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Abstract

In this paper we give several new lattice identities valid in non-modular
lattices such that a uniquely complemented lattice satisfying any of these
identities is necessarily Boolean. Since some of these identities are conse-
quences of modularity as well, these results generalize the classical result
of Birkhoff and von Neumann that every uniquely complemented modular
lattice is Boolean. In particular, every uniquely complemented lattice in
M ∨ N5, the least non-modular variety, is Boolean.
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1 Introduction

In 1904 Huntington [4] conjectured that every uniquely complemented lattice
must be distributive (and hence a Boolean algebra). In 1945, R. P. Dilworth
shattered this conjecture by proving [2] that every lattice can be embedded in a
uniquely complemented lattice. For a much powerful version of the same results,
see Adams and Sichler [1].

In spite of these deep results, still it is hard to find ”nice” examples of
uniquely complemented lattices that are not Boolean. This is because uniquely
complemented lattices having a little extra structure most often turn out to
be distributive. This seems to be the essence of Huntington’s conjecture. For
example, we have the theorem of Garrett Birkhoff and von Neumann that every
uniquely complemented modular lattice is Boolean. Following [8], we call a lat-
tice property P a Huntington property if every uniquely complemented P -lattice
is distributive. Similarly, a lattice variety K is said to be a Huntington variety
if every uniquely complemented lattice in K is Boolean. In this terminology, the
modular lattices are the largest known Huntington variety. A monograph by
Salii [11] gives a comprehensive survey of known Huntington properties. Among
these, modularity is the only known condition which is a lattice identity. In this
paper, we give a number of new non-modular Huntington varieties and any of
them could be construed as a generalization of von Neumann-Birkhoff theorem.

The automated theorem provers Otter [5] and Prover9 [7], and the program
Mace4 [6], which searches for finite algebras, were used in this work. Several au-
tomated proofs are given in an appendix to this paper. The Web page associated
with this paper [10] contains additional Huntington identities and automated
proofs supporting this work.

2 A Non-modular Huntington Variety

Here we give a lattice identity that defines a non-modular Huntington variety.
Several others are given in the following sections and in the supporting Web
page [10].

Theorem 1. The variety of lattices defined by

(x ∧ (y ∨ (x ∧ z))) ∨ (x ∧ (z ∨ (x ∧ y))) = x ∧ (z ∨ y) (H69)

is a non-modular Huntington variety.

Proof. We show that the condition a ∧ b′ = 0 forces the inequality a ≤ b and
hence by a well-known theorem of O. Frink [9], the lattice will necessarily be
Boolean. Indeed, let a ∧ b′ = 0 for some two elements a, b in a uniquely
complemented lattice satisfying the identity

(x ∧ (y ∨ (x ∧ z))) ∨ (x ∧ (z ∨ (x ∧ y))) = x ∧ (z ∨ y).

Put z = x′ in the above to get

(x ∧ y) ∨ (x ∧ (x′ ∨ (x ∧ y))) = x ∧ (x′ ∨ y).
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Now let x = b′, y = a. We have

(b′ ∧ a) ∨ (b′ ∧ (b ∨ (b′ ∧ a))) = b′ ∧ (b ∨ a).

So if we assume that a∧ b′ = 0, then we get b′ ∧ (b∨ a) = 0. Also, b′ ∨ (b∨ a) =
(b′ ∨ b) ∨ a = 1 ∨ a = 1. Thus both b and b ∨ a are complements of the element
b′. Since the lattice is uniquely complemented, we get the desired conclusion
b ∨ a = b. In other words, we have proved that the given lattice satisfies the
bi-implication a ≤ b if and only if a∧ b′ = 0 and hence, by Frink’s theorem, the
lattice is distributive.

3 Huntington Implications

Here we show Huntington properties that are implications. These can be used,
among other purposes, to show that lattice identities are Huntington.

Theorem 2. (See [8].) A uniquely complemented lattice satisfying any one of
the following three implications (or their duals) is distributive.

x ∨ y = x ∨ z ⇒ x ∨ y = x ∨ (y ∧ z) (SD-∨)

x ∨ y = x ∨ z ⇒ (x ∧ y) ∨ (x ∧ z) = x ∧ (y ∨ z) (CD-∨)

x ∨ y = x ∨ z ⇒ x ∧ ((x ∧ y) ∨ z) = (x ∧ y) ∨ (x ∧ z) (CM-∨)

A proof of (CD-∨) is given in the appendix. Proofs of the other two cases
are given on the supporting Web page [10].

Corollary 1. A uniquely complemented lattice satisfying the identity

x ∧ ((y ∧ (x ∨ z)) ∨ (z ∧ (x ∨ y))) = (x ∧ y) ∨ (x ∧ z) (H82)

is Huntington.

Proof. It is easy to see that (H82) implies the lattice implication (CD-∨). In-
deed, if

x ∨ y = x ∨ z,

then

(x ∧ y) ∨ (x ∧ z) = x ∧ ((y ∧ (x ∨ z)) ∨ (z ∧ (xvy))) by (H82)

= x ∧ ((y ∧ (x ∨ y)) ∨ (z ∧ (x ∨ z))) by hypothesis

= x ∧ (y ∨ z)

As the reader can see, the identity (H82) is designed to show that there
are lattice identities which formally imply such implications. Using powerful
concepts like the bounded homomorphisms of Ralph McKenzie, one could show
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that there many lattice identities like (H82) which formally imply (SD-∨), (SD-
∧), (CD-∨), etc. In fact, every finite lattice satisfying (SD-∨) or (SD-∧) will
satisfy a lattice identity which formally implies the respective implication and
all these identities are examples of non-modular Huntington identities (for more
details, please see [8]).

Table 1 lists several Huntington identities justified by the preceding Hunt-
ington implications. Proofs can be found on the supporting Web page [10].
None of the identities are equivalent (given lattice theory).

Name Identity Reason
H18 (x ∧ y) ∨ (x ∧ z) = x ∧ ((x ∧ y) ∨ ((x ∧ z) ∨ (y ∧ (x ∨ z)))) CM-∨
H50 x ∧ (y ∨ (z ∧ (x ∨ u))) = x ∧ (y ∨ (z ∧ (x ∨ (z ∧ (y ∨ u))))) SD-∨
H51 x ∧ (y ∨ (z ∧ (x ∨ u))) = x ∧ (y ∨ ((x ∧ z) ∨ (z ∧ u))) SD-∨
H64 x ∧ (y ∨ z) = x ∧ (y ∨ (x ∧ (z ∨ (x ∧ (y ∨ (x ∧ z)))))) SD-∧
H68 x ∧ (y ∨ z) = x ∧ (y ∨ (x ∧ (z ∨ (x ∧ y)))) SD-∧
H69 x ∧ (y ∨ z) = (x ∧ (z ∨ (x ∧ y))) ∨ (x ∧ (y ∨ (x ∧ z))) SD-∧
H76 x ∧ (y ∨ (z ∧ (y ∨ u))) = x ∧ (y ∨ (z ∧ (u ∨ (x ∧ y)))) SD-∨, SD-∧
H79 x ∧ (y ∨ (z ∧ (x ∨ u))) = x ∧ ((x ∧ (y ∨ (x ∧ z))) ∨ (z ∧ u)) SD-∨, SD-∧
H80 (x ∧ y) ∨ (x ∧ z) = x ∧ ((x ∧ y) ∨ (z ∧ (x ∨ (y ∧ (x ∨ z))))) CM-∨
H82 (x ∧ y) ∨ (x ∧ z) = x ∧ ((y ∧ (x ∨ z)) ∨ (z ∧ (x ∨ y))) CD-∨, CM-∨

Table 1: Huntington Identities Justified by Huntington Implications

4 More Huntington Identities

This section contains several non-modular Huntington identities that do not
satisfy the Huntington implications (SD-∨), (CD-∨), (CM-∨), or their duals.

Theorem 3. The variety of lattices defined by

x ∧ (y ∨ z) = x ∧ (y ∨ ((x ∨ y) ∧ (z ∨ (x ∧ y)))) (H58)

is a non-modular Huntington variety.

Proof. (The automatic proof from which this proof was derived is given in the
Appendix.) We show that any uniquely complemented lattice satisfying (H58)
also satisfies the order reversibility property a ≤ b ⇒ b′ ≤ a′. Assume a ≤ b andRP: do we need a

reference that the

order reversibility

property is suffi-

cient?

therefore a ∧ b′ = 0. In (H58) set x = a, y = b, z = (a ∧ b′)′ and then simplify,
giving

a ∧ (b′ ∨ (a ∨ b′)′) = 0.

Then unique complementation gives b′ ∨ (a∨ b′)′ = a′ and therefore b′ ≤ a′.

Additional Huntington identities not satisfying the Huntington implications
are shown in the following list. Automated proofs are given on the supporting
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Web page [10].

x ∧ (y ∨ (z ∧ (x ∨ u))) = x ∧ (y ∨ (z ∧ (x ∨ (z ∧ u)))) (H1)

x ∧ (y ∨ (x ∧ z)) = x ∧ (y ∨ (z ∧ ((x ∧ (y ∨ z)) ∨ (y ∧ z)))) (H2)

x ∧ (y ∨ (x ∧ z)) = x ∧ (y ∨ (z ∧ (y ∨ (x ∧ (z ∨ (x ∧ y)))))) (H3)

x ∨ (y ∧ (x ∨ z)) = x ∨ (y ∧ (z ∨ (x ∧ (z ∨ y)))) (H55)

x ∧ (y ∨ z) = x ∧ (y ∨ ((x ∨ y) ∧ (z ∨ (x ∧ y)))) (H58)
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Appendix

Covers of N5
We should

include some

introduction to

these lattices.

L1 L2 L3 L4

L6 L7 L8
L5

L11 L12L9 L10

13L L15L14

Figure 1: All Covers of the Least Non-Modular Lattice N5

M 3 N 5 NM08

Figure 2: Lattices M3, N5, NM08
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(H1) 1 2 7 10 11 13 14 15 N5

(H2) 1 4 6 7 8 9 10 11 12 13 14 15 M3 N5 NM08
(H3) 1 4 6 7 8 9 10 11 12 13 14 15 M3 N5 NM08
(H18) 1 4 6 7 9 10 11 13 15 M3 N5 NM08
(H50) 1 6 7 9 10 11 13 14 15 N5

(H51) 1 7 10 11 13 14 15 N5

(H55) 2 5 6 7 8 9 10 12 13 14 15 M3 N5 NM08
(H58) 2 5 6 7 8 9 10 12 13 14 15 M3 N5 NM08
(H64) 2 6 7 8 9 10 11 12 13 14 15 N5

(H68) 2 6 7 8 9 10 12 13 14 15 N5

(H69) 2 6 7 8 9 10 12 13 14 15 N5

(H76) 6 7 8 9 10 13 14 15 N5

(H79) 7 10 13 14 15 N5

(H80) 1 3 4 6 7 8 9 10 11 13 15 M3 N5 NM08
(H82) 1 4 6 7 9 10 11 13 15 N5

Table 2: Lattices (L1 – L15, M3, N5, NM08) for which the Identities Hold

Proof of Theorem 2, Part CD-∨

This proof was produced by the program Prover9 [7]. The input and output
files can be found on the supporting Web page [10].

13 x ∨ y = y ∨ x [input]
14 x ∧ y = y ∧ x [input]
15 (x ∨ y) ∨ z = x ∨ (y ∨ z) [input]
16 (x ∧ y) ∧ z = x ∧ (y ∧ z) [input]
17 x ∧ (x ∨ y) = x [input]
18 x ∨ (x ∧ y) = x [input]
19 x ∨ x′ = 1 [input]
20 x ∧ x′ = 0 [input]
21 x ∨ y 6= 1 | x ∧ y 6= 0 | x′ = y [input]
22 A ∧ B = A [input]
23 A′ ∨ B′ 6= A′ [input]
24 x ∨ y 6= x ∨ z | x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) [input]
26 x ∧ (y ∧ z) = y ∧ (x ∧ z) [14 → 16; 16]
32 x ∨ ((x ∧ y) ∨ z) = x ∨ z [18 → 15]
37 x ∨ (x′ ∨ y) = 1 ∨ y [19 → 15]
39 x ∧ 1 = x [19 → 17]
42 x ∨ 0 = x [20 → 18]
43 A ∧ (B ∧ x) = A ∧ x [22 → 16]
51 x ∨ y 6= 1 | x ∧ (y ∨ x′) = 0 ∨ (x ∧ y) [19 → 24; 20 13]
60 1 ∧ x = x [39 → 14]
66 0 ∨ x = x [42 → 13]
69 x ∨ y 6= 1 | x ∧ (y ∨ x′) = x ∧ y [51; 66]
72 1 ∨ x = 1 [60 → 17]
73 x ∨ (x′ ∨ y) = 1 [37; 72]
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75 0 ∧ x = 0 [66 → 17]
79 x ∧ (y ∧ x′) = y ∧ 0 [20 → 26]
81 x ∨ 1 = 1 [72 → 13]
83 x ∧ 0 = 0 [75 → 14]
84 x ∧ (y ∧ x′) = 0 [79; 83]
103 A ∧ (A′ ∨ B′) 6= 0 [21 a 73 a c 23 a]
170 x ∨ (x ∧ y)′ = 1 [19 → 32; 81]
185 x ∨ (y ∧ x)′ = 1 [14 → 170]
194 B ∨ A′ = 1 [22 → 185]
891 B ∧ (A′ ∨ B′) = B ∧ A′ [69 a 194 a]
5852 A ∧ (A′ ∨ B′) = 0 [891 → 43; 84]
5853 � [5852 a 103 a]

Proof of Theorem 3

This proof was produced by the program Prover9 [7]. The input and output
files can be found on the supporting Web page [10].

29 x ∨ y = y ∨ x [input]
37 x ∨ (y ∧ x) = x [input]
38 x ∨ (x ∨ y) = x ∨ y [input]
40 x ∧ x′ = 0 [input]
47 x ∨ 0 = x [input]
48 0 ∨ x = x [input]
49 x ∨ y 6= 1 | x ∧ y 6= 0 | x′ = y [input]
50 x ∧ (x ∨ y)′ = 0 [input]
51 x ∨ (y ∨ (x ∨ y)′) = 1 [input]
52 x ∧ (y ∨ ((x ∨ y) ∧ (z ∨ (x ∧ y)))) = x ∧ (y ∨ z) [input]
53 A ∧ B = A [input]
54 A′ ∨ B′ 6= A′ [input]
103 A ∨ B = B [53 → 37; 29]
107 A ∧ B′ = 0 [103 → 50]
109 A ∧ (B′ ∨ ((A ∨ B′) ∧ x)) = A ∧ (B′ ∨ x) [107 → 52; 47]
2392 A ∧ (B′ ∨ (A ∨ B′)′) = 0 [40 → 109; 29 48 107]
2439 B′ ∨ (A ∨ B′)′ = A′ [49 a 51 a b 2392 a]
2481 A′ ∨ B′ = A′ [2439 → 38; 29 2439]
2482 � [2481 a 54 a]
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