
Static Methods

Chapter 4

Chapter Contents
Objectives
4.1 Introductory Example: Old
MacDonald Had a Farm …
4.2 Getting Started with Methods
4.3 Example: The Volume of a Sphere
4.4 Methods: A Summary
4.5 Graphic/Internet Java: Old
MacDonald … Applet

Chapter Objectives
Look at how to build static (class)
methods
Study use of methods

calling, parameters, returning values
Contrast reference and primitive
parameter passing
Compare design process for methods to
program design
Give an example of Swing class JApplet
used as a container in building applets.

Motivation
We seek to write reusable code for
the purpose of avoiding having to
do the same task repeatedly
This can be done by putting the
code in a method

Various objects in a program can
invoke the same method

This chapter gives us the means to
write Java methods

4.1 Introductory Example:
Old MacDonald Had a

Farm …
Consider the children's song, Old
MacDonald
Programming Problem:
Write a program that displays the lyrics
Approaches:

Simply display a very long String
Use repetitiveness of lyrics, noting the only
difference in each verse is the sound and the
name of the creature.

Eliminating
Redundant Code

Parameters for each verse
Creature
Sound made by creature
Both will be String parameter variables

Form of method:
private static String buildVerse
 (String creature, String sound)
 { // statements to build verse
 }

Note source code Figure 4.1

buildVerse Method
Tasks performed by buildVerse

Receives two string parameters
Uses these values to build string with lyrics
Lyric string returned (sebder of the
buildVerse message)

Call (invocation) of buildVerse in
main

 String variable lyrics created
Initialized with concatenated calls to
buildVerse

4.2 Getting Started
With Methods

Formulas that compute values need
not be limited to a single program
Can be made available to other
programs
Perform the calculation in a
reusable method

Java Method
Definition

Syntax:
modifiers returnType methodName
 (paramDecls)
{
 statements
}
modifiers: describers (public, private, etc.)
returnType: type of value returned by method, or
void if it does not return a value
methodName: identifier that names the method
paramDecls: comma separated list of parameters
statements: define the behavior of the method

Methods
Heading of the method includes:

modifiers
return type
name parentheses with parameters

Return statement – syntax:
 return expression;

 expression is evaluated
method terminates
execution transferred to caller
value of expression returned as value
computed by the method

Methods That Return
Nothing

Type void is specified
Example
public static void main (String [] args)
 {
 statements
 }

No return statement is required
These methods can be thought of as
“doing a task”, instead of returning a value

Designing and
Defining Methods
Note the usefulness of object-
centered design

Similar to design of programs
They have objects, behavior, and use an
algorithm

Consider a method for mass-to-
energy conversion from Section 3.1

Objects for
Mass-to-Energy

Object
Descriptions Type Kind Movement Name

mass double variable received m

c double constant none c

2 integer constant none none

energy double variable returned none

Method Specifications
Give a description of what the method
is supposed to do:

1. What values does the method receive?
2. What values are input to the method?
3. What are the restrictions or limitations

the preconditions?
4. What values does the method return?
5. What values does the method output
6. What effects are produced, the

postconditions?

Method Specifications
for Mass-to-Energy

For our Mass-to-Energy method:
Receive: mass, a double
Precondition: mass > 0
Return: the amount of energy when
mass is converted to energy

Method Stubs
Stub includes:

Heading
Empty braces { } for body

Heading includes:
Name
Parameter for each argument received must be
specified
Return type (or void)
public static double massToEnergy (double m)
 {

 }

Local Variables
Other constant values or temporary
variables

Named values not received from the caller
They exist only while the method is
executing

Another method may use same identifier
The local variable/constant can be
accessed only from within the method
where declared
Compiler will catch this error

Method Algorithm
After stub is defined

return to design phase
specify operations
establish algorithm

Algorithm for Mass-to-Energy
Receive mass m from caller
Return m * C2

Method for
Mass-To-Energy

public static double
 massToEnergy(double m)
{
 final double C = 2.997925e8;
 // meters per sec
 return m * Math.pow(C,2);
}

Method
Documentation

Include a /* comment */ at the top
to give the method's specification

what it does
Parameters
Receive:
Description of value return
Return:

Flow of Execution
Statements in main() executed
Method call encountered
Control passes to method

values passed to parameters
statements in method executed
return encountered

Control passes back to statement
following method call

Method Testing:
Verification and

Validation
Often test a method independently
of program that uses it
Write simple “driver” program

receive inputs
invoke method
print results

Observe correctness of results

Parameter Passing
When a method called

list of arguments in call matched (left to
right) with parameters
must be same number of parameters
types must be compatible

Values in call copied to parameters
In examples shown so far,
argument in call cannot be altered
by action of method

Object-Centered
Design with Methods

Behavior
state precise behavior of program

Objects
identify problem's objects
build a new class to represent types as
necessary

Object-Centered
Design with Methods

Operations
identify required operations – if operation
not predefined …
build methods to implement the operation
store method in class responsible for
providing the operation

Algorithm
arrange operations in an order that solves
the problem

4.3 Example: Volume
of a Sphere

Given the radius r, what is the weight
of a ball (sphere) of wound twine?
Object-Centered Design

display prompt for radius
read value for radius
compute weight of sphere
display results on screen

Note this is generalized for sphere of
arbitrary size

Objects
Object Type Kind Name

Program

Screen Screen varying theScreen

Prompt String constant

Radius Double varying Radius

Keyboard Keyboard varying theKeyboard

Weight Double varying Weight

Sphere varying

Operations

Display a String (prompt) on the
screen
Read a number from keyboard, store
it in radius
Compute weight using radius
Display a number (weight) on screen

New Class Required
Java has no predefined sphere object
Also no predefined operation for volume
or weight of a sphere

Solution:
build a method to calculate weight
create a sphere class to use the weight method

We will need an additional variable object
 density (weight = density * volume)

A Volume Method
Objects

Volume = (4/3) * Pi * r3

Note
 r is the only variable
 4, 3, and Pi are constants

These (along with the result, volume)
are the objects of this method

Volume Method
Operations and

Algorithm
Receive real value (radius) from caller
Cube the real value (radius3)
Multiply by 4.0 and by Pi
Divide by 3.0
Return result
4.0 * Pi * radius3/3.0

Defining Class and
Method

class Sphere extends Object
{

 public static double volume
 (double radius)
 {
 return 4.0 * Math.PI *
 Math.pow(radius, 3)/3.0;
 }

Public: can be
used by other

classes

double:
returns a
real value

name accurately
describes and

documents purpose

Static: main methods can
use it without creating a

Sphere object

Mass Method

 mass = density * volume(radius)
 density and radius are the inputs to the
method
 volume is a call to the volume method
 mass is the result to be returned

These are the objects of the method

Mass Algorithm

Receive inputs
 radius
 density

Multiply density times value
returned by call to volume method
Return these results

Defining the Density
Method

class Sphere extends Object
{

 public static double volume
 (double radius)
 { . . . }

 public static double density
 (double radius, double density)
 { return density * volume(radius);}

Algorithm for Main
Method

Construct theKeyboard, theScreen
 theScreen displays prompt for radius
 theKeyboard reads a double value into
radius
 theScreen displays prompt for density
 theKeyboard reads a double into density
Compute weight, use mass() method from
class Sphere
 theScreen displays weight and descriptive
text

Coding and Testing
SphereWeigher Class

Note source code Figure 4.5
import Sphere class
use of methods from Sphere class

Note Sample Runs

4.4 Methods: A
Summary

Specify a parameter for each value
received by the method
Value supplied to the parameter
when method invoked is called an
argument
Arguments matched with
parameters from left to right

must be same number of arguments
types must match (be compatible)

4.4 Methods: A Summary
If argument is a reference type, address is
copied to parameter

both parameter and argument refer to same
object

Instance (object) methods defined without
the static modifier

messages invoking them are sent to an instance
of the class

When method1() calls method2(), control
returns to method1() when method2()
finishes

4.4 Methods: A
Summary

Local objects are defined only while
method containing them is
executing
 void is use to specify return type
of a method which returns no
values
Value is returned from a method to
the call using the return
statement

4.5 Graphic/Internet Java
Old MacDonald … Applet

Convert previous application into
an applet
Include picture of Farmer
MacDonald himself
One basic difference is handling
the output

text and picture are both painted in
specified areas of the screen

Output In An Applet

Window frame container
Intermediate containers known as panes or
panels
Areas for panes include north, east, south, west
(top, right, bottom, left), and center

Use the .add() method
getContentPane().add(song, "West");

OldMacDonald Applet

Note features of source code,
Figure 4.6

re-use buildVerse() method
 init() instead of main()
use of .add() to place lyrics on the left
and picture (.gif file) on the right

