Chapter 2: The Physical Layer Computer Networks

Maccabe

Computer Science Department The University of New Mexico

August 2002

Topics

- Theoretical Foundations
- Guided Transmission
- Wireless Transmission
- Communication Satellites
- Public Switched Telephone Network
- Mobile Telephone System
- Cable Television

Theoretical Foundations

Fourier Analysis

Bandwidth-Limited Signals

The Maximum Data Rate of a Channel

Fourier Analysis

■ Any well behaved periodic function, g(t), with period T can be expressed as:

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

Fundamental frequency

$$f = \frac{1}{T}$$

each (collective) term is called a harmonic

Fourier Analysis (2)

Solving for a_n , b_n , and c

$$a_n = \frac{2}{T} \int_0^T g(t) \sin(2\pi n f t) dt$$

$$b_n = \frac{2}{T} \int_0^T g(t) \cos(2\pi n f t) dt$$

$$c = \frac{2}{T} \int_0^T g(t) dt$$

Example: Sending "b"

pretend that the pattern repeats:

$$a_n = \frac{1}{\pi n} [\cos(\pi n/4) - \cos(3\pi n/4) + \cos(6\pi n/4) - \cos(7\pi n/4)]$$

$$b_n = \frac{1}{\pi n} [\sin(3\pi n/4) - \sin(\pi n/4) + \sin(7\pi n/4) - \sin(6\pi n/4)]$$

$$c = 3/4$$

Sending "b" – One Harmonic

Sending "b" – Two Harmonics

Sending "b" – Four Harmonics

Sending "b" - Eight Harmonics

Bandwidth-Limited Signals

- Bandwidth range of frequencies transmitted without significant power loss
- Distortion different Fourier components may be diminished at different rates
- Frequency of the highest harmonic
 - Desired bit rate of b bits/sec (e.g., 2400 bps)
 - T = 8/b sec (e.g., 3.33 milliseconds)
 - highest harmonic = 1/T or 1/(8/b) Hz (e.g., 1/(8/2400) = 300Hz)
- Voice-grade line filter at about 3100Hz limits bps to 24,800

Data Rates and Harmonics

		First	# Harmonics
Bps	T(msec)	Harmonic (Hz)	Sent
300	26.67	37	80
600	13.33	75	40
1200	6.67	150	20
2400	3.33	300	10
4800	1.67	600	5
9600	0.83	1200	2
19200	0.42	2400	1
38400	0.21	4800	0

Maximum Data Rate of a Channel

- Nyquist, 1924: noiseless channel
 - low-pass filter of bandwidth H
 - signal can be reconstructed using 2H samples per second
 - Nyquist's theorem: maximum data rate = $2H \log_2 V$ bps (V is the number of discrete levels)
- Shannon, 1948: random (thermodynamic) noise
 - \blacksquare signal-to-noise ratio S/N
 - \blacksquare decibel: $10\log_{10} S/N$
 - Shannon's theorem: $\max = H \log_2(1 + S/N)$ bps
 - 3000-Hz, 30 dB implies 30,000 bps

Topics

- Theoretical Foundations
- Guided Transmission
- Wireless Transmission
- Communication Satellites
- Public Switched Telephone Network
- Mobile Telephone System
- Cable Television

Magnetic Media

Sneaker Net

Great bandwidth, poor latency

UTP (Unshielded Twisted Pair)

- waves from different twists cancel
- more twists per centimeter
 - less crosstalk
 - better quality over longer distance
- Categories

_	Category	Bandwidth	
	3	16 MHz	
	5	100 MHz	
	6	250 MHz	
	7	600 MHz	
>		000000000	60000
	(a)	(b)	

Coax (Coaxial Cable)

1 GHz Bandwidth for modern cables

Fiber Optics

- Rant about growth rates
- Basics
- Transmission of light
- Fiber Cables
- Fiber Optic Networks
- Fiber and Copper

Growth Rates, an aside Or, you think you have it good

Computing

- 1981: 4.77 MHz (original IBM PC)
- 2001: 2 GHz
- 20x / decade!

Communication

- 1981: 56 kbps (ARPANET)
- 2001: 1 Gbps
- 125x / decade!!!
- Lies, damn lies, and statistics . . .
 - Communication has just become commodity
 - Parallel computing is the answer to the limit

Basics

- light source, transmission medium, detector
- refraction and reflection

- single-mode (wave guide): one wavelength of light
- multi-mode: multiple wavelengths

Transmission of Light

Attenuation in decibels = $10\log_{10}$

transmitted power received power

chromatic dispersion

- lower the signalling rate
- shaped pulses (solitons)

Fiber Cables

Structure

- core: 8–10 microns
- cladding: keep light in the core
- jacket: protects cladding

Connecting cables

- Fiber sockets (10-20% loss)
- Mechanical splices (10% loss)
- Fused splices (minimal loss)

Fiber Cables – LEDs and Semiconductor Lasers

Item	LED	Laser
Data rate	Low	High
Fiber type	Multimode	Multimode or
		single mode
Distance	Short	Long
Lifetime	Long	Short
Temp sensitivity	Minor	Substantial
Cost	Low	High

Fiber Optic Networks

Fiber taps are not so easy

passive and active taps

Fiber Optic Networks–Star Network

Fiber and Copper

Advantages of fiber

- higher bandwidth
- fewer repeaters
- lighter
- thiner
- more secure (doesn't leak and is harder to tap)

Disadvantages

- new technology
- one-way communication
- interfaces are more expensive

Topics

- Theoretical Foundations
- Guided Transmission
- Wireless Transmission
- Communication Satellites
- Public Switched Telephone Network
- Mobile Telephone System
- Cable Television

Electromagnetic Spectrum

Wide band

Most transmission use a narrow frequency band to optimize reception

- Frequency hopping spread spectrum
 - change frequencies hundreds of times per second
 - security
 - avoids multipath fading
- Direct sequence spread spectrum
 - spread the signal over a wide frequency band
 - used in cell phones

Radio Waves

Low frequency

- low bandwidth
- penetrate buildings
- follow curvature of earth
- omnidirectional

Higher frequencies

- bad for life forms
- straight line
- bounce off of obstacles
- absorbed by rain

Radio Transmission

Politics

beauty contest

■ ISM: Industrial, Scientific, Medical

Others

- Infared doesn't penetrate walls
- Lightwave
 - old light signals
 - lasers

Topics

- Theoretical Foundations
- Guided Transmission
- Wireless Transmission
- Communication Satellites
- Public Switched Telephone Network
- Mobile Telephone System
- Cable Television

Topics

- Theoretical Foundations
- Guided Transmission
- Wireless Transmission
- Communication Satellites
- Public Switched Telephone Network
- Mobile Telephone System
- Cable Television

Public Switched Telephone Network

- Structure
- Politics (skip)
- The Local Loop
- Trunks and Multiplexing
- Switching

Network Structure

- minimize number of wires
- add multiple levels

Typical Circuit

- local loops
- trunks
- switching offices

The Local Loop

■ Modems

■ (A)DSL

■ Wireless

Modems

- Analog and digital transmission
- Sine wave carrier
- Baud
- Phase shift keying
- Limits

Analog and Digital Transmission

- modem modulator, demodulator
- codec coder, decoder

Modems – Sine Wave Carrier

(a) binary, (b) AM, (c) FM, (d) phase modulation

Baud and Symbols

- Baud rate is the sampling rate
- Baud is the time to read one symbol
- When the number of symbols is 2, the baud rate is the bit rate

Modern modems use large sets of symbols

Quadrature Phase Shift Keying

- Constellation diagrams
- Amplitude (distance from origin)
- Phase
- QAM: Quadrature Amplitude Modulation

Trellis Coded Modulation

- add bits for error correction
- V.32: 32 constellation points, 4 data bits, 1 parity bit
- V.32bis: 6 data bits, 1 parity bit

Limits

■ Base sampling rate – 2400 baud

Standard	Data bits	bps
V.32	4	9600
V.32bis	6	14,400
V.34	12	28,800
V.34bis	14	33,600

Variations

- handshake to determine line quality
- compression
- 35 kbps is the Shannon limit, 56 kbps?
 - eliminate one local loop
 - V.90 56-kbps down stream, 33-kbps upstream
 - V.92 48-kbps down stream, 48-kbps upstream

DSL: Digital Subscriber Line

- Remove the filters
- Bandwidth

Goals

- use existing Cat-3 lines
- not interfere with current phone uses
- always on
- much better than 56kbps

Techniques

- POTS (Plain Old Telephone Service) Frequency Multiplexing
- DMT (Discrete MultiTone)

DSL Equipment

- NID: Network Interface Device
- ADSL Modem: 250 QAM modems
- DSLAM: Digital Subscriber Line Access Multiplexer

Wireless Local Loop

- IEEE 802.16 (Broadband wireless)
- 36Gbps down 1 Gbs up
- Put the ISP on Sandia crest
 - good line of sight
 - no rain or tree leaves!

Trunks and Multiplexing

- Frequency division multiplexing
- Wavelength division multiplexing
- Time division multiplexing
 - aside on compression

SONET

Frequency Division Multiplexing

(a) 3 signals, (b) 3 frequency shifted signals, (c) combined signal

Wavelength Division Multiplexing

FDM for optical

Time Division Multiplexing (T1)

- codec 8000 samples / second (4000 Hz signals)
- $125 \mu sec / sample$
- PCM (Pulse Coded Modulation)
- codec is multiplexed between 24 analog lines
- **each** analog line inserts 8 bits every 125 μ sec
- $\sim 7 \times 8000 = 56,000$ bps / channel
- 1.544 Mbps aggregate

Framing

- Framing bit is used to recover the sender's clock
- The framing bit is 0101010101010....
- I.e., 4000 Hz
- Filtered for analog customer (3100 Hz filter)
- Not likely for digital customers

Multiple T1s

- Bitwise multiplexing
- 4 to 1; 7 to 1; and 6 to 1
- Overhead added at each step for framing and recovery
- T2 and T4 are only used inside the phone company

Compression

- differential modulation (send change to value, rather than value)
- delta modulation (shown) +1 or -1
- predictive encoding: extrapolate from earlier values and then send the change to this extrapolation

SONET NETwork)

(Synchronous

Optical

- STS-1 Synchronous Transport Signal-1
- SPE Synchronous Payload Envelope

SONET Rates

SON	ET	SDH	Data rate (Mbps)		
Electrical	Optical	Optical	Gross	SPE	User
STS-1	OC-1		51.84	50.112	49.536
STS-3	OC-3	STM-1	155.52	150.336	148.608
STS-9	OC-9	STM-3	466.56	451.008	445.824
STS-12	OC-12	STM-4	622.08	601.344	594.432
STS-18	OC-18	STM-6	933.12	902.016	891.648
STS-24	OC-24	STM-8	1244.16	1202.688	1188.864
STS-36	OC-36	STM-12	1866.24	1804.032	1783.296
STS-48	OC-48	STM-16	2488.32	2405.376	2377.728
STS-192	OC-192	STM-64	9953.28	9621.504	9510.912

- Gross signalling rate
- SPE excludes line and selection overhead
- User excludes path overhead

Switching

(a) circuit switched, (b) packet switched

Message Switching

(a) circuit, (b) message, and (c) packet switching store-and-forward

Packet v Circuit Switching

Item	Circuit switched	Packet switched	
Call setup	Required	Not needed	
Dedicated physical path	Yes	No	
Each packet follows the same route	Yes	No	
Packets arrive in order	Yes	No	
Is a switch crash fatal	Yes	No	
Bandwidth available	Fixed	Dynamic	
Time of possible congestion	At setup time	On every packet	
Potentially wasted bandwidth	Yes	No	
Store-and-forward transmission	No	Yes	
Transparency	Yes	No	
Charging	Per minute	Per packet	

Topics

- Theoretical Foundations
- Guided Transmission
- Wireless Transmission
- Communication Satellites
- Public Switched Telephone Network
- Mobile Telephone System
- Cable Television

Mobile Telephone System

■ First-Generation: Analog Voice

Second-Generation: Digital Voice (skip)

Third-Generation: Digital Voice and Data (skip)

History

- Push-to-talk 1946
- Improved Mobile Telephone System (IMTS) 1960
 - still hilltop transmission
 - 23 channels individual conversations
 - 2 frequencies send and receive
- Advanced Mobile Phone System (AMPS) 1982
 - cells
 - typically 10-20 km across

Cells

- Frequency sets have a buffer of two cells
- Micro-cells are added to respond to more users
- Temporary micro-cells for events

Mobility

- MTSO Mobile Telephone Switching Office
- AKA, MSC Mobile Switching Center
- At any time each phone is in one cell
- Switching center controls handoff
- Handof takes about 300msec
- Hard handoff connection gets dropped

More Details: Channels

- 832 full duplex channels
- Each channel is 30 kHz wide (frequency division multiplexing)
- Transmission channels 824–849 MHz
- Receive channels 869–894 MHz
- Signal properties:
 - straight (requires line of sight)
 - bounce off buildings and ground (multipath fading)
 - absorbed by plants
- 21 channels reserved for control
- 45 voice channels (to avoid re-using channels used in nearby cells)

More Details: Call Management

- 32-bit serial number
- 10-digit phone number (encoded in 34 bits)
- Startup sequence
 - Scan 21 channels to find strongest base station
 - Broadcast serial number and phone number
 - Base station reports to MTSO
 - Phone re-registers about every 15 minutes
- On "send" phone send number and identifier (retransmit on collision)
- Idle phones listen for pages, when an incoming call is accepted, the phone switches to the appropriate channel

Topics

- Theoretical Foundations
- Guided Transmission
- Wireless Transmission
- Communication Satellites
- Public Switched Telephone Network
- Mobile Telephone System
- Cable Television

Community Antenna

Internet over Cable

Spectrum Allocation

- Downstream analog
 - Each channel is 6 MHz
 - With QAM-64 we get 6×6 Mbps (or 27 Mbps without overhead)
- Upstream uses QSPK, only 2 bits per baud

Cable Modems

Initialization

- upstream and downstream channels
- minislot (about 8 bytes) for requesting bandwidth
- ringing to determine distance from head-end
- Contention for upstream
- All data packets are encrypted