
267 

 

 

 20 Lisp: Final Thoughts 
 

 

 

 
 Both Lisp and Prolog are based on formal mathematical models of 

computation: Prolog on logic and theorem proving, Lisp on the theory of 
recursive functions. This sets these languages apart from more traditional 
languages whose architecture is just an abstraction across the architecture 
of the underlying computing (von Neumann) hardware. By deriving their 
syntax and semantics from mathematical notations, Lisp and Prolog inherit 
both expressive power and clarity. 

Although Prolog, the newer of the two languages, has remained close to its 
theoretical roots, Lisp has been extended until it is no longer a purely 
functional programming language. The primary culprit for this diaspora was 
the Lisp community itself. The pure lisp core of the language is primarily an 
assembly language for building more complex data structures and search 
algorithms. Thus it was natural that each group of researchers or developers 
would “assemble” the Lisp environment that best suited their needs. After 
several decades of this the various dialects of Lisp were basically incompatible. 
The 1980s saw the desire to replace these multiple dialects with a core 
Common Lisp, which also included an object system, CLOS. Common Lisp is 
the Lisp language used in Part III. 

But the primary power of Lisp is the fact, as pointed out many times in Part 
III, that the data and commands of this language have a uniform structure. 
This supports the building of what we call meta-interpreters, or similarly, the use 
of meta-linguistic abstraction. This, simply put, is the ability of the program 
designer to build interpreters within Lisp (or Prolog) to interpret other suitably 
designed structures in the language. We saw this many time in Part III, 
including building a Prolog interpreter in Lisp, the design of the expert system 
interpreter lisp-shell, and the ID3 machine learning interpreter used for 
data mining. But Lisp is, above all, a practical programming language that has 
grown to support the full range of modern techniques. These techniques 
include functional and applicative programming, data abstraction, stream 
processing, delayed evaluation, and object-oriented programming. 

The strength of Lisp is that it has built up a range of modern programming 
techniques as extensions of its core model of functional programming. This 
set of techniques, combined with the power of lists to create a variety of 
symbolic data structures, forms the basis of modern Lisp programming. Part 
III is intended to illustrate that style. 

Partly as a result of the Lisp diaspora that produced Common Lisp, was the 
creation of a number of other functional programming languages. With the 
desire to get back to the semantic foundations on which McCarthy created 
Lisp (Recursive functions of symbolic expressions and their computation by machine, 1960), 



268 Part III: Programming in Lisp 

several important functional language developments began. Among these we 
mention Scheme, SML, and OCaml. Scheme, a small, sometimes called 
academic Lisp, was developed by Guy Steele and Gerald Sussman in the 1970s. 
Scheme chose static, sometimes called lexical, scope over the dynamic scope of 
Common Lisp. For references on Scheme see Gerald Sussman and Guy Steele. 
SCHEME: An Interpreter for Extended Lambda Calculus, AI Memo 349, MIT 
Artificial Intelligence Laboratory, Cambridge, Massachusetts, December 1975 
and The Scheme Programming Language by R. Kent Dybvig (1996). 

Standard ML (SML) is a general-purpose functional language with compile-
time type checking. Type inference procedures use compile-time checking to 
limit run-time errors. For further information see Robin Milner, Mads, Tofte, 
Robert Harper, and David MacQueen. (1997). The Definition of Standard ML 
(Revised). Objective Caml or Ocaml is an object-oriented extension to the 
functional language Caml. It has an interactive interpreter, a byte-code 
compiler, and an optimized native-code compiler. It integrates object-
orientation with functional programming with SML-like type inference. The 
language is maintained by INRIA; for further details see Introduction to Objective 
Caml by Jason Hickey (2008) and Practical OCaml by Joshua Smith (2006). 

In designing the algorithms of Part III, we have been influenced by Abelson 
and Sussman’s book The Structure and Interpretation of Computer Programs (1985). 
Steele (1990) offers an essential guide to using Common Lisp. Valuable 
tutorials and textbooks on Lisp programming include Lisp (Winston and Horn 
1984), Common LispCraft (Wilensky 1986), Artificial Intelligence Programming, 
Charniak et al. (1987), Common Lisp Programming for Artificial Intelligence 
(Hasemer and Domingue 1989), Common Lisp: A Gentle Introduction to Symbolic 
Computation (Touretzky 1990), On Lisp: Advanced Techniques for Common Lisp 
(Graham 1993), and ANSI Common Lisp (Graham 1995). 

A number of books explore the use of Lisp in the design of AI problem 
solvers. Building Problem Solvers (Forbus and deKleer 1993) is an encyclopedic 
treatment of AI algorithms in Lisp and an invaluable reference for AI 
practitioners. Also, see any of a number of general AI texts that take a more 
Lisp-centered approach to the basic material, including The Elements of Artificial 
Intelligence Using Common Lisp by Steven Tanimoto (1990). Finally, we mention 
Practical Common Lisp an introductory book on Common Lisp by Peter Seibel 
(2004). 

 

 


