Network, Transport, and
Application Layers

+ TPDU (Transport Protocol Data Unit)
+ Transport service provider
+ Transport service user

Connection Service Primitives

Host 1 Host 2
Application Application
(or session) Application/transport (or session)

18Ye" Transport | interface layer

" address

TPDU
1 Transport
Transport entity
protocol
Network — N
address Transport/network
interface

Network layer

Primitive Packet sent Meaning
LISTEN (none) Block until some process tries to connect
CONNECT CONNECTION REQ. Actively attempt to establish a connection
SEND DATA Send information
RECEIVE (none) Block until a DATA packet arrives
DISCONNECT | DISCONNECTION REQ.| This side wants to release the connection

Network layer

Nesting

Frame Packet TPDU
header header header
’ .
=

TPDU payload

Frame payload

-« Packet payload ————————————————

Simple Connection Management

Connection request

Connect primitive

I,-I’f??.?_cfi"_‘id_____ IDLE Sxecuited

]

1

¥
PASSIVE ACTIVE

ESTABLISHMENT ESTABLISHMENT

PENDING PENDING

T

E Connect primitive Connection accepted

TPD ived
oo &xecuted | parap) ISHED —JU receive
H
Disconnection i Disconnect
t TPDU 1 imiti
PASSIVE e ey} | Prmitive ACTIVE
DISCONNECT |- ==~ ’ Sxecue DISCONNECT

PENDING PENDING

H

;

\ IDLE

_________________ -
Disconnect Disconnection request

primitive executed

TPDU received

Berkeley Sockets

Primitive

Meaning

SOCKET

Create a new communication end point

BIND

Attach a local address to a socket

LISTEN

Announce willingness to accept connections; give queue size

ACCEPT

Block the caller until a connection attempt arrives

CONNECT

Actively attempt to establish a connection

SEND

Send some data over the connection

RECEIVE

Receive some data from the connection

CLOSE

Real

| the connection

1* This page contains a client program that can request a file from the server program
* on the next page. The server responds by sending the whole file.
K

#include <sysftypes.h>
#include <sys/socketh>
#include <netinetiin.n>
#include <netdb.h>

#define SERVER_PORT 12345 1* arbitrary, but client & server must agree */
#define BUF_SIZE 4096 1* block transfer size */

it main(int argc, char **argv)

int c, s, bytes;

char bul[BUF_SIZE]; 1* buffer for incoming file */
struct hostent *h; 1*info about server ¥/
struct sockaddr_in channel; 1 holds IP address */

if (arge 1= 8) fatal(*Usage: client server-name file-name’);

h = gethostbyname(argv[1)): 1+ look up host's IP address */
if (1n) fatal(“‘gethostbyname failed");

s = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);

if (5 <0) fatal(*socket');

memset(&channel, 0, sizeof(channel));

channel.sin_family= AF_INET;

memcpy(&channel.sin_addr.s_addr, h->h_addr, h->h_length);
channel.sin_port= htons(SERVER_PORT),

= connec(s, (struct sockaddr *) &channel, sizeof(channe);
if (c < 0) fatal("connect failed");

#* Connection is now established. Send file name including 0 byte at end. */
wiite(s, argv[2], strlen(argu[2))+1);

1 Go get the file and write it to standard output. */

while (1) {
bytes = read(s, buf, BUF_SIZE); 1 read from sacket ¥/
if (bytes <= 0) exit(0); 1 check for end of file */
write(1, buf, bytes): J* wte to standard output */

}
fatal(char *string)

printi(*%s\n", string):
it(1);

Environments

Foutor Router Subnot

N physeal

communication channal

@ i)

Data Link Transport

Addressing

+ TSAP (Transport Service Access Point)
+ NSAP (Network Service Access Point)

Host 1 Host 2
Server 1 Server 2

Application TSAP 1208 | Application
process layer

‘\

\ Transport %
Transport | layer [TSAP1522% TSAP1836
connection| 8 Y

\\

NSAP Network

layer NSAP

Data link
layer

Physical
layer

Initial Connection Protocol

Host 1 Host 2 Host 1 Host 2

ime-
of-day
server,

User Process User Process
Server Server

Layer

Forbidden Region

' T 2k
Forbidden |« - T

® message |<>I\

) , Y
2120 & 2 ;
E bb o |
= RS 1
= SR € !
© EF 2 i
2 80 & S !
3 10 g :
T 60 ~~—_ Restart _afler 5 i
%] crash with 70 = :
3 :

Actual sequence
0 | | 1 1 | numbers used !
0 30 60 90 120 150 180
Time Time
(a) (b
Restart Resynchronize

Three-way Handshake

Host 1 Host 2 Host 1 Host 2
en 0ld duplicate
s
g, & CRisagy
S ~279 |
~
=R 2N
2 L 2T
5 ok e SOK! et
— —
AT4
~L(seq. ~_AEuecr
L9 4 ~—ECT (acy
TGy I
(a) (b)
Host 1 Host 2
Cr
sy
Old duplicate =
2R
=
w0 d
Pt
D4,
4
i ot
Old duplicate L
~~Buge,

A
o,

(©

\E

Abrupt Disconnect with loss of
Data

Two-army Problem

| =

Connection Teardown Scenarios

Buffer Management

Fixed sized Variable sized
buffers buffers

Circular buffer

Deadlock — Dropped Window
Advertisement

Multiplexing

Upward Downward
Transport address
Layer
1 Network
address
Py Py /
3
\ /
2 Router lines
1
To router
(a) (b)

e.g, channel bonding

Crash Recovery

A — Acknowledge
W — Write
C —Crash

Strategy used by receiving host

First ACK, then write First write, then ACK
Strategy used by
sending host ACW) AWC C(AW) CWA) WAC WCHA)
Always rotransmit oK DUP oK oK DUP | DUP
Never retransmit LosT | oK LosT LosT oK oK
Retransmit in S0 oK DUP | LOST LosT | DUP oK
Retransmit in 81 LosT | OK oK oK oK DUP
OK_ - Protocol functions comectly

DUP_ - Protocol generates a duplicate message
LOST = Protocol loses a message

State Machine for Simple Transport
Protocol

State

D&
e Wating CQueusd Estabishod Sending Recaiving conneciing
Fhie
usTEN 2 e e
e e
e
OONKECT | 5
H EE
£ DiscONNECT i:Adbeo
= e
senp s Snd
RECEIVE saihmg
AT
Callreq it
CalLacc eb
4
§ | oearreq e Mo | moes | e | e
£ | clear.com s
8
DatPi Avzeaan
Cradn MiEh | Kb
B{ o e
Pradeate Actions
P1- Conneclion wbieful A1 Send Gall aco A7 Send meesage

P2 Call_raqponding A2 Wattfor Call_raq A Waitforcradit

Pa; LLSTEN pending A7 Send Call_taq A9: Sand credit
P4’ Cloar_qponding e Swritmer A10° St Clr_req_mcehed flag
PS: Crediavallable A5 Sand Claar_conf AT1: Figcord credit

A6: Sand Cloar_q A12 Acoapt meceage

Graphical Version of FSM

CONNECT (TIMEQUT
IDLE
(CLEAR REQ CALL Rsow
o &5
Zlo
bjec =
WAITING L2 Z QUEUED
] Q
3= 3
o @
a
CALL ACC LISTEN
ESTAB
CREDIT, LISHED RECEIVE
(CLEAR REQ \v
.
2
SENDING SEND S DATA. | cecevinG
S| CLEARREQ
Q
@«
o
DISCON-
NECTING

k CLEAR REQ, CLEAR CONF

UDP

+ User datagram protocol
+ multiplexes and demultiplexes

+ Segments
+ 8 byte header
+ data
32 Bits
Source port Destination port
UDP length UDP checksum

RCP over UDP

+ Stubs

+ Argument marshaling
+ pointers (length may not be known)
+ argument types may not be known (printf)
+ globals

Client CPU Server CPU
1/\ Client Server,
t stub
@ - G@
2 41
Operating system Y Operating system
L 3 J

Network

Real-Time Transport Protocol

+ Transport protocol that runs in the application
layer
+ Multimedia

Ethernet P UDP RTP
heider header header header

¥
Socket interface ‘ .
ubprP
Kergs { P ———UDP payload ——»|
Ethernet |j«————IP payload ——»|
Ethernet payload
(a) (b)

RTP Header

+ Timestamp
* jitter

+ RTCP - Real-time Transport Control Protocol
* no data, just control

32 bits.
L e bbbl

P

Ver.

x‘ cc M Payload type Sequence number

Timestamp

Synchronization source identifier

Contributing source identifier

Sample Assigned Ports

Port | Protocol Use

21 FTP File transfer

23 | Telnet Remote login

25 | SMTP E-mail

69 | TFTP Trivial file transfer protocol

79 | Finger Lookup information about a user

80 | HTTP World Wide Web

110 POP-3 Remote e-mail access

119 | NNTP USENET news

TCP Byte Stream

+ Receiver doesn't know how sender sent the
data

IP header \ TCP header
]] [¥
V) U B I
(a) (b)

+ Urgent data — generate a signal on the
receiver

TCP Header

+ Segment — 20 byte header + options + data

¢+ MTU — Maximum Transfer Unit

+ Window specifies # of bytes that may be sent
starting from acknowledge

32 Bils
S T T T T S S S S S

Souree port Destination port

Sequence number

Acknowledgement number

TCP
header

3
[Window size
length N

Checksum Urgent pointer

Options (0 or more 82-bit words)

I

Data (optional)

O

Sample Options

+ Window scale
« fast links with long delay may be idle most of the

time

+ Selective retransmit (rather than go back n)

TCP Checksum

+ Checksums header + data + pseudo-header
+ Pseudo-header:

32 Bits

Source address

Destination address

00000000

Protocol = 6 TCP segment length

~—Time

Host 1

(SE

TCP Connection

—Nesesy |
1)
_ AOK: 2
SYN (SEQ=Y:

Ot 1y A g

(a)

Host 2

Host 1 Host 2

SYN (SEQ <

(b)

TCP Connection State

State Description
CLOSED No connection is active or pending
LISTEN The server is waiting for an incoming call
SYN RCVD A connection request has arrived; wait for ACK
SYN SENT The application has started to open a connection
ESTABLISHED | The normal data transfer state
FIN WAIT 1 The application has said it is finished
FIN WAIT 2 The other side has agreed to rel
TIMED WAIT Wait for all packets to die off
CLOSING Both sides have tried to close simultaneously
CLOSE WAIT The other side has initiated a release
LAST ACK Wait for all packets to die off

TCP Connection Establishment

(Start)
CONNECT/SYN (Step 1 of the 3-way handshake)

CLOSED
T CLOSE—

HeaVy solid — LISTEN/ | | cLOSE!
H SYN/SYN + ACK
normal client (S 2 57y Fandsra
HeaVy dashed — sv‘m RSTi- J _ SENDISYN pev
| |
normal server L T TP -
Light — ;
(Dala transfer slale)
unusual events |\ Aok CoTABLISHED, ~_SYNL+ ACKIACK
(Step 3 of the 3-way handshake)
CLOSEFIN| :
CLOSE/FIN é\ FIN/ACK
4 (Active close) (Passiveiclose)
FIN/ACK i CLoSE
|

ACK/- 1 | CLOSE/FIN
' 1
FIN + ACKIACK |
] =
WAIT 2 AR WAIT : c
l(‘rimeuul/) 1

‘ ------

(Go back to start)

Window Management in TCP

Sender Receiver Receiver's

Application buffer
does & 2K —— o 4K
write

— Empty

2K
\@EO\\aoj\
\\

ACK = 2048 WIN = 2048
does a 2K ——=
write [{X[sta-zom

Application

lm

Ful
i
Sender is W‘g/ Application
blocked K = 4098 W T reads 2K
/\/AC/ —
— ey
R A W=

ACK
=

\
5
E

Sender may
send up to 2K —»=

-
T
~{i
e | W
.

Window

+ Receive window is O

* urgent packets

+ 1-byte packet to recover lost window

announcement

+ Senders may buffer data
+ 1 character / segment, 40 bytes of headers
* Nagle: send 1 character, buffer until ACK

+ good balance in many cases
+ bad for things like mice (erratic jumps over the

network)

Silly Window Syndrome

receiver consumes 1 byte at a time

Receiver's buffer is full

Application reads 1 byte

[] Room for one more byte
Window update segment sent

[Header | | ———————= Newbyte arrives
/ |

1Byle Receiver's buffer is full

Clark's solution: no window update until
buffer has room for an MTU worth of data

Congestion Control
z ; \ Transmission Z ;
rate adjustment

Flow Control

Congestion Control

Transmission
network Internal

congestion

Small-capacity Large-capacity
receiver @ receiver
(a) (b)

*

TCP Congestion Control

Three parameters

+ Flow control window
¢ Threshold

+ Congestion window

+ Flow control bounds congestion window

*

*

*

Threshold starts at 64K

Congestion window starts at 1 and grows
+ “slow start” until threshold: +1 per segment

+ linear once it passes threshold: +1 per batch
On timeout

+ threshold = congestion / 2

¢ congestion =1

Example Illustrating Threshold and
Congestion Window

~
i
1

Timeout

I
S
I

©
53
I

Threshold
e

[}
1

N
@

N
=

Threshold //

N
S

Congestion window (kilobytes)
>

~

I Sy |
8 10 12 14 16 18 20 22 24

Transmission number

TCP Timer Management
Probability Density for ACK arrival

03— T 03— Ty Tz

Probability
o
[N
T
Probability
o
N
T

o
T
o
T

1 | 1 1 | 1 L1 |
0 10 20 30 40 50 0 4] 10 20 30 40 50

Round-trip time (msec) Round-trip time (msec)
(a) (b)

Timers

+ Estimating RTT RTT=aRTT +(1-a)M
) x=7/8
+ Timeout BRIT(=2)
+ Dynamic estimate of varience
D=aD+(1-a)|(RTT =M

+ Karn's algorithm
+ don't update RTT for retransmitted segment
+ Persistence time
+ dropped window advertisements
+ Keepalive timer
+ TIMED WAIT

Wireless TCP and UDP

Jacobson's rule no longer holds
Indirect TCP: split TCP into two connections

Sender TCP #1 Base
station

TCP #2

Mobile
host

Router Antenna

Alternate: base station becomes active in
making the last kilometer reliable

Transactional TCP

+ SYN includes data

Client Server Client Server

1 1

—
[SYN— | SYN, request, FIN——

|- —2

N, AGK(SYN) -
. |« svN, ACK(FIN). reply, FIN
— 3
A Kisyny — | ACK(FIN)\“
Time request— | Time

e =
—6

- ACK(reques\ + FIN)

| ACKFIN— |

(a) ()

* & o o o

Performance Issues

Problems
Measurement

System design

Fast TPDU processing
Newer protocols

Bandwidth-delay product

+ bandwidth times RTT

T R [B

— \ D‘ 1///
=7 e
RV

(@) (b)

k\i/ e [f\ﬁgf

ents __ —
e e
S \,(p/ﬂc
=

* & 6 o o o

Measurement

Large enough sample size
+ multiple TPDUs
+ statistical significance

Sampling times

Coarse grained clocks

Check for external events

Watch for caching

Understand what you are measuring
Watch out for extrapolation

Extrapolation

Response time
AY

-

* o o o

System Design

Rule #1: CPU speed is more important than
network speed

+ protocol processing is the bottleneck

Rule #2: Reduce packet count

+ per packet overhead

+ pipelined processors

* Nagle and Clark’s silly window syndrome

Rule #3: Minimize context switches (*)

Rule #4: Minimize copies

Rule #5: Bandwidth is easy, latency is hard
Rule #6: Congestion avoidance is better than
detection and recover

Rule #7: Avoid timeouts

Context Switches

User process running at the
time of the packet arrival

Network
manager

Receiving
process

Kernel space

} User space

Fast TPDU processing

+ Know what the fast path is

Sending
process

TPDU passed to the receiving process

Receiving process \O
S
N

[~— Trap into the kemnel to send TPDU

Network

TCP and IP fields that remain

constant in a stream

Source port | Destination port

VER. ’ IHL‘ TOS

Total length

Sequence number

Identification

I \ ‘ Fragment offset

Acknowledgement number

TTL ‘ Protocol

Header checksum

o]

Window size

Source address

Checksum

Urgent pointer

Destination address

(a)

(b)

Timer Management

+ Timer wheel

0 —— Pointer to list of timers for T + 12

«—— Current time, T

olo|lo|o|o|o

—— Pointer to list of timers for T + 3

o
olo|lo|lo|o|o

14 —— Pointer to list of timers for T + 10

Gigabit Networks Transfer 1 MB flle over 4000 km
line

Sequence number wraparound

Communication speeds are improving faster

than processor speeds

Go back n is bad when bandwidth-delay

product is large

Gigabit lines are delay limited rather than

bandwidth limited (see graph)

Variance may be more important than

bandwidth e

1000 sec (—

100 sec —

10 sec —

1 sec—

File transfer time

100 msec [—

10 msec —

10% 10t 105 10® 107 10% 10?7 10" 10" 10%2
Data rate (bps)

Design for speed, not bandwidth optimization

