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 32 Conclusion: The Master Programmer 
 

Chapter 
Objectives 

This chapter provides a summary and discussion of the primary idioms and design 
patterns presented in our book. 
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 32.1 Language Paradigm-Based Abstractions and Idioms 

 In the Introduction to this book, we stated that we wanted to do more 
than simply demonstrate the implementation of key AI algorithms in some 
of the major languages used in the field. We also wanted to explore the 
ways that the problems we try to solve, the programming languages we 
create to help in their solution, and the patterns and idioms that arise in the 
practice of AI programming have shaped each other. We will conclude 
with a few observations on these themes. 

More than anything else, the history of programming languages is a history 
of increasingly powerful, ever more diverse abstraction mechanisms. Lisp, 
the oldest of the languages we have explored, remains one of the most 
dramatic examples of this progression. Although procedural in nature, Lisp 
was arguably the first to abstract procedural programming from such 
patterns as explicit branching, common memory blocks, parameter passing 
by reference, pointer arithmetic, global scoping of functions and variables, 
and other structures that more or less reflect the underlying machine 
architecture. By adopting a model based on the theory of recursive 
functions, Lisp provides programmers with a cleaner semantics, including 
recursive control structures, principled variable scoping mechanisms, and a 
variety of structures for implementing symbolic data structures. 

Like Lisp, Prolog bases its abstraction on a mathematical theory: in this 
case, formal logic and resolution theorem proving. This allows Prolog to 
abstract out procedural semantics almost completely (the left to right 
handling of goals and such pragmatic mechanisms as the cut are necessary 
exceptions). The result is a declarative semantics that allows programmers 
to view programs as sets of constraints on problem solutions. Also, 
because grammars naturally take the form of rules, Prolog has not only 
proven its value in natural language processing applications, as well as a 
tool for manipulating formal languages, such as compilers or interpreters.  

Drawing in part on the lessons of these earlier languages, object-oriented 
languages, such as Java, offer an extremely rich set of abstractions that 
support the idea of organizing even the most ordinary program as a model 
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of its application domain. These abstractions include class definitions, 
inheritance, abstract classes, interfaces, packages, overriding of methods, 
and generic collections. In particular, it is interesting to note the close 
historical relationship between Lisp and the development of object 
languages. Although Smalltalk was the first “pure” object-oriented 
language, it was closely followed by many object-oriented Lisp dialects. 
This relationship is natural, since Lisp laid a foundation for object-
orientation through such features as the ability to manipulate functions as 
s-expressions, and the control over evaluation it gives the programmer. 
Java has continued this development, and is particularly notable for 
providing powerful software engineering support through development 
environments such as Eclipse, and the large number of packages it 
provides for user data structures, network programming, user interface 
implementation, web-based implementation, Artificial Intelligence, and 
other aspects of application development. 

In addition to – or perhaps because of – their underlying semantic models, 
all these languages support more general forms of abstraction. The 
organization of programs around abstract data types, “bundles” of data 
structures and operations on them, is a common device used by good 
programmers – no matter what language they are using. Meta-linguistic 
abstraction is another technique that is particularly important to Artificial 
Intelligence programming. The complexity of AI problems clearly requires 
powerful forms of problem decomposition, but the ill-formed nature of 
many research problems defies such common techniques as top-down 
decomposition. Meta-linguistic abstraction addresses this conundrum by 
enabling programmers to design languages that are tailored to solving 
specific problems. It tames hard problems by abstracting their key features 
into a meta language, rather than decomposing them into parts. The 
general search algorithms, expert system shells, learning frameworks, 
semantic networks, and other techniques illustrated in this book are all 
examples of meta-linguistic abstraction. 

This diversity of abstraction mechanisms across languages underlies a 
central theme of this book: the relationship between programming 
languages and the idioms of their use. Each language suggests a set of 
natural ways of achieving common programming tasks. These are refined 
through practice and shared throughout the programmer community 
through examples, mentoring, conferences, books, and all the mechanisms 
through which any language idiom spreads. Lisp’s use of lists and 
CAR/CDR recursion to construct complex data structures is one of that 
language’s central idioms; indeed, it is almost emblematic of the language. 
Similarly, the use of rule ordering in Prolog, with non-recursive terminating 
statements preceding recursive rules appearing throughout Prolog 
programs is on of that language’s key idioms. Object-oriented languages 
rely upon a particularly rich set of idioms and underscore the importance 
of understanding and using them properly. 

Java, for example, adopted the C programming language syntax to improve 
its learnability and readability (whether or not this was good idea continues 
to be passionately debated). It would be possible for a programmer to write 
Java programs that consisted of a single class with a static main method 
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that called additional main methods in the class. This program might 
function correctly, but it would hardly be considered a good java program. 
Instead, quality Java programs distribute their functionality over relatively 
large numbers of class definitions, organized into hierarchies by 
inheritance, interface definitions, method overloading, etc. The goal is to 
reflect the structure of the problem in the implementation of its solution. 
This not only brings into focus the use of programming languages to 
sharpen our thinking by building epistemological models of a problem 
domain, but also supports communication among developers and with 
customers by letting people draw on their understanding of the domain. 

There are many reasons for the importance of idioms to good 
programming. Perhaps the most obvious is that the idiomatic patterns of 
language use have evolved to help with the various activities in the 
software lifecycle, from program design through maintenance. Adhering to 
them is important to gaining the full benefits of the language. For example, 
our hypothetical “Java written as C” program would lack the 
maintainability of a well-written Java program. 

A further reason for adhering to accepted language idioms is for 
communication. As we will discuss below, software development (at least 
once we move beyond toy programs) is a fundamentally social activity. It is 
not enough for our programs to be correct. We also want other 
programmers to be able to read them, understand the reasons we wrote the 
program as we did, and ultimately modify our code without adding bugs 
due to a misunderstanding of our original intent. 

Throughout the book, we have tried to communicate these idioms, and 
suggested that mastering them, along with the traditional algorithms, data 
structures, and languages, is an essential component of programming skill. 

 

32.2 Programming as a Tool for Exploring Problem Domains 

  Idioms are also bound up – along with the related concept of design 
patterns, also discussed below – with an idea we introduced in the book’s 
introduction: programming languages as tools for thinking. In the early 
stages of learning to program, the greatest challenges facing the student are 
in translating a software requirement, usually a homework assignment, into 
a program that works correctly. As we move into professional-level 
research or software development, this changes. We are seldom given clear, 
stable problem statements; rather, our job is to interpret a vague customer 
need or research goal and project it into a program that meets our needs. 
The languages we have addressed in this book are the product of many 
person-decades of theoretical development, experience, and insight. They 
are not only tools for programming computers, but also for refining our 
understanding of problems and their solution.  

Illustrating this idea of programming languages as tools for thinking has 
been one of our primary goals in writing this book. Lisp is the oldest, and 
still one of the best, examples of this. The s-expression syntax is ideally 
suited for constructing symbolic data structures, and, along with the basic 
cons/car/cdr operations, provides an elegant foundation for structures as 
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diverse as lists, trees, frames, networks, and other types of knowledge 
representation common to Artificial Intelligence. A search of early AI 
literature shows the power of s-expressions as both a basis for symbolic 
computing and for communication of theoretical ideas: numerous articles 
on knowledge representation, learning, reasoning, and other topics use s-
expressions to state theoretical ideas as natural science uses algebra. 

Prolog continues this tradition with its use of logical representation and 
declarative semantics. Logic is the classic “tool for thinking,” giving a 
mathematical foundation to the disciplines of clarity, validity, and proof. 
Subtler is the idea of declarative semantics, of stating constraints on a 
problem solution independently of the procedural steps used to realize 
those constraints. This brings a number of benefits. Prolog programs are 
notoriously concise, since the mechanisms of procedural computing are 
abstracted out of the logical statement of problem constraints. This 
concision helps give clear formulation to the complex problems faced in 
AI programming. Natural language understanding programs are the most 
obvious example of this, but we also call the reader’s attention to the 
relative ease of writing meta-interpreters in Prolog. This discipline of meta-
linguistic abstraction is a quintessential way a language assists in our 
thinking about hard problems. 

Java’s core disciplines of encapsulation, inheritance, and method extension 
also reflect a heritage of AI thinking. As a tool for thinking, Java brings 
these powerful disciplines to problem decomposition and representation, 
metalinguistic abstraction, incremental prototyping, and other forms of 
problem solving. An interesting example of the subtle influence object-
oriented programming has on our thinking can be found in comparing the 
declarative semantics of Prolog with the static structure of an object-
oriented program. 

Although we have no “hard” data to prove this, our work as both 
engineers and teachers has convinced us that the more experienced a Java 
programmer becomes, the more classes and interfaces we find in their 
programs. Novice programmers seem to favor fewer classes with longer 
methods, most likely because they lack the rich language of idioms and 
patterns used by skilled object-oriented designers. Breaking a program 
down into a larger number of objects brings several obvious benefits, 
including ease of debugging and validating code, and enhanced reuse. 
Another benefit of this is a shift of program semantics from procedural 
code to the static structure of objects and relations in the class structure. 
For example, a well-designed class hierarchy with the use of overloaded 
methods can eliminate many if-then tests in the program: the class 
“knows” which method to use without an explicit test. For this reason, 
Java programmers frown on the use of operators like instanceof to 
test explicitly for class membership: the object should exploit inheritance to 
call the proper method rather than use such tests. 

The analogy of this to Prolog’s declarative semantics is useful: both 
techniques move program semantics from dynamic execution to static 
structure. The static structure of objects or assertions can be understood by 
inspection of code, rather than by stepping through executions. It can be 
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analyzed and verified in terms of things and relations, rather than the 
complexities of analyzing the many paths a program can take through its 
execution. And, it enhances the use of the programming language as a tool 
for stating theoretical ideas: as a tool for thinking. 

             32.3 Programming as a Social Activity 

 As programming has matured as a discipline, we have also come to 
recognize that teams usually write complex software, rather than a single 
genius laboring in isolation. Both authors work in research institutions, and 
are acutely aware that the complexity of the problems modern computer 
science tackles makes the lone genius the exception, rather than the rule. 
The most dramatic example of this is open-source software, which is built 
by numerous programmers laboring around the world. To support this, we 
must recognize that we are writing programs as much to be read by other 
engineers as to be executed on a computer. 

Software 
Engineering 

and AI 

This social dimension of programming is most strongly evident in the 
discipline of software engineering. We feel it unfortunate that many 
textbooks on software engineering emphasize the formal aspects of 
documentation, program design, source code control and versioning, 
testing, prototyping, release management, and similar engineering practices, 
and downplay the basic source of their value: to insure efficient, clear 
communication across a software development team.  

Both of this book’s authors work in research institutions, and have 
encountered the mindset that research programming does not require the 
same levels of engineering as applications development. Although research 
programming may not involve the need for tutorials, user manuals and 
other artifacts of importance to commercial software, we should not forget 
that the goal of software engineering is to insure communication. Research 
teams require this kind of coordination as much as commercial 
development groups. In our own practice, we have found considerable 
success with a communications-focused approach to software engineering, 
treating documentation, tests, versioning, and other artifacts as tools to 
communicate with our team and the larger community. Thinking of 
software engineering in these terms allows us to take a “lightweight” 
approach that emphasizes the use of software engineering techniques for 
communication and coordination within the research team. We urge the 
programmer to see their own software engineering skills in this light. 

Prototyping Prototyping is an example of a software engineering practice that has its 
roots in the demands of research, and that has found its way into 
commercial development. In the early days, software engineering seemed 
to aim at “getting it right the first time” through careful specification and 
validation of requirements. This is seldom possible in research 
environments where the complexity and novelty of problems and the use 
of programming as a tool for thinking precludes such perfection. 
Interestingly, as applications development has moved into interactive 
domains that must blend into the complex communication acts of human 
communities, the goal of “getting it right the first time” has been rejected 
in favor of a prototyping approach. 
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We urge the reader to look at the patterns and techniques presented in this 
book as tools for building programs quickly and in ways that make their 
semantics clear – as tools for prototyping. Metalinguistic abstraction is the 
most obvious example of this. In building complex, knowledge-based 
systems, the separation of inference engine and knowledge illustrated in 
many examples of this book allows the programmer to focus on 
representing problem-specific knowledge in the development process. 

Similarly, in object-oriented programming, the mechanisms of interfaces, 
class inheritance, method extension, encapsulation, and similar techniques 
provide a powerful set of tools for prototyping. Although often thought of 
as tools for writing reusable software, they give a guiding structure to 
prototyping. “Thin-line” prototyping is a technique that draws on these 
object-oriented mechanisms. A thin-line prototype is one that implements 
all major components of a system, although initially with limited 
complexity. For example, assume an implementation of an expert-system 
in a complex network environment. A thin-line prototype would include all 
parts of the system to test communication, interaction, etc., but with 
limited functionality. The expert system may only have enough rules to 
solve a few example problems; the network communications may only 
implement enough messages to test the efficiency of communications; the 
user interface may only consist of enough screens to solve an initial 
problem set, and so on. 

The power of thin-line prototypes is that they test the overall architecture 
of the program without requiring a complete implementation. Once this is 
done and evaluated for efficiency and robustness by engineers and for 
usability and correctness by end users, we can continue development with a 
focused, easily managed cycle of adding functionality, testing it, and 
planning. In our experience, most AI programs are built this way. 

Reuse It would be nearly impossible to write a book on programming without a 
discussion of an idea that has become something of a holy grail to modern 
software development: code reuse. Both in industry and academia, 
programmers are under pressure, not only to build useful, reliable software, 
but also to produce useful, reusable components as a by-product of that 
effort. In aiming for this goal, we should be aware of two subtleties. 

The first is that reusable software components rarely appear as by-products 
of a problem-specific programming effort. The reason is that reuse, by 
definition, requires that components be designed, implemented, and tested 
for the general case. Unless the programmer steps back from the problem 
at hand to define general use cases for a component, and designs, builds, 
tests, and documents to the general cases, it is unlikely the component will 
be useful to other projects. We have built a number of reusable 
components, and all of them have their roots in this effort to define and 
build to the general case. 

The second thing we should consider is that actual components should not 
be the only focus of software reuse. Considerable value can be found in 
reusing ideas: the idioms and patterns that we have demonstrated in this 
book. These are almost the definition of skill and mastery in a programmer, 
and can rightly be seen as the core of design and reuse. 
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             32.4 Final Thoughts 

 It has been our goal to give the reader an understanding of, not only the 
power and beauty of the programming languages Prolog, Lisp, and Java, 
but also of the intellectual depth involved in mastering them. This mastery 
involves the languages syntax and semantics, the understanding of its 
idioms of use, and the ability to project those idioms into the patterns of 
design and implementation that define a well-written program.  

In approaching this goal, we have focused on common problems in 
Artificial Intelligence programming, and reasoned our way through their 
solution, letting the idioms of language use and the patterns of program 
organization emerge from that process. The power of idioms, patterns, and 
other forms of engineering mastery is in their application, and they can 
have as many realizations, as many implementations as there are problems 
that they may fit. We hope our method and its execution in this book have 
helped the student understand the deeper reasons, the more nuanced 
habits of thinking and perception, behind these patterns. This is, to 
paraphrase Einstein, less a matter of knowledge than of imagination.  

We hope this book has added some fuel to the fires of our readers’ 
imaginations. 

 

 


