The problem domain

Wireless sensor networks:
- Network of small resource-constrained devices.
- Monitor their environment.
- Limited radio range dictates a hop-by-hop routing topology.

Data aggregation:
- Nodes process, combine, or filter data to conserve bandwidth.
- We assume a standard tree like routing topology, e.g. the collection tree protocol.
Wireless sensor networks:

- Monitor their environment.
- Limited radio range dictates a hop-by-hop routing topology.
- Nodes process, combine, or filter data to conserve bandwidth.
- We assume a standard tree like routing topology, e.g., the collection tree protocol.

Image from http://monet.postech.ac.kr/research.html
Wireless sensor networks:
- Network of small resource-constrained devices.

Image from http://monet.postech.ac.kr/research.html
Wireless sensor networks:
- Network of small resource-constrained devices.
- Monitor their environment.
The problem domain

Wireless sensor networks:
- Network of small resource-constrained devices.
- Monitor their environment.
- Limited radio range dictates a hop-by-hop routing topology.

Image from http://monet.postech.ac.kr/research.html
The problem domain

Wireless sensor networks:
- Network of small resource-constrained devices.
- Monitor their environment.
- Limited radio range dictates a hop-by-hop routing topology.

Data aggregation:
Wireless sensor networks:
- Network of small resource-constrained devices.
- Monitor their environment.
- Limited radio range dictates a hop-by-hop routing topology.

Data aggregation:
- Nodes process, combine, or filter data to conserve bandwidth.

Image from http://sing.stanford.edu/gnawali/ctp/
Wireless sensor networks:
- Network of small resource-constrained devices.
- Monitor their environment.
- Limited radio range dictates a hop-by-hop routing topology.

Data aggregation:
- Nodes process, combine, or filter data to conserve bandwidth.
- We assume a standard tree like routing topology, e.g. the collection tree protocol.
Key challenges with sensitive data

Privacy:
Data aggregation: more complicated with sensitive data.
We want the nodes to aggregate data.
But we do not want them to know what those data are.

Power and energy:
Limited amount of power available.
Standard encryption is expensive (computationally, memory, and energy).
TinySec-AE adds about a 10% increase in energy consumption.

Delay:
Nodes need to encrypt a byte in the time to transmit a byte.

Key challenges with sensitive data

- **Privacy:**

 - Data aggregation: more complicated with sensitive data.
 - We want the nodes to aggregate data.
 - But we do not want them to know what those data are.

- **Power and energy:**
 - Limited amount of power available.
 - Standard encryption is expensive (computationally, memory, and energy).
 - TinySec-AE adds about a 10% increase in energy consumption.

- **Delay:**
 - Nodes need to encrypt a byte in the time to transmit a byte.

Privacy:
- Data aggregation: more complicated with sensitive data.
Key challenges with sensitive data

- **Privacy:**
 - Data aggregation: more complicated with sensitive data.
 - We want the nodes to aggregate data.

Key challenges with sensitive data

Privacy:
- Data aggregation: more complicated with sensitive data.
- We want the nodes to aggregate data.
- But we do not want them to know what those data are.
Key challenges with sensitive data

- **Privacy:**
 - Data aggregation: more complicated with sensitive data.
 - We want the nodes to aggregate data.
 - But we do not want them to know what those data are.

- **Power and energy:**

Image from http://www.freewebs.com/chris343/
Key challenges with sensitive data

- **Privacy:**
 - Data aggregation: more complicated with sensitive data.
 - We want the nodes to aggregate data.
 - But we do not want them to know what those data are.

- **Power and energy:**
 - Limited amount of power available.

Image from http://www.freewebs.com/chris343/
Key challenges with sensitive data

- **Privacy:**
 - Data aggregation: more complicated with sensitive data.
 - We want the nodes to aggregate data.
 - But we do not want them to know what those data are.

- **Power and energy:**
 - Limited amount of power available.
 - Standard encryption is expensive (computationally, memory, and energy).

Image from
http://www.freewebs.com/chris343/
Key challenges with sensitive data

- **Privacy:**
 - Data aggregation: more complicated with sensitive data.
 - We want the nodes to aggregate data.
 - But we do not want them to know what those data are.

- **Power and energy:**
 - Limited amount of power available.
 - Standard encryption is expensive (computationally, memory, and energy).
 - TinySec-AE adds about a 10% increase in energy consumption\(^1\).

Image from http://www.freewebs.com/chris343/
Key challenges with sensitive data

- Privacy:
 - Data aggregation: more complicated with sensitive data.
 - We want the nodes to aggregate data.
 - But we do not want them to know what those data are.

- Power and energy:
 - Limited amount of power available.
 - Standard encryption is expensive (computationally, memory, and energy).
 - TinySec-AE adds about a 10% increase in energy consumption.¹

- Delay:

Key challenges with sensitive data

Privacy:
- Data aggregation: more complicated with sensitive data.
- We want the nodes to aggregate data.
- But we do not want them to know what those data are.

Power and energy:
- Limited amount of power available.
- Standard encryption is expensive (computationally, memory, and energy).
- TinySec-AE adds about a 10% increase in energy consumption\(^1\).

Delay:
- Nodes need to encrypt a byte in the time to transmit a byte.
Key challenges with sensitive data

- **Privacy:**
 - Data aggregation: more complicated with sensitive data.
 - We want the nodes to aggregate data.
 - But we do not want them to know what those data are.

- **Power and energy:**
 - Limited amount of power available.
 - Standard encryption is expensive (computationally, memory, and energy).
 - TinySec-AE adds about a 10% increase in energy consumption\(^1\).

- **Delay:**
 - Nodes need to encrypt a byte in the time to transmit a byte.

Addressing these challenges, KIPDA: k-Indistinguishable Privacy-preserving Data Aggregation

Aggregates are anonymized among camouflage data in a message set. The values in certain positions in the message set obey special properties. These positions are divided into restricted and unrestricted sets (and vary between nodes). Because aggregates are not encrypted, aggregation can easily take place. Sensitive values are indistinguishable from the camouflage values.

Definition: An item is indistinguishable from a set of items if an adversary cannot do better than guessing the item from the set.

For non-linear functions such as MAX/MIN (can be extended to SUM). We can not use algebraic properties of polynomials. Homomorphic encryption does not work. Perturbation techniques are not applicable.
Addressing these challenges, KIPDA

KIPDA: k-Indistinguishable Privacy-preserving Data Aggregation:

Aggregates are anonymized among camouflage data in a message set. The values in certain positions in the message set obey special properties. These positions are divided into restricted and unrestricted sets (and vary between nodes). Because aggregates are not encrypted, aggregation can easily take place. Sensitive values are indistinguishable from the camouflage values.

Definition: An item is indistinguishable from a set of items if an adversary cannot do better than guessing the item from the set.

For non-linear functions such as MAX/MIN (can be extended to SUM), we cannot use algebraic properties of polynomials. Homomorphic encryption does not work. Perturbation techniques are not applicable.
Addressing these challenges, KIPDA

KIPDA: \(\text{k-Indistinguishable Privacy-preserving Data Aggregation:} \)

- Aggregates are anonymized among camouflage data in a *message set.*
Addressing these challenges, KIPDA

KIPDA: \textit{k-Indistinguishable Privacy-preserving Data Aggregation}:

- Aggregates are anonymized among camouflage data in a \textit{message set}.
- The values in certain positions in the message set obey special properties.
Addressing these challenges, KIPDA

KIPDA: k-Indistinguishable Privacy-preserving Data Aggregation:

- Aggregates are anonymized among camouflage data in a *message set*.
- The values in certain positions in the message set obey special properties.
- These positions are divided into *restricted* and *unrestricted sets* (and vary between nodes).

Definition: An item is *indistinguishable* from a set of items if an adversary cannot do better than guessing the item from the set.

For non-linear functions such as MAX/MIN (can be extended to SUM).

We cannot use algebraic properties of polynomials.

Homomorphic encryption does not work.

Perturbation techniques are not applicable.
Addressing these challenges, KIPDA

KIPDA: k-Indistinguishable Privacy-preserving Data Aggregation:
- Aggregates are anonymized among camouflage data in a *message set*.
- The values in certain positions in the message set obey special properties.
- These positions are divided into *restricted* and *unrestricted sets* (and vary between nodes).
- Because aggregates are not encrypted, aggregation can easily take place.
Addressing these challenges, KIPDA

KIPDA: k-Indistinguishable Privacy-preserving Data Aggregation:

- Aggregates are anonymized among camouflage data in a *message set*.
- The values in certain positions in the message set obey special properties.
- These positions are divided into *restricted* and *unrestricted sets* (and vary between nodes).
- Because aggregates are not encrypted, aggregation can easily take place.
- Sensitive values are *indistinguishable* from the camouflage values.

Definition: An item is *indistinguishable* from a set of items if an adversary cannot do better than guessing the item from the set.

For non-linear functions such as MAX/MIN (can be extended to SUM).

We cannot use algebraic properties of polynomials.

Homomorphic encryption does not work.

Michael M. Groat (University of New Mexico)
Addressing these challenges, KIPDA

KIPDA: k-Indistinguishable Privacy-preserving Data Aggregation:
- Aggregates are anonymized among camouflage data in a *message set*.
- The values in certain positions in the message set obey special properties.
- These positions are divided into *restricted* and *unrestricted sets* (and vary between nodes).
- Because aggregates are not encrypted, aggregation can easily take place.
- Sensitive values are *indistinguishable* from the camouflage values.
 - Definition: An item is *indistinguishable* from a set of items if an adversary cannot do better than guessing the item from the set.

For non-linear functions such as MAX/MIN (can be extended to SUM).

We cannot use algebraic properties of polynomials.

Homomorphic encryption does not work.
Addressing these challenges, KIPDA

KIPDA: \textit{k-Indistinguishable Privacy-preserving Data Aggregation}:

- Aggregates are anonymized among camouflage data in a \textit{message set}.
- The values in certain positions in the message set obey special properties.
- These positions are divided into \textit{restricted} and \textit{unrestricted sets} (and vary between nodes).
- Because aggregates are not encrypted, aggregation can easily take place.
- Sensitive values are \textit{indistinguishable} from the camouflage values.
 - Definition: An item is \textit{indistinguishable} from a set of items if an adversary cannot do better than guessing the item from the set.
- For non-linear functions such as MAX/MIN (can be extended to SUM).
Addressing these challenges, KIPDA

KIPDA: \textit{k-Indistinguishable Privacy-preserving Data Aggregation}:

- Aggregates are anonymized among camouflage data in a \textit{message set}.
- The values in certain positions in the message set obey special properties.
- These positions are divided into \textit{restricted} and \textit{unrestricted sets} (and vary between nodes).
- Because aggregates are not encrypted, aggregation can easily take place.
- Sensitive values are \textit{indistinguishable} from the camouflage values.
 - Definition: An item is \textit{indistinguishable} from a set of items if an adversary cannot do better than guessing the item from the set.
- For non-linear functions such as MAX/MIN (can be extended to SUM).
 - We can not use algebraic properties of polynomials.

Michael M. Groat (University of New Mexico) KIPDA: \textit{k-Indistinguishable Privacy-preserving Data Aggregation} April 13, 2011 4 / 16
Addressing these challenges, KIPDA

KIPDA: \textit{k-Indistinguishable Privacy-preserving Data Aggregation}:

- Aggregates are anonymized among camouflage data in a message set.
- The values in certain positions in the message set obey special properties.
- These positions are divided into \textit{restricted} and \textit{unrestricted sets} (and vary between nodes).
- Because aggregates are not encrypted, aggregation can easily take place.
- Sensitive values are \textit{indistinguishable} from the camouflage values.
 - Definition: An item is \textit{indistinguishable} from a set of items if an adversary cannot do better than guessing the item from the set.
- For non-linear functions such as MAX/MIN (can be extended to SUM).
 - We can not use algebraic properties of polynomials.
 - Homomorphic encryption does not work.
Addressing these challenges, KIPDA

KIPDA: k-Indistinguishable Privacy-preserving Data Aggregation:

- Aggregates are anonymized among camouflage data in a message set.
- The values in certain positions in the message set obey special properties.
- These positions are divided into restricted and unrestricted sets (and vary between nodes).
- Because aggregates are not encrypted, aggregation can easily take place.
- Sensitive values are indistinguishable from the camouflage values.
 - Definition: An item is indistinguishable from a set of items if an adversary cannot do better than guessing the item from the set.
- For non-linear functions such as MAX/MIN (can be extended to SUM).
 - We can not use algebraic properties of polynomials.
 - Homomorphic encryption does not work.
 - Perturbation techniques are not applicable.
KIPDA’s privacy assumptions and threat model

Privacy assumptions:
A datum is \(k \)-indistinguishable from \(k - 1 \) other camouflage data.

Definition: An item is \(k \)-indistinguishable if it cannot be distinguished better than guessing from \(k - 1 \) other items.

A certain level of node collusion or capture is tolerated.

Threat model includes threats from:
- Untrusted eavesdroppers intercepting or listening to packets.
- Honest but curious nodes in between data transit.
- Polynomial time adversaries.

Privacy assumptions:

A datum is k-indistinguishable from $k-1$ other camouflage data. Definition: An item is k-indistinguishable if it cannot be distinguished better than guessing from $k-1$ other items.

A certain level of node collusion or capture is tolerated.

Threat model includes threats from:

- Untrusted eavesdroppers intercepting or listening to packets.
- Honest but curious 1 nodes in between data transit.
- Polynomial time adversaries.
Privacy assumptions:

- A datum is \textit{k-indistinguishable} from \(k - 1 \) other camouflage data.

\textit{Definition:} An item is \textit{k}-indistinguishable if it cannot be distinguished better than guessing from \(k - 1 \) other items.

A certain level of node collusion or capture is tolerated.

Threat model includes threats from:

- Untrusted eavesdroppers intercepting or listening to packets.
- Honest but curious nodes in between data transit.
- Polynomial time adversaries.
KIPDA’s privacy assumptions and threat model

Privacy assumptions:

- A datum is \emph{k-indistinguishable} from \(k - 1 \) other camouflage data.
 - Definition: An item is \(k \)-indistinguishable if it cannot be distinguished better than guessing from \(k - 1 \) other items.

- A certain level of node collusion or capture is tolerated.

Threat model includes threats from:

- Untrusted eavesdroppers intercepting or listening to packets.
- Honest but curious \(1 \) nodes in between data transit.
- Polynomial time adversaries.
Privacy assumptions:

- A datum is \textit{k-indistinguishable} from \(k - 1 \) other camouflage data.
 - Definition: An item is \(k \)-indistinguishable if it cannot be distinguished better than guessing from \(k - 1 \) other items.

- A certain level of node collusion or capture is tolerated.
Privacy assumptions:

- A datum is \textit{k-indistinguishable} from \(k - 1\) other camouflage data.
 - Definition: An item is \(k\)-indistinguishable if it cannot be distinguished better than guessing from \(k - 1\) other items.

- A certain level of node collusion or capture is tolerated.

Threat model includes threats from:

\[\text{Untrusted eavesdroppers intercepting or listening to packets.}\]
\[\text{Honest but curious nodes in between data transit.}\]
\[\text{Polynomial time adversaries.}\]

\[\text{V. Bozovic, D. Socek, R. Steinwandt, and V. I. Villanyi. Multi-authority attribute based encryption with honest-but-curious central authority.}\]
\[\text{IACR eprint archive, 2009.}\]
KIPDA’s privacy assumptions and threat model

Privacy assumptions:
- A datum is k-indistinguishable from $k-1$ other camouflage data.
 - Definition: An item is k-indistinguishable if it cannot be distinguished better than guessing from $k-1$ other items.
- A certain level of node collusion or capture is tolerated.

Threat model includes threats from:
- Untrusted eavesdroppers intercepting or listening to packets.
Privacy assumptions:

- A datum is \textit{k-indistinguishable} from \(k - 1 \) other camouflage data.
 - Definition: An item is \(k \)-indistinguishable if it cannot be distinguished better than guessing from \(k - 1 \) other items.
- A certain level of node collusion or capture is tolerated.

Threat model includes threats from:

- Untrusted eavesdroppers intercepting or listening to packets.
- \textit{Honest but curious} \(^1\) nodes in between data transit.

Privacy assumptions:
- A datum is k-indistinguishable from $k - 1$ other camouflage data.
 - Definition: An item is k-indistinguishable if it cannot be distinguished better than guessing from $k - 1$ other items.
- A certain level of node collusion or capture is tolerated.

Threat model includes threats from:
- Untrusted eavesdroppers intercepting or listening to packets.
- Honest but curious\(^1\) nodes in between data transit.
- Polynomial time adversaries.

KIPDA example for MAX aggregation

KIPDA example (MAX aggregation)

Base station

Node 1

Node 2

Node 3

GSS = {1, 3, 5}

1 2 3 4 5 6 7
KIPDA example (MAX aggregation)

- Nodes 2 and 3 report to node 1, who reports to the base station.
Nodes 2 and 3 report to node 1, who reports to the base station.

Each node wants to report one number, keeping that number anonymous.
KIPDA example for MAX aggregation

Nodes 2 and 3 report to node 1, who reports to the base station.

Each node wants to report one number, keeping that number anonymous.

KIPDA makes that number indistinguishable from the others.
KIPDA example (MAX aggregation)

- Nodes 2 and 3 report to node 1, who reports to the base station.
- Each node wants to report one number, keeping that number anonymous.
- KIPDA makes that number indistinguishable from the others.
- Message set of size 7.
KIPDA example for MAX aggregation

4 phases to the protocol:

1. Pre-deployment phase.
2. Reporting phase.
3. Aggregation phase.
4. Base-station processing phase.
KIPDA example for MAX aggregation

1) Pre-deployment phase:

Base station

Node 1

Node 2

Node 3

1 2 3 4 5 6 7
KIPDA example for MAX aggregation

1) Pre-deployment phase:

- BS chooses the size for the *global secret set*, (GSS), then fills it in.

$$GSS = \{1, 3, 5\}$$

$$GSS = \{2, 4, 6, 7\}$$
KIPDA example for MAX aggregation

1) Pre-deployment phase:

- BS chooses the size for the *global secret set*, \((GSS) \), then fills it in.
- BS distributes the restricted sets, \((RS_i) \), to each node \(i \). (Yellow shades).
 1. \(GSS \subset RS_i \) (Accuracy).
 2. \(RS_i \subset GSS \) (Anonymity).
 3. Truth value position \(\in GSS \) (Accuracy).
KIPDA example for MAX aggregation

1) Pre-deployment phase:

- BS chooses the size for the *global secret set*, \(GSS \), then fills it in.
- BS distributes the restricted sets, \(RS_i \), to each node \(i \). (Yellow shades).
 1. \(GSS \subset RS_i \) (Accuracy).
 2. \(RS_i \subset GSS \) (Anonymity).
 3. Truth value position \(\in GSS \) (Accuracy).
- Nodes trivially determine unrestricted sets (Green).
KIPDA example for MAX aggregation

1) Pre-deployment phase:

- BS chooses the size for the *global secret set*, \(GSS \), then fills it in.
- BS distributes the restricted sets, \(RS_i \), to each node \(i \). (Yellow shades).
 1. \(GSS \subset RS_i \) (Accuracy).
 2. \(RS_i \subset GSS \) (Anonymity).
 3. Truth value position \(\in GSS \) (Accuracy).
- Nodes trivially determine unrestricted sets (Green).
- Attention is given to the sizes of sets.
KIPDA example for MAX aggregation

2) Reporting phase:

Base station → \(GSS = \{1, 3, 5\} \)

Node 1

Node 2

Node 3

1 2 3 4 5 6 7
2) Reporting phase:

- The sensed values are put in the real value slots, (dark yellow).
KIPDA example for MAX aggregation

2) Reporting phase:

- The sensed values are put in the real value slots, (dark yellow).
- Restricted slots are filled with values that below the sensed value.
2) Reporting phase:

- The sensed values are put in the real value slots, (dark yellow).
- Restricted slots are filled with values that below the sensed value.
- Unrestricted slots are filled with values either above or below the sensed value.
3) Aggregation phase:

GSS = \{1, 3, 5\}

Node 1

Node 2

Node 3

Base station
KIPDA example for MAX aggregation

3) Aggregation phase:

- The aggregation function is then performed on the children and itself, if the aggregator senses.
KIPDA example for MAX aggregation

3) Aggregation phase:

- The aggregation function is then performed on the children and itself, if the aggregator senses.
- The MAX is taken from all three message sets for each position.

GSS = \{1, 3, 5\}
KIPDA example for MAX aggregation

3) Aggregation phase:
- The aggregation function is then performed on the children and itself, if the aggregator senses.
- The MAX is taken from all three message sets for each position.
- Message set is sent up the aggregation tree.
KIPDA example for MAX aggregation

4) Base station phase:

Base station → $GSS = \{1, 3, 5\}$

Node 1

Node 2

Node 3

$23 \ 47 \ 27 \ 30 \ 34 \ 27 \ 19$

$23 \ 18 \ 22 \ 25 \ 15 \ 27 \ 19$

$6 \ 11 \ 12 \ 15 \ 1 \ 5 \ 10$

$18 \ 47 \ 27 \ 30 \ 34 \ 9 \ 4$

$1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$
KIPDA example for MAX aggregation

4) Base station phase:

- The base station determines the network aggregate by taking the maximum from the GSS.

GSS = \{1, 3, 5\}
4) Base station phase:

- The base station determines the network aggregate by taking the maximum from the GSS.
- Position 5 contains the maximum.
Summation aggregation function:
KIPDA: other aggregation functions

- Summation aggregation function:
 - Truth values: more than one.
Summation aggregation function:
- Truth values: more than one.
- Truth values: sum to sensed value.
KIPDA: other aggregation functions

- Summation aggregation function:
 - Truth values: more than one.
 - Truth values: sum to sensed value.
 - Restricted values: sum to 0.
Summation aggregation function:
- Truth values: more than one.
- Truth values: sum to sensed value.
- Restricted values: sum to 0.
- Unrestricted values: sum to any value.
But does this save energy?
But does this save energy?

- Even though more messages are transmitted, energy is conserved.
But does this save energy?

- Even though more messages are transmitted, energy is conserved.
- We determined the energy to encrypt and decrypt by IDEA, RC4, and RC5.
But does this save energy?

- Even though more messages are transmitted, energy is conserved.
- We determined the energy to encrypt and decrypt by IDEA, RC4, and RC5.
- We then extrapolated this to a standard hop-by-hop encryption scheme.
But does this save energy?

- Even though more messages are transmitted, energy is conserved.
- We determined the energy to encrypt and decrypt by IDEA, RC4, and RC5.
- We then extrapolated this to a standard hop-by-hop encryption scheme.
- And then applied this to two common architectures, MICAz and TelosB.
But does this save energy?

- Even though more messages are transmitted, energy is conserved.
- We determined the energy to encrypt and decrypt by IDEA, RC4, and RC5.
- We then extrapolated this to a standard hop-by-hop encryption scheme.
- And then applied this to two common architectures, MICAz and TelosB.
And this also saves time!
And this also saves time!

- KIPDA excels in timing, saving on the network delay:
And this also saves time!

- KIPDA excels in timing, saving on the network delay:
Privacy guarantees

Privacy is quantified by the level of k. k is given as:

$$k = |RS_i| + 1.$$

Any node i knows for any node j the real value is in the $|RS_i| + 1$ largest values. To an outside observer though, k equals the size of the message set. k is reduced if more rogue nodes collude.
Privacy guarantees

- Privacy is quantified by the level of k.

k is given as:

$$k = |RS_i| + 1.$$

Any node i knows for any node j the real value is in the $|RS_i| + 1$ largest values.

To an outside observer though, k equals the size of the message set.

k is reduced if more rogue nodes collude.
Privacy guarantees

- Privacy is quantified by the level of k.
- k is given as:

$$k = |RS_i| + 1$$

Any node i knows for any node j the real value is in the $|RS_i| + 1$ largest values. To an outside observer though, k equals the size of the message set. k is reduced if more rogue nodes collude.
Privacy guarantees

- Privacy is quantified by the level of k.
- k is given as:

\[k = |RS_i| + 1. \]

To an outside observer though, k equals the size of the message set. k is reduced if more rogue nodes collude.
Privacy guarantees

- Privacy is quantified by the level of k.
- k is given as:
 \[k = |\overline{RS_i}| + 1. \]
- Any node i knows for any node j the real value is in the $|\overline{RS_i}| + 1$ largest values.
Privacy guarantees

- Privacy is quantified by the level of k.
- k is given as:
 \[k = |RS_i| + 1. \]
- Any node i knows for any node j the real value is in the $|RS_i| + 1$ largest values.
- To an outside observer though, k equals the size of the message set.
Privacy guarantees

- Privacy is quantified by the level of k.
- k is given as:
 \[k = |RS_i| + 1. \]
- Any node i knows for any node j the real value is in the $|RS_i| + 1$ largest values.
- To an outside observer though, k equals the size of the message set.
- k is reduced if more rogue nodes collude.
Privacy: Encryption vs. KIPDA

<table>
<thead>
<tr>
<th>Method</th>
<th>Limitations</th>
</tr>
</thead>
</table>
| Hob-by-hop Encryption | 1) Aggregate data are vulnerable at the nodes.
 2) Does not work well for honest-but-curious nodes. |
| End-to-End Encryption | 1) Does not work well for non-linear functions. |
| KIPDA | 1) Provides a type of k-indistinguishability.
 2) Secrets are in plain text but camouflaged.
 3) Works well for honest-but-curious nodes. |
<table>
<thead>
<tr>
<th>Method</th>
<th>Limitations</th>
</tr>
</thead>
</table>
| Hob-by-hop Encryption | 1) Aggregate data are vulnerable at the nodes.
 2) Does not work well for honest-but-curious nodes. |
| End-to-End Encryption | 1) Does not work well for non-linear functions.
 2) Provides a type of k-indistinguishability.
 3) Secrets are in plain text but camouflaged.
 3) Works well for honest-but-curious nodes. |
Privacy: Encryption vs. KIPDA

<table>
<thead>
<tr>
<th>Method</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hob-by-hop Encryption</td>
<td>1) Aggregate data are vulnerable at the nodes.</td>
</tr>
</tbody>
</table>

KIPDA: \(k \)-Indistinguishable Privacy-preserving Data Aggregation
Privacy: Encryption vs. KIPDA

<table>
<thead>
<tr>
<th>Method</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hob-by-hop Encryption</td>
<td>1) Aggregate data are vulnerable at the nodes.</td>
</tr>
<tr>
<td></td>
<td>2) Does not work well for honest-but-curious nodes.</td>
</tr>
</tbody>
</table>

KIPDA:

- Provides a type of \(k \)-indistinguishability.
- Secrets are in plain text but camouflaged.
- Works well for honest-but-curious nodes.
<table>
<thead>
<tr>
<th>Method</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hob-by-hop Encryption</td>
<td>1) Aggregate data are vulnerable at the nodes.</td>
</tr>
<tr>
<td></td>
<td>2) Does not work well for honest-but-curious nodes.</td>
</tr>
<tr>
<td>End-to-End Encryption</td>
<td>1) Does not work well for non-linear functions.</td>
</tr>
</tbody>
</table>

KIPDA: k-Indistinguishable Privacy-preserving Data Aggregation

Michael M. Groat (University of New Mexico)
<table>
<thead>
<tr>
<th>Method</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hob-by-hop Encryption</td>
<td>1) Aggregate data are vulnerable at the nodes.</td>
</tr>
<tr>
<td></td>
<td>2) Does not work well for honest-but-curious nodes.</td>
</tr>
<tr>
<td>End-to-End Encryption</td>
<td>1) Does not work well for non-linear functions.</td>
</tr>
<tr>
<td>KIPDA</td>
<td>1) Provides a type of k-indistinguishability.</td>
</tr>
<tr>
<td>Method</td>
<td>Limitations</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Hob-by-hop Encryption</td>
<td>1) Aggregate data are vulnerable at the nodes.</td>
</tr>
<tr>
<td></td>
<td>2) Does not work well for honest-but-curious nodes.</td>
</tr>
<tr>
<td>End-to-End Encryption</td>
<td>1) Does not work well for non-linear functions.</td>
</tr>
<tr>
<td>KIPDA</td>
<td>1) Provides a type of k-indistinguishability.</td>
</tr>
<tr>
<td></td>
<td>2) Secrets are in plain text but camouflaged.</td>
</tr>
<tr>
<td>Method</td>
<td>Limitations</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Hob-by-hop Encryption</td>
<td>1) Aggregate data are vulnerable at the nodes.</td>
</tr>
<tr>
<td></td>
<td>2) Does not work well for honest-but-curious nodes.</td>
</tr>
<tr>
<td>End-to-End Encryption</td>
<td>1) Does not work well for non-linear functions.</td>
</tr>
<tr>
<td>KIPDA</td>
<td>1) Provides a type of k-indistinguishability.</td>
</tr>
<tr>
<td></td>
<td>2) Secrets are in plain text but camouflaged.</td>
</tr>
<tr>
<td></td>
<td>3) Works well for honest-but-curious nodes.</td>
</tr>
</tbody>
</table>
On the optimal sizes of sets

Sets sizes are determined in the following order:

1. The message sets:
 - A higher size gives more privacy.
 - A lower size uses less energy.

2. The restricted sets:
 - A higher size gives robustness to node-collusion.
 - A lower size gives a higher k for k-indistinguishability.

3. The global secret set:
 - Determined from the message and restricted set sizes. We give equations in the paper.

The reverse order determines the size of the message set given the required minimal amount of node collusion.
On the optimal sizes of sets

- Sets sizes are determined in the following order:
 - The message sets:
 - A higher size gives more privacy.
 - A lower size uses less energy.
 - The restricted sets:
 - A higher size gives robustness to node-collusion.
 - A lower size gives a higher \(k \) for \(k \)-indistinguishability.
 - The global secret set:
 - Determined from the message and restricted set sizes. We give equations in the paper.
 - The reverse order determines the size of the message set given the required minimal amount of node collusion.
On the optimal sizes of sets

- Sets sizes are determined in the following order:
 1. The message sets:
 - A higher size gives more privacy.
 - A lower size uses less energy.
 2. The restricted sets:
 - A higher size gives robustness to node-collusion.
 - A lower size gives a higher k for k-indistinguishability.
 3. The global secret set:
 - Determined from the message and restricted set sizes. We give equations in the paper.

The reverse order determines the size of the message set given the required minimal amount of node collusion.
On the optimal sizes of sets

Sets sizes are determined in the following order:

1. The message sets:
 - A higher size gives more privacy.

2. The restricted sets:
 - A higher size gives robustness to node-collusion.
 - A lower size gives a higher k for k-indistinguishability.

3. The global secret set:
 - Determined from the message and restricted set sizes. We give equations in the paper.

The reverse order determines the size of the message set given the required minimal amount of node collusion.
On the optimal sizes of sets

- Sets sizes are determined in the following order:
 1. The message sets:
 - A higher size gives more privacy.
 - A lower size uses less energy.
 2. The restricted sets:
 - A higher size gives robustness to node-collusion.
 - A lower size gives a higher k for k-indistinguishability.
 3. The global secret set:
 - Determined from the message and restricted set sizes. We give equations in the paper.
 - The reverse order determines the size of the message set given the required minimal amount of node collusion.
On the optimal sizes of sets

- Sets sizes are determined in the following order:
 1. The message sets:
 - A higher size gives more privacy.
 - A lower size uses less energy.
 2. The restricted sets:

Michael M. Groat (University of New Mexico)
On the optimal sizes of sets

Sets sizes are determined in the following order:

1. The message sets:
 - A higher size gives more privacy.
 - A lower size uses less energy.

2. The restricted sets:
 - A higher size gives robustness to node-collusion.
On the optimal sizes of sets

- Sets sizes are determined in the following order:
 1. The message sets:
 - A higher size gives more privacy.
 - A lower size uses less energy.
 2. The restricted sets:
 - A higher size gives robustness to node-collusion.
 - A lower size gives a higher k for k-indistinguishability.
Sets sizes are determined in the following order:

1. The message sets:
 - A higher size gives more privacy.
 - A lower size uses less energy.

2. The restricted sets:
 - A higher size gives robustness to node-collusion.
 - A lower size gives a higher k for k-indistinguishability.

3. The global secret set:
On the optimal sizes of sets

Sets sizes are determined in the following order:

1. The message sets:
 - A higher size gives more privacy.
 - A lower size uses less energy.

2. The restricted sets:
 - A higher size gives robustness to node-collusion.
 - A lower size gives a higher k for k-indistinguishability.

3. The global secret set:
 - Determined from the message and restricted set sizes. We give equations in the paper.
On the optimal sizes of sets

Sets sizes are determined in the following order:

1. The message sets:
 - A higher size gives more privacy.
 - A lower size uses less energy.

2. The restricted sets:
 - A higher size gives robustness to node-collusion.
 - A lower size gives a higher k for k-indistinguishability.

3. The global secret set:
 - Determined from the message and restricted set sizes. We give equations in the paper.

The reverse order determines the size of the message set given the required minimal amount of node collusion.
Challenges to KIDPA

Nodes that are more than honest-but-curious, and will subvert the network aggregates.

Not as efficient with streaming encryption techniques.

Information is not 100% concealed, only indistinguishable.

Still need to exchange the restricted sets with the nodes and the base station every often.
Challenges to KIDPA

- Nodes that are more than honest-but-curious, and will subvert the network aggregates.
Challenges to KIDPA

- Nodes that are more than honest-but-curious, and will subvert the network aggregates.
- Not as efficient with streaming encryption techniques.
Challenges to KIDPA

- Nodes that are more than honest-but-curious, and will subvert the network aggregates.
- Not as efficient with streaming encryption techniques.
- Information is not 100% concealed, only indistinguishable.
Challenges to KIDPA

- Nodes that are more than honest-but-curious, and will subvert the network aggregates.
- Not as efficient with streaming encryption techniques.
- Information is not 100% concealed, only indistinguishable.
- Still need to exchange the restricted sets with the nodes and the base station every often.
Conclusion

First work we are aware of that provides "indistinguishability" to privacy-preserving data aggregation.

Saves energy and time even though more messages are sent.

Michael M. Groat (University of New Mexico)
First work we are aware of that provides “indistinguishability” to privacy preserving data aggregation.
Conclusion

- First work we are aware of that provides “indistinguishability” to privacy preserving data aggregation.
- Saves energy and time even though more messages are sent.
Future Work

- Implement in TOSSIM or similar WSN simulator.
- Address other adversarial models.
- Byzantine attacks.
- Denial-of-Service attacks.
- Node insertion attacks.
- Address mobility in nodes.
Future Work

- Implement in TOSSIM or similar WSN simulator.
- Address other adversarial models.
- Byzantine attacks.
- Denial-of-Service attacks.
- Node insertion attacks.
- Address mobility in nodes.
Future Work

- Implement in TOSSIM or similar WSN simulator.
- Address other adversarial models.

Byzantine attacks.
Denial-of-Service attacks.
Node insertion attacks.

Michael M. Groat (University of New Mexico)
KIPDA: k-Indistinguishable Privacy-preserving Data Aggregation
April 13, 2011 15 / 16
Future Work

- Implement in TOSSIM or similar WSN simulator.
- Address other adversarial models.
 - Byzantine attacks.
Future Work

- Implement in TOSSIM or similar WSN simulator.
- Address other adversarial models.
 - Byzantine attacks.
 - Denial-of-Service attacks.
Future Work

- Implement in TOSSIM or similar WSN simulator.
- Address other adversarial models.
 - Byzantine attacks.
 - Denial-of-Service attacks.
 - Node insertion attacks.
Future Work

- Implement in TOSSIM or similar WSN simulator.
- Address other adversarial models.
 - Byzantine attacks.
 - Denial-of-Service attacks.
 - Node insertion attacks.
- Address mobility in nodes.
Thank you for your attention.
Questions?