A 3-basis for orthomodular lattices in terms of the Sheffer stroke.
f(x,f(f(y,z),f(y,z))) = f(y,f(f(x,z),f(x,z))). % A_SS
f(f(x,x),f(x,y)) = x. % B_SS
f(x,f(x,f(x,y))) = f(x,y). % OM_SS
These two Otter jobs show that this basis is definitionally equivalent
to the (join/meet/complement) OML basis { AJ, B1, DM, OM }.
otter < OML-SS.in > OML-SS.out
otter < OML-SS-2.in > OML-SS-2.out
These three Mace2 jobs show that { A_SS, B_SS, OM_SS } is independent.
mace2 -N6 -p < OML-SS-a.in > OML-SS-a.out
mace2 -N6 -p < OML-SS-b.in > OML-SS-b.out
mace2 -N6 -p < OML-SS-c.in > OML-SS-c.out