
More About
Classes:

Instance Methods

Chapter 6

Chapter Contents
Chapter Objectives
6.1 Introductory Example: Modeling
Temperatures
6.2 Designing a Class
6.3 Implementing Class Attributes
6.4 Implementing Class Operations
6.5 Graphical/Internet Java: Raise the
Flag

Chapter Objectives
Look at how to build classes as types
Study instance methods

contrast with static (class) methods
Place in context of real world object
(temperature)
Implement attribute (instance)
variables
Explain importance of encapsulation
and information hiding

Chapter Objectives
Build a complete class to model
temperatures
Describe, give examples for

constructors, accessor methods,
mutator methods, converter methods,
utility methods

Investigate graphics programming
Look at artificial intelligence topics

Classes
Generally used to describe a group or
category of objects

attributes in common
Java class used as a repository for
static methods used by other classes
Now we will create a class that serves
as a type

from which objects are created
contains instance methods

6.1 Introductory Example:
Modeling Temperatures

Problem
Temperature Conversion
Fahrenheit, Celsius, Kelvin

Preliminary Analysis
Attributes of temperature

number of degrees
scale

We seek a type which will …
hold all attributes and …
provide methods for manipulating those attributes

Object-Centered
Design

Objects Type Kind Name

program

screen Screen varying theScreen

prompt String constant

temperature Temperature varying temp

keyboard Keyboard varying theKeyboard

Fahrenheit equivalent Temperature varying

Celsius equivalent Temperature varying

Kelvin equivalent Temperature varying

Operations
Display a string on theScreen
Read a Temperature from
theKeybard

Determine Fahrenheit equivalent of
Temperature

Determine Celsius equivalent
Determine Kelvin equivalent
Display a Temperature on theScreen

Algorithm
1. Declare theScreen, theKeyboard,

temp

2. Send theScreen message to display
prompt

3. Send temp a message, ask it to read
value from theKeyboard

4. Send theScreen a message to display
Fahrenheit, Celsius, Kelvin equivalents

Coding

Note source code, Figure 6.2 in text
Assumes existence of the class
Temperature

Note calls to Temperature methods
.read(theKeyboard)
.inFahrenheit()
.inCelsius()
.inKelvin

6.2 Designing a Class

For a class, we must identify
Behavior, operations applied to class
objects
Attributes, data stored to characterize a
class object

These are “wrapped together” in a
class declaration

Class Declaration
Syntax:
class className
{
 Method definitions
 Field Declarations
}

Method definitions are as described
in earlier chapters
Field declarations are of variables
and constants

External and Internal
Perspectives

External Perspective
observer from outside the program
views internal details

Internal Perspective
object carries within itself ability to
perform its operations
object autonomy

Temperature Behavior
Define myself implicitly

initialize degrees, scale with default
values

Read value from a Keyboard object
and store it within me
Compute Fahrenheit, Celsius, Kelvin
temperature equivalent to me
Display my degrees and scale using
a Screen object

Additional Behaviors
Desired

Define myself explicitly with degrees, scale
Identify my number of degrees
Identify my scale
Increase, decrease my degrees by a
specified number
Compare myself to another Temperature
object
Assign another Temperature value to me

Temperature
Attributes

Review the operations
Note information each requires
Temperature has two attributes

1. my degrees
2. my scale

Implementing Class
Attributes

Stand alone class declared in a
separate file: Temperature.java
Specify variables to hold the
attributes
 double myDegrees;
 char myScale;

called the instance variables, data
members, or fields

Encapsulation
Wrap the attribute objects in a class
declaration
class Temperature
{
 double myDegrees;
 char myScale;
}

Use the class declaration as a type for
declare actual objects
Temperature todaysTemp = new Temperature();

The class
Temperature
encapsulates
myDegrees and
myScale

Information Hiding
Attribute variables can be accessed directly
todaysTemp.myScale = 'Q'; // ???

We wish to ensure valid values only
Solution is to “hide” the information to
direct outside access
class Temperature
{
 private double myDegrees;
 private char myScale;
} It is good programming practice to hide all attribute

variables of a class by specifying them as private

Class Invariants

Important to identify restrictions on
values of attributes

minimum, maximum temp
 myScale limited to F, C, or K

Specify with boolean statements in
comments
 . . .
 private char myScale; // 'F', 'C', or 'K'

Class Invariants
Helpful to specify static (class) constants
class Temperature
{

public final static double
 ABS_ZERO_F = -459.67;
 ABS_ZERO_C = -273.15;
 ABS_ZERO_K = 0.0;
…

All objects of type
Temperature

share a single instance
of these values

6.4 Implementing
Static Operations

Use instance methods
Contrast:

Static (Class) Methods Instance (Object)
Methods

Declared with keyword
static
Shared by all objects of class

Invoke by sending message to
the class

No static modifier used

Each class has its own copy

Invoked by sending message
to class object

Instance Methods
Categories

Constructors
initialize attribute variables

Accessors
retrieve (but not change) attribute variables

Mutators
change attribute variable values

Converters
provide representation of an object in a
different type

Utilities
used by other methods to simplify coding

Temperature Output:
a Convert-to-String

Method
 print() and println() methods used

display a value whose type is Object or any
class that extends Object
send object message to convert itself to
String using toString() (a converter)

Thus theScreen.print(todaysTemp)
“asks” todaysTemp to return a String
representation of itself
Note source code Figure 6.3 in text

Constructor Methods
Temperature temp1 = new Temperature

Initial values for myDegree and myScale
are 0 and NULL, respectively

Better to give them valid values
Constructor method used to give these
values

default-value constructor
explicit value constructor

Default Value
Constructor

Whenever a Temperature object is
declared, this specifies initial values

public Temperature()
{ myDegrees = 0.0;
 myScale = 'C'; }

Note:
no return type (not even void)
name of constructor method must be
same as name of class

Explicit-Value
Constructors

Useful to initialize values at
declaration time
Explicit value constructor

 uses parameters to initialize myDegrees
and myScale
Note source code Figure 6.5 in text

Constructor invoked by …
Temperature todaysTemp =
 new Temperature(75,'F');

Method Names and
Overloading

Now we have two methods with the
same name

but different numbers of parameters
Two or more methods with same
name called “overloading”

compiler determines which method to
use
based on number and/or types of
arguments in call

Utility Methods
Class Temperature methods need
check for validity of incoming or
changing values of variables

 myDegrees must be greater than
absolute zero
 myScale must be one of 'C', 'K', or
'F'

Utility method provided
isValidTemperature()

A Utility Method:
fatal()

 isValidTemperature() handles only
the incoming parameters

not the attribute variables
If they are wrong the fatal() method
is called (note source code Figure 6.7)

displays diagnostic message
method where problem detected
description of problem

terminates execution

Static vs. Instance
Methods

Note that toString() and the
constructor methods are instance
methods

 isValidTemperature() and fatal() are
static methods

Instance method:
invoked by message sent to instance of a
class

Static method:
invoked by message sent to the class itself

Static vs. Instance
Methods

Static methods
may only access static variables, constants,
and static methods
access only static declared items

Instance methods
may access both instance and static variables,
constants, methods

Objects have their own distinct copies of
instance variables, constants, methods

Objects share the same copy of
static variables, constants, methods

Class Design Pointers
Most variables should be declared
as attribute variables
If a method needs to access
attribute variables

then define it as a instance method
If a method does not need to
access static variables

make it a static (class) method
pass information to it via parameters or
declared class attributes

Accessor Methods

Methods that allow program to
retrieve but not modify class
attributes
Example:
public double getDegrees()
 { return myDegrees; }

Mutator Methods
Input into a Temperature object
Desired command:
todaysTemp.read(theKeyboard);

reads a number, a character from
keyboard
stores them in proper variables

This is a method that changes values
of attribute variables

thus called a “mutator”

Managing the Input
Need for strategy to handle invalid
inputs from user

will return boolean value to indicate validity
of inputs

Note the source code, Figure 6.9 of text
– observe differences from constructor

values come from theKeyboard instead of
parameters
returns boolean value instead of generating
fatal error

Conversion Methods
A temperature object should be
able to compute any scale
equivalent of itself

method returns appropriate value
based on current value of myScale

Note source code, Figure 6.10
 result initialized to null
method constructs a Temperature
value for result
return statement makes result value
returned

Raising/Lowering a
Temperature

We need a method which enables the
following command
tuesTemp = monTemp.raise(4.5);
 // or .lower()
The return value would be an object of
the same scale, different myDegrees
Method should use
isValidtemperature() to verify results

if invalid results, uses the fatal() utility
Note source code Figure 6.11

Comparing
Temperature Values

We cannot use
 if (monTemp < tuesTemp) …
We must use something like
if monTemp.lessThan(tuesTemp) …
View source code Figure 6.12, note:

must convert to proper scale for comparison
then simply return results of comparison of
myDegrees with the results of parameter's
getDegrees() method

Similar strategy for the .equals() method

Alternate Comparison
Strategy

Note the duplicate code in the
.lessThan() and .equals() methods
Write a single method .compareTo()
which returns –1, 0, or +1 signifying <,
==, or >
Rewrite .lessThan() and .equals()
to call the .compareTo() and decide
the equality/inequality based on –1, 0,
or +1

Reference-type
Declaration

“Reference” is another word for “address”
Temperature temp = new Temperature(37,'C');

The variable temp really holds the address
for the memory location allocated by the
new command

myDegrees

myScale

temp

C

37

Handles
 temp is the only way to access the
Temperature object

it has no name of its own
 temp is the handle for the object it
references

myDegrees

myScale

temp

C

37

Reference Type Copying
Consider the following two statements:
Temperature temp = new Temperature(37,'C');
Temperature temp2 = temp;

Note: declaration of temp2 did not use the
new command

a new object did not get created
we merely have two handles for one object

myDegrees

myScale

temp

C

37

temp2

Reference Type Copying
At times we need to create another object,
not just another pointer

create a copy method
returns a distinct Temperature object, equal to
(a clone of) itself

public Temperature copy()
{
return new Temperature(myDegrees,myScale);
}

Invoked as shown:
Temperature newTemp = oldTemp.copy();

Reference Type
Copying

Note simplicity of this copy method
all attribute variables happen to be
primitive types

If attribute variables were,
themselves, reference types

our version would make only handles to
the actual attribute variable objects
this called “shallow” copy

For truly distinct, “deep” copy
each reference type attribute variable
must be copied separately

Class Organization
Note source code of entire class,
Figure 6.17
Standard practice

begin class with constants class
provides
follow with constructors, accessors,
mutators, converters, utilities
place attribute variable declarations last

Class Interface
Benefits of private attribute variables

forces programs to interact with class
object through its public methods
public operations thought of as the
"interface"

Design the interface carefully
gives stability to the class
even though implementation of methods
changes, use of the class remains
unchanged

6.5 Graphical/Internet
Java: Raise the Flag

A ClosableFrame Class
provided in ann.gui package
we will build classes that extend this class

class DrawingDemo extends ClosableFrame
{ public static void main(String [] args)
 { DrawingDemo myGUI = new DrawingDemo();
 myGUI.setVisible(true);
 }
}

Creates a
new instanceSends the new object a

message to make itself visible

Inheritance
 DrawingDemo class inherits all
attributes of CloseableFrame

variables and constants
behaviors (methods)

Sample methods of CloseableFrame
set the frame title
set colors
set size
access width, height
set visibility

Painting
Top-level containers contain
intermediate containers

called panes or panels
Content pane is most important

used to group, position components
Note source code, Figure 6.18 in
text

 main method now also creates a
DrawingPane and specifies the size

Methods in
DrawingPain()

Use subclasses of JPanel
constructor sets background to white

 paintComponent()
painting of Swing components must be
performed by a method with this name

This is where statements that do the
actual painting reside

public void paintComponent(Graphics pen)
{ /* statements to do painting */ }

Graphics Class
Methods

Sample graphics methods …
drawArc
drawLine
drawOval
drawString This is a string

Dutch Flag GUI
Application

Note source code Figure 6.19
Uses the paintComponent()
method

draws two rectangles
red filled on top
blue filled on bottom
middle stripe is original white
background

Dutch Flag Applet
Source code Figure 6.20
Many Swing components used in
both applets and applications
Modifications:

This class extends JApplet instead of
CloseableFrame

change main method to init()

Part of the Picture:
Artificial Intelligence

Recently (5/97) a computer program
defeated a world chess champion
Construction of game playing
programs is known as “artificial
intelligence” or AI for short
Definition of AI is difficult

intelligent behavior is complex
styles of programming AI are diverse

Intelligence

A chess playing program is
“intelligent” in a very narrow
domain

General human intelligence is
demonstrated in a wide range of
behaviors

AI Topics
Reasoning and problem solving
Memory of things in our world
Motion and manipulation of objects
(robotics)
Perception

computer vision, speech recognition
Language processing

understanding and generation
translation

Learning from past experiences
Which of these can the chess playing computer do?

AI Programming
Techniques

Heuristic search
search through choices and
consequences

Logic programming
represent knowledge in well defined
format
perform logic inferences on it

AI Programming
Techniques

Expert systems
encode knowledge from an expert in
some domain

Neural networks
model the way the brain works
use highly interconnected simple
processes

Example: JackDice
Game

Similar to blackjack
Roll two dice, sum the values
Continue rolling as desired
Come as close to 21 without going
over
Simulate this “intelligent” activity
with a Java program – see driver
program, Figure 6.21

Strategies for
JackDice

Scaled-down expert system
encode “knowledge” from expert players

Examples of expert knowledge
always accept the first roll (never risks
passing 21)
randomly decide whether to go on or not (???)
take more risks if you are behind in a game
play conservative if you are ahead

