solve is the heart of lisp-shell. solve does not return a solution stream 
directly but first passes it through a filter that eliminates any substitutions 
whose certainty factor is less than 0.2. This prunes results that lack 
sufficient confidence.  

(defun solve (goal substitutions) 

  (filter-stream 

    (if (conjunctive-goal-p goal) 

      (filter-through-conj-goals 

        (cdr (body goal)) 

        (solve (car (body goal))  

      substitutions)) 

         (solve-simple-goal goal  

      substitutions)) 

            # ‘(lambda (x)  
          (< 0.2 (subst-cf x)))))  

This definition of solve has changed only slightly from the definition of 
solve in logic-shell. It is still a conditional statement that 
distinguishes between conjunctive goals and simple goals. One difference is 
the use of the general filter filter-stream to prune any solution 
whose certainty factor falls below a certain value. This test is passed as a 
lambda expression that checks whether or not the certainty factor of a 
substitution set/cf pair is less than 0.2. The other difference is to use 
solve-simple-goal in place of infer. Handling simple goals is 
complicated by the ability to ask for user information. We define solve-
simple-goal as: 

(defun solve-simple-goal (goal substitutions) 

    (declare (special *assertions*)) 

    (declare (special *case-specific-data*)) 

    (or (told goal substitutions  

     *case-specific-data*) 

    (infer goal substitutions *assertions*) 

   (ask-for goal substitutions))) 

solve-simple-goal uses an or form to try three different solution 
strategies in order. First it calls told to check whether the goal has already 
been solved by the user in response to a previous query.  
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User responses are bound to the global variable *case-specific-
data*; told searches this list to try to find a match for the goal. This 
keeps lisp-shell from asking for the same piece of information twice. 
If this fails, the information was not asked for earlier, and solve-
simple-goal attempts to infer the goal using the rules in 
*assertions*. Finally, if these fail, it calls ask-for to query the user 
for the information. These functions are defined below. 

The top-level read-solve-print loop has changed little, except for the 
inclusion of a statement initializing *case-specific-data* to nil 
before solving a new goal. Note that when solve is called initially, it is 
not just passed the empty substitution set, but a pair consisting of the 
empty substitution set and a certainty factor of 0. This certainty value has 
no real meaning: it is included for syntactic reasons until a meaningful 
substitution set and certainty factor pair is generated by user input or by a 
fact in the knowledge base. 

(defun lisp-shell () 

    (declare (special *case-specific-data*)) 

    (setq *case-specific-data* ( )) 

    (prin1 ‘lisp-shell> )  

    (let ((goal (read))) 

    (terpri) 

    (cond ((equal goal ‘quit) ‘bye) 

        (t (print-solutions goal  

          (solve goal  

            (subst-record nil 0))) 

        (terpri) 

        (lisp-shell))))) 

filter-through-conj-goals is not changed, but filter-
through-goal must compute the certainty factor for a conjunctive 
expression as the minimum of the certainties of the conjuncts. To do so, it 
binds the first element of substitution-stream to the symbol 
subs in a let block. It then calls solve on the goal and this 
substitution set; passing the result through the general mapping function, 
map-stream, which takes the stream of substitution pairs returned by 
solve and recomputes their certainty factors as the minimum of the 
certainty factor of the result and the certainty factor of the initial 
substitution set. These functions are defined:  

(defun filter-through-conj-goals (goals    

          substitution-stream) 

    (if (null goals) 

  substitution-stream 

   (filter-through-conj-goals (cdr goals) 

    (filter-through-goal (car goals)  

      substitution-stream)))) 
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(defun filter-through-goal (goal  

       substitution-stream) 

  (if (empty-stream-p substitution-stream) 

    (make-empty-stream) 

    (let ((subs (head-stream  

      substitution-stream))) 

      (combine-streams 

      (map-stream (solve goal subs) 

       # ‘(lambda (x)  

          (subst-record (subst-list x) 

                      (min (subst-cf x)  

             (subst-cf subs))))) 

    (filter-through-goal goal  

                (tail-stream  

      substitution-stream))))))  

The definition of infer has been changed to take certainty factors into 
account. Although its overall structure reflects the version of infer 
written for the logic programming interpreter in Section 16.2, we must now 
compute the certainty factor for solutions to the goal from the certainty 
factors of the rule and the certainties of solutions to the rule premise. 
solve-rule calls solve to find all solutions to the premise and uses 
map-stream to compute the resulting certainties for the rule conclusion. 

(defun infer (goal substitutions kb) 

  (if (null kb)  

    (make-empty-stream) 

      (let* ((assertion  
      (rename-variables (car kb))) 

           (match (if (rulep assertion) 

      (unify goal (conclusion assertion)  

          subst-list substitutions)) 

      (unify goal assertion  

         (subst-list substitutions))))) 

          (if (equal match 'failed) 

              (infer goal substitutions  

                (cdr kb)) 

              (if (rulep assertion) 

                (combine-streams  

                   (solve-rule assertion     
              (subst-record match  

              (subst-cf  substitutions))) 
                   (infer goal substitutions  

                (cdr kb))) 
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                (cons-stream  

            (subst-record match  

            (fact-cf assertion))  

                         (infer goal substitutions  
              (cdr kb)))))))) 

((defun solve-rule (rule substitutions) 

    (map-stream  

    (solve (premise rule) substitutions) 

   # ‘(lambda (x) (subst-record 

       (subst-list x) 

       (* (subst-cf x)  

          (rule-cf rule)))))) 

Finally, we modify print-solutions to use certainty factors: 
(defun print-solutions (goal substitution-stream) 

  (cond ((empty-stream-p substitution-stream)nil) 

      (t (print (apply-substitutions goal   
        (subst-list (head-stream  

      substitution-stream)))) 

      (write-string “cf =“) 

      (prin1 (subst-cf (head-stream  

       substitution-stream))) 

      (terpri) 

      (print-solutions goal  

                 (tail-stream  

     substitution-stream))))) 

The remaining functions, such as apply-substitutions and 
functions for accessing rules and goals, are unchanged from Section 16.2. 

The remainder of lisp-shell consists of the functions ask-for and 
told, which handle user interactions. These are straightforward, although 
the reader should note that we have made some simplifying assumptions. 
In particular, the only response allowed to queries is either “y” or “n”. This 
causes the binding set passed to ask-for to be returned with a cf of 
either 1 or –1, respectively; the user may not give an uncertain response 
directly to a query. ask-rec prints a query and reads the answer, 
repeating until the answer is either y or n. The reader may expand ask-
rec to take on any value within the –1 to 1 range. (–1 and 1, of course, 
offers an arbitrary range; particular applications may use other ranges.) 

askable verifies whether the user may be asked for a particular goal. 
Any asked goal must exist as a pattern in the global list *askables*; the 
architect of an expert system may in this way determine which goals may 
be asked for and which may only be inferred from the knowledge base. 
told searches through the entries in the global *case-specific-
data* to find whether the user has already answered a query. It is similar 
to infer except it assumes that everything in *case-specific-
data* is stored as a fact. We define these functions: 
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(defun ask-for (goal substitutions) 

 (declare (special *askables*)) 

 (declare (special *case-specific-data*)) 

 (if (askable goal *askables*) 

    (let* ((query (apply-substitutions goal  

          (subst-list substitutions))) 

    (result (ask-rec query)))     
 ((setq *case-specific-data*  

        (cons (subst-record query result) 

      *case-specific-data*)) 

   (cons-stream  

        (subst-record (subst-list substitutions) 
      result) 

        (make-empty-stream))))) 

(defun ask-rec (query) 

    (prin1 query) 

    (write-string “>“) 

       (let ((answer (read))) 

       (cond ((equal answer ‘y) 1) 

       ((equal answer ‘n) – 1) 

       (t (print  

            “answer must be y or n”) 

        (terpri) 

       (ask-rec query))))) 

(defun askable (goal askables) 

    (cond ((null askables) nil) 

   ((not (equal (unify goal car askables) ( ))  

           ‘failed)) t) 

   (t (askable goal (cdr askables))))) 

(defun told (goal substitutions case-specific-data) 

    (cond ((null case-specific-data)  

            (make-empty-stream)) 

   (t (combine-streams  

        (use-fact goal (car case-specific-data) 
         substitutions) 
     (told goal substitutions  

          (cdr case-specific-data)))))) 

This completes the implementation of our Lisp-based expert system shell. 
In the next section we use lisp-shell to build a simple classification 
expert system. 

Classification 
Using lisp-shell 

We now present a small expert system for classifying trees and bushes. 
Although it is far from botanically complete, it illustrates the use and 
behavior of the lisp-shell software. The knowledge base resides in 
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two global variables: *assertions*, which contains the rules and facts 
of the knowledge base, and *askables*, which lists the goals that may 
be asked of the user. The knowledge base used in this example is 
constructed by two calls to setq: 
   (setq *assertions* ‘( 

 (rule 

  if (and (size (var x) tall)  

      (woody (var x))) 

  then (tree (var x)) .9) 

 (rule 

  if (and (size (var x) small)  

      (woody (var x))) 

  then (bush (var x)) .9) 

 (rule 

  if (and (tree (var x)) (evergreen (var x)) 

                (color (var x) blue)) 

  then (kind (var x) spruce) .8) 

 (rule 

  if (and (tree (var x)) (evergreen (var x)) 

                (color (var x) green)) 

  then (kind (var x) pine) .9) 

 (rule 

  if (and (tree (var x)) (deciduous (var x))  

                (bears (var x) fruit)) 

  then (fruit-tree (var x)) 1) 

 (rule 

  if (and (fruit-tree (var x))  

      (color fruit red)  

                  (taste fruit sweet)) 

  then (kind (var x) apple-tree) .9) 

 (rule 

  if (and (fruit-tree (var x))  

      (color fruit yellow)  

                  (taste fruit sour)) 

  then (kind (var x) lemon-tree) .8) 

 (rule 

  if (and (bush (var x))  

      (flowering (var x))  

      (thorny (var x))) 

  then (rose (var x)) 1) 

 (rule 

  if (and (rose (var x)) (color (var x) red)) 

  then (kind (var x) american-beauty) 1))) 
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    (setq *askables* ‘( 

        (size (var x) (var y)) 

        (woody (var x)) 

   (soft (var x)) 

   (color (var x) (var y)) 

        (evergreen (var x)) 

   (thorny (var x)) 

   (deciduous (var x)) 

   (bears (var x) (var y)) 

   (taste (var x) (var y)) 

   (flowering (var x)))) 

A sample run of the trees knowledge base appears below. The reader is 
encouraged to trace through the rule base to observe the order in which 
rules are tried, the propagation of certainty factors, and the way in which 
possibilities are pruned when found to be false: 

> (lisp-shell) 

lisp-shell>(kind tree-1 (var x)) 

(size tree-1 tall) >y 

(woody tree-1) >y 

(evergreen tree-1) >y 

(color tree-1 blue) >n 

(color tree-1 green) >y 

(kind tree-1 pine) cf 0.81 

(deciduous tree-1) >n 

(size tree-1 small) >n 

lisp-shell>(kind bush-2 (var x)) 

(size bush-2 tall) >n 

(size bush-2 small) >y 

(woody bush-2) >y 

(flowering bush-2) >y 

(thorny bush-2) >y 

(color bush-2 red) >y 

(kind bush-2 american-beauty) cf 0.9 

lisp-shell>(kind tree-3 (var x)) 

(size tree-3 tall) >y 

(woody tree-3) >y 

(evergreen tree-3) >n 

(deciduous tree-3) >y 

(bears tree-3 fruit) >y 

(color fruit red) >n 

(color fruit yellow) >y 

(taste fruit sour) >y 
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(kind tree-3 lemon-tree) cf 0.72 

(size tree-3 small) >n 

lisp-shell>quit 

bye 

? 

In this example, several anomalies may be noted. For example, lisp-
shell occasionally asks whether a tree is small even though it was told 
the tree is tall, or it asks whether the tree is deciduous even though the tree 
is an evergreen. This is typical of the behavior of expert systems. The 
knowledge base does not know anything about the relationship between 
tall and small or evergreen and deciduous: they are just patterns to be 
matched. Because the search is exhaustive, all rules are tried. If a system is 
to exhibit deeper knowledge than this, these relationships must be coded in 
the knowledge base. For example, a rule may be written that states that 
small implies not tall. In this example, lisp-shell is not capable of 
representing these relationships because we have yet to implement the not 
operator. This extension is left as an exercise. 

                         Exercises 

 1. Rewrite the solution to finding the first n odd Fibonacci numbers 
problem of Section 17.1 so that it uses the general stream filter, filter-
stream, instead of filter-odds. Modify this to return the first n 
even Fibonacci numbers and then modify it again to return the squares of 
the first n Fibonacci numbers. 

2. Select a problem such as automotive diagnosis or classifying different 
species of animals and solve it using lisp-shell. 
3. Expand the expert system shell of Section 17.2 to allow the user 
responses other than y or n. For example, we may want the user to be 
able to provide bindings for a goal. Hint: This may be done by changing 
the ask-for and related functions to let the user also enter a pattern, 
which is matched against the goal. If the match succeeds, ask for a certainty 
factor. 

4. Extend lisp-shell to include not. For an example of how to treat 
negation using uncertain reasoning, refer to the Prolog-based expert system 
shell in Chapter 6. 
5. In Section 16.3, we presented a general mapping function and a general 
filter for lists. These functions, map-simple and filter, can be 
modified to function on streams. Create the filter-stream and 
map-stream functions used in 17.2. 

6. Extend lisp-shell to produce an answer even when all rules fail to 
match. In other words, remove the nil as a possible result for lisp-
shell.  

 


