
English for Spoken Programming
Benjamin M. Gordon

Department of Computer Science
University of New Mexico

Albuquerque, New Mexico 87131
Email: bmgordon@cs.unm.edu

George F. Luger
Department of Computer Science

University of New Mexico
Albuquerque, New Mexico 87131

Email: luger@cs.unm.edu

Abstract—Existing commercial and open source
speech recognition engines do not come with prebuilt
models that lend themselves to natural input of pro-
gramming languages. Prior approaches to this prob-
lem have largely concentrated on developing spoken
syntax for existing programming languages. In this
paper, we instead describe a new programming lan-
guage and environment that is being developed to use
“closer to English” syntax. In addition to providing
a more intuitive spoken syntax for users, this allows
existing speech recognizers to achieve improved
accuracy using their prebuilt English models. Our
basic recognizer is built from a standard context-free
grammar together with the CMU Sphinx pre-trained
English models. To improve its accuracy, we modify
the language model during runtime by factoring in
additional context derived from the program text,
such as variable scoping and type inference. While
still a work in progress, we anticipate that this
will yield measurable improvements in speed and
accuracy of spoken program dictation.

I. INTRODUCTION

The dominant paradigm for programming a
computer today is text entry via keyboard and
mouse. Keyboard-based entry has served us well
for decades, but it is not ideal in all situations. Peo-
ple may have many reasons to wish for usable al-
ternative input methods, ranging from disabilities
or injuries to naturalness of input. For example, a
person with a wrist or hand injury may find herself
entirely unable to type, but with no impairment to
her thinking abilities or desire to program. What
a frustrating combination!

Furthermore, with the recent surge in keyboard-
less tablet computing, it will not be long before
people want to program directly on their tablets.
Today’s generation of tablets are severely limited
in comparison to a desktop system, suitable for
viewing many forms of content, but not for cre-

ating new text-based content. Newly announced
products already claim support for high-resolution
screens, multicore processors, and large memory
capacities, but they still will not include a key-
board. It is certainly possible to pair a tablet with
an external keyboard if a large amount of text
entry is needed, but carrying around a separate
keyboard seems to defeat the main ideas of a tablet
computer.

What is really needed in these and other similar
situations is a new input mechanism that permits
us to dispose of the keyboard entirely. Humans
have been speaking and drawing for far longer
than they have been typing, so employing one
of these mechanisms seems to make the most
sense. Products such as Apple’s Siri have demon-
strated the usefulness of systems built around non-
keyboard inputs, but they do not incorporate facil-
ities that are of use to programmers of traditional
computer languages. In this paper, we consider
the problem of enabling programming via spoken
input by describing a new programming language
and associated programming environment that are
intended to model English more closely.

This paper is organized as follows: Section II
describes the problem of spoken programming
and related research. Section III provides a brief
overview of our proposed language and some
sample programs. Finally, section IV describes the
current implementation status and future work.

II. BACKGROUND

Once we have accepted the arguments from
section I that programming via speech is a de-
sirable thing to be able to do, the next problem
becomes how to achieve this. A plausible first
attempt would be to open up a traditional IDE



and attempt to use an existing dictation package
to begin writing a program. Unfortunately, existing
commercial and open source speech recognition
engines do not come with prebuilt models that
lend themselves to natural input of programming
languages. For example, to input this potential line
of code:

X := 5;

one common commercial package requires the
following sentence:

X space bar colon equal sign
five semicolon new line

Just imagine dictating a full line containing all the
punctuation and non-English words found in a real
programming language! Clearly, this will not do
for anything more than the most trivial programs.

Researchers have approached this problem from
two opposite directions. In the first approach,
researchers have studied how programmers speak
existing languages and attempted to create models
allowing dictation of traditional languages. Even
though the computer only works on textual input,
programmers often have to “speak code” to each
other (e.g. pair programming). Thus, spoken forms
of programming languages do exist in some sense,
and these can be used for dictation. This approach
was demonstrated by Begel and Graham in Spoken
Java [1], [2]. When using Spoken Java, the user
interacts with a modified Eclipse environment in
which they can create Java code through a Java-
like spoken syntax. The spoken syntax was created
by studying how several expert programmers read
Java code aloud.

A similar approach was taken by Désilets, Fox
and Norton in VoiceCode [3], [4]. Instead of being
a direct spoken interpretation of a programming
language, VoiceCode recognizes a higher-level
metalanguage and translates the recognized code
patterns into native code output using templates.
It can produce C++ and Python natively, and
additional languages can be supported by adding
appropriate grammars and code templates. A demo
Java implementation was created by Masuoka [5].
In addition, it uses simple context sensitivity to
determine when the user is speaking a program-
ming construct versus an identifier. For example,
the word “if” is interpreted as part of an if-then

construct only when it is spoken with the cursor
on a blank line.

On the completely opposite end of the scale,
researchers have attempted to accept unstructured
English as input and convert it to code output.
This approach is exemplified by Price in Natu-
ralJava [6]. In NaturalJava, the user describes his
code using natural English speech. The system
interprets the user’s speech to produce a work-
ing Java program that is intended to follow his
description. While the system was never fully
implemented, Price did perform a semester-long
“Wizard of Oz” study and found that approxi-
mately 80% of the phrases used by beginner pro-
grammers were stock phrases that could be easily
interpreted without attempting the full generality
of understanding English [7].

III. A NEW PROGRAMMING LANGUAGE

Rather than attempting to create a syntax or
mechanism for dictating programs using an exist-
ing language, in this paper we describe a new pro-
gramming language and environment that is being
developed to use “closer to English” syntax. The
language is not English; it is a simple, imperative-
style language similar to C that is described by a
typical grammar and compiled with a traditional
compiler. However, the language constructs are
described with English words and phrases that
sound “natural” based on an informal survey of
other department members. In particular, punc-
tuation and other non-pronounceable items have
largely been removed or replaced with English
wording.

This organization provides two immediate ben-
efits. First, the mapping between the words the
user needs to speak and the text that appears
on the screen is immediate and unambiguous.
The authors of both VoiceCode and Spoken Java
found that users naturally have multiple ways of
describing the same symbols [1], [3], and both
had to build in allowances for this. The user has
less to learn and less to remember by eliminating
these ambiguities. Moreover, our grammar and
recognizer rules can be simplified.

Second, the use of English-like phrasing as
the language syntax allows existing speech recog-
nizers to achieve improved accuracy using their
prebuilt English models. Our basic recognizer



is built from a standard context-free grammar
together with the CMU Sphinx [8] pre-trained
English models. With no additional training or
modification to the recognizer, we have been able
to dictate small–but complete–programs. To im-
prove the accuracy of the system and scale to
larger programs, we modify the language model
during runtime by incorporating additional context
derived from the program text, such as variable
scoping and type inference. Further details are
provided in section IV.

Our language is an imperative, compiled lan-
guage with static typing. We use type inference to
avoid requiring the user to speak type annotations.
Because the focus of our research is spoken pro-
gramming rather than language design, we have
implemented a limited—but Turing-complete—set
of constructs that are sufficient to write com-
plete programs. We have omitted many advanced
features that would be expected in a real-world
language. It supports the following constructs:

1) String literals and variables
2) Integer literals and variables
3) Variable assignment
4) Simple arithmetic expressions and string op-

erations
5) Function definitions
6) Function calls, including recursion
7) Indefinite loops (while-do/repeat-until

equivalent)
8) Conditional statements (if-then-else equiva-

lent)
9) Simple I/O (printf and scanf equivalents)

A. Examples

We provide a few examples here to illustrate
programming in this language.

1) Trivial: Like programs written in C, each
program’s starting routine is called main. It takes
no arguments and returns an integer exit status to
the operating system. This is the shortest possible
program:

define function main
taking no arguments
as

return 0
end function

Note that indentation and spacing are provided
to aid readability. They are not required for com-
pilation.

2) Hello, World: Here is the quintessential first
program:

define function main
taking no arguments as
print the string "Hello, World"
return 0

end function

3) Variables: We can read input from the user
and perform simple calculations. Note that we do
not have to specify the types of X or Y . They are
inferred from their use in an integer expression.

define function main
taking no arguments as
read X
set Y to X * 2
print Y
return 0

end function

4) Conditionals and Looping: We provide typi-
cal if-then statements and indefinite (while) loops.
This program prints the odd integers from 1 to
10 in a strangely convoluted way. Notice that
every if-then must have a matching else, so we
have a statement that does nothing. This program
could have been written with less code if the
language had definite loops. This is an example of
a common feature that we have omitted to keep
the focus on spoken programming instead of the
language itself.

define function main taking
no arguments as
set i to 1
set odd to 1
while i <= 10 do
if odd = 1 then
print i
new line

else
nothing

end if
set odd to 1 - odd
set i to i + 1

end while
end function



5) Fibonacci: As a final example, we put ev-
erything from above together to make a program
that does something slightly more useful. This
program prints the first n Fibonacci numbers, one
per line (where n is entered by the user):

define function main
taking no arguments as

read limit
set i to 1
while i < limit do

print the result of
calling fib with i

new line
set i to i + 1

end while
return 0

end function

define function fib
taking arguments n as

if n < 3 then
return 1

else
set f to the result of

calling fib with n - 1
set g to the result of

calling fib with n - 2
return f + g

end if
end function

IV. SPEECH MODELS

We implemented a programming environment
for spoken programming as an Eclipse [9] plugin
using CMU Sphinx [8] as the speech recognition
engine and ANTLR [10] to implement the com-
piler. Other than the addition of spoken program-
ming input, we have tried to leave the standard
Eclipse experience in place. The user is able to
make use of all the normal processes for com-
piling and running programs, managing resources
through the explorer view, etc. In addition, she
can dictate spoken programs. We have not imple-
mented a voice-driven editing interface; instead,
we currently rely on the built-in Eclipse editors
and require the user to use the keyboard for post-
dictation edits.

Because the language syntax is composed
nearly entirely of English words, we have been

able to dictate complete programs without any
further modifications to the speech models that
come with Sphinx. However, the accuracy might
best be described as less-than-stellar. We have
found that with some practice, we can dictate
programs with an error only every couple of lines,
but this is still frustratingly frequent.

The key to improving accuracy in English
recognition research has been the incorporation of
different types of context, either through sheer vol-
ume of training data or through domain- and task-
specific knowledge. For example, Apple’s Siri is
able to handle many queries in natural English
by interpreting them in the context of tasks that
the user is likely to be performing on a phone.
This same principle should apply to speech in the
context of programming; we are implementing the
two specific cases of variable scoping and type
inference.

When a user speaks the name of a symbol or
identifier, the principle of locality suggests that
they are more likely to be speaking the name
of something nearby than something defined in
a far-off scope. We have implemented this idea
by keeping a separate language model on a per-
scope basis. The primary language model is based
on the grammar describing the language and does
not change. Ideally, it would only be necessary to
adjust the probabilities of identifiers as they come
in and out of scope. However, Sphinx does not
allow modification of models while they are in
use. It does allow the use of multiple models at
runtime, so we use this facility to dynamically
switch between tweaked models whenever the
scope changes.

Similarly, knowledge of the type system allows
us to improve the recognition of identifiers that
are spoken as part of expressions and function
calls. For example, if the user says “two times
bar,” there may be several identifiers that sound
like bar in scope. However, we know that the
other argument of times must be an integer to
match the first argument. Thus, we can restrict
our list of potential identifiers to those that are
type-compatible with integers. The same idea can
be used to constrain arguments passed in function
calls.

The type of dynamic language model described
for scoping above does not work for typing, be-



cause we would be potentially changing the model
after nearly every word when the user speaks an
expression. Instead, we apply the typing context
as a second, higher-level model. Normally, we
retrieve the unique best result from Sphinx when-
ever it has recognized part of a valid programming
construct. When we detect that the user is speaking
an expression or function argument, we instead
ask it for a list of candidate hypotheses. We can
then type-check the results and eliminate those
hypotheses that include invalid combinations of
identifiers.

V. STATUS AND FUTURE WORK

We have implemented a full compiler and the
base spoken programming environment for our
language. With some practice and careful enun-
ciation, it is possible to dictate simple programs
at least as quickly as typing. The initial work of
designing the addition of our scope- and type-
based context into Sphinx is complete, but the
implementation is still in progress. We anticipate
this being ready for wider use by the end of this
year.

We are also in the process of designing a user
study to quantitatively measure the effectiveness
of our added context. While the implementation
work is not yet complete, our preliminary results
based on using the system ourselves lead us to
believe that the additional context we are incorpo-
rating will produce measurable improvements in
accuracy and speed of spoken program input.

An important topic for future work is the in-
tegration of spoken navigation and editing com-
mands. People do not typically write an entire
program from the top down, so they need a way
to move around in their source code. Currently
both editing and navigation must be done with the
keyboard or mouse, which we have found to be the
clumsiest part of using our system.

REFERENCES

[1] A. Begel and S. L. Graham, “Spoken programs,” Visual
Languages and Human-Centric Computing, 2005 IEEE
Symposium on, pp. 99 – 106, 2005.

[2] ——, “An assessment of a speech-based programming
environment,” Visual Languages and Human-Centric
Computing, 2006. VL/HCC 2006. IEEE Symposium on,
pp. 116–120, 2006.

[3] A. Désilets, D. Fox, and S. Norton, “Voicecode: an
innovative speech interface for programming-by-voice,”
CHI’06 extended abstracts on Human factors in comput-
ing systems, pp. 239–242, 2006.

[4] ——, “Voicecode programming by voice toolbox,” http://
sourceforge.net/projects/voicecode/, Retrieved January 3,
2011.

[5] C. Masuoka, “Java programming using voice input:
Adding java support to voicecode,” http://www.cs.umd.
edu/Honors/reports/cmasuoka HonorsProjectReport.pdf,
Fall 2008.

[6] D. Price, E. Rilofff, J. Zachary, and B. Harvey,
“NaturalJava: a natural language interface for
programming in Java,” in Proceedings of the
5th international conference on Intelligent user
interfaces, ser. IUI ’00. New York, NY, USA:
ACM, 2000, pp. 207–211. [Online]. Available:
http://doi.acm.org/10.1145/325737.325845

[7] D. E. Price, D. Dahlstrom, B. Newton, and J. L. Zachary,
“Off To See The Wizard: Using A “Wizard Of Oz” Study
To Learn How To Design A Spoken Language Interface
For Programming,” in In Proceedings of the Frontiers in
Education Conference, 2002, pp. 2–23.

[8] “CMU sphinx - speech recognition toolkit,” http://
cmusphinx.sourceforge.net/, Retrieved January 15, 2011.

[9] “Eclipse: The eclipse foundation open source community
website,” http://www.eclipse.org/, Retrieved January 10,
2011.

[10] “ANTLR Parser Generator,” http://www.antlr.org/, Re-
trieved April 13, 2012.


