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Abstract. Implementing DNA computing circuits using components tethered to
a surface offers several advantages over using components that freely diffuse in
bulk solution. However, automated computational modeling of tethered circuits
is far more challenging than for solution-phase circuits, because molecular ge-
ometry must be taken into account when deciding whether two tethered species
may interact. Here, we tackle this issue by translating a tethered molecular circuit
into a constraint problem that encodes the possible physical configurations of the
components, using a simple biophysical model. We use a satisfaction modulo the-
ories (SMT) solver to determine whether the constraint problem associated with a
given structure is satisfiable, which corresponds to whether that structure is phys-
ically realizable given the constraints imposed by the tether geometry. We apply
this technique to example structures from the literature, and discuss how this ap-
proach could be integrated with a reaction enumerator to enable fully automated
analysis of tethered molecular computing systems.

1 Introduction

Molecular computing using solution-phase DNA circuits is a powerful method for im-
plementing nanoscale information processing systems. In particular, DNA strand dis-
placement has emerged as a proven method of engineering networks of programmable
computational elements [1, 2] and a powerful theoretical framework has built up around
it [3, 4]. In the computational modeling of DNA strand displacement networks, the as-
sumption that all components are freely diffusing in bulk solution means that the phys-
ical conformations of interacting molecular species may be neglected when enumerat-
ing the possible reactions. This assumption is heavily exploited in existing modeling
systems for solution-phase DNA strand displacement networks, such as the DSD pro-
gramming language [5] and the associated Visual DSD software [6].

However, the fact that any pair of components in a freely diffusing molecular circuit
may potentially diffuse into proximity and interact means that the entire circuit must be
designed so as to eliminate crosstalk from all possible undesired interactions. Thus,
even if the circuit is designed in a modular fashion, each instance of a given module
must be implemented using different nucleotide sequences, which limits the scalability
of circuits. Indeed, the largest DNA computing circuit built to date is the “square root”



circuit reported by Qian and Winfree [7], which required 74 initial DNA species (ex-
cluding input signals) for a total of 130 different DNA strands. Reducing the number
of distinct molecular species required to implement complex computational systems is
therefore a crucial direction for future research in molecular computing.

Advances in the field of structural DNA nanotechnology, in particular, the develop-
ment of DNA origami [8] as a reliable method for building DNA tile nanostructures [9],
has raised the possibility of implementing molecular computers using components that
are tethered to a DNA origami tile surface. This would enable nucleotide sequences
to be shared between components that are tethered far enough apart to not interact,
which means that large-scale circuits could be constructed using many copies of stan-
dardized components. Furthermore, tethering circuit components in close proximity in-
creases the speed of circuit computation because components do not need to diffuse in
three dimensions prior to interacting [10]. Indeed, several proposals for implementing
molecular computers using surface-bound DNA strand displacement networks based
on hairpin-opening reactions have been previously published [11, 12]. A further moti-
vation for studying molecular circuits tethered to DNA tiles is that DNA nanostructures
show great promise as a vehicle to deliver theranostic molecular devices to cells and
tissues [13].

From a modeling perspective, however, the move to implementing molecular com-
puters using components that are tethered to a surface presents some challenges. In
particular, tethering components to the surface at particular locations makes it neces-
sary to consider the geometry of the system when deciding whether two components
can actually interact with each other. For example, it might be the case that two compo-
nents contain complementary single-stranded domains, but are tethered to the surface
too far apart to actually be able to hybridize. In certain cases it may be possible to de-
rive simple expressions to compute whether domains can interact [12], but this is not
possible in the general case. Our previous work on modeling tethered strand displace-
ment networks [14] avoided this issue by relying on the programmer to specify which
components could interact, however, in many cases this requires additional biophysi-
cal calculations to be made separately. Thus, in order to build an automated compiler
for tethered molecular circuits, we require an automated, general purpose method for
computing whether the geometry of two tethered molecular species permits them to
interact.

In this paper, we present an automated solution to the problem of reaction enu-
meration in tethered strand displacement systems. We translate tethered structures into
sets of arithmetic constraints on variables that represent the physical locations of their
components. If the constraint problem associated with a given structure is satisfiable,
it means that there is a plausible physical configuration of the components that can be
adopted by the system. Conversely, if the constraint problem is unsatisfiable, there is
no physical configuration of the components that can produce that structure. By solving
the constraints using an off-the-shelf satisfaction modulo theories (SMT) solver, we ob-
tain a procedure that allows us to automatically detect whether a structure is physically
plausible, given the constraints imposed by the tethers. To our knowledge, this is the
first fully automated procedure for analyzing molecular geometry in the context of a
tethered molecular computing system.



2 Localized processes

In this section, we present our language of localized processes for representing tethered
DNA structures. Definition 1 extends the process calculus-based presentation of DNA
nanostructures from our previous work [15] with syntax for tethers on strands that attach
them to a surface (representing, e.g., a DNA origami tile) at particular coordinates, and
annotations to represent the physical coordinates of different parts of the structure.

Definition 1 (Localized processes). The syntax of localized processes, P, is expressed
in terms of domain names a, b, . . ., bond names i, j, k, . . ., variables x, y, z, . . ., and
real-valued constants r ∈ R. Then, the grammar of localized processes is as follows.

Coordinate c ::= x Variable
p r Real-valued constant

Tether t ::= tether Tethered
p ε Untethered

Position π ::= t(c1,c2,c3) Position with coordinates
Domain d ::= a Domain name

p a∗ Complemented domain name
(Un)bound domain o ::= d Free domain

p d!i Bound domain with bond i
Strand S ::= <π0 o1 π1 · · · πM−1 oM πM> Strand with M domains, M ≥ 1

Process P ::= (S1 | · · · | SN) Multiset of N strands, N ≥ 0

We write strands(P), bonds(P), posns(P), and vars(P) for the sets of strands, bonds,
positions, and variables that occur in P, respectively. We consider processes equal up
to re-ordering of strands, renaming of bonds, and renaming of variables, and we only
consider processes that are well-formed, by which we mean that each bond in bonds(P)
appears exactly twice and is shared between complementary domains, and that each
variable in vars(P) appears exactly once.

We assume the existence of a predicate toehold such that toehold(a) returns true
if and only if a is a toehold domain. For convenience, we also write aˆ iff toehold(a)
holds. We also assume the existence of a function len such that len(a) returns the length
in nucleotides of the DNA sequence for the domain name a (and thus returns a posi-
tive integer). We assume that these functions are also lifted to possibly-complemented
domains d, so that f (a∗) = f (a), for f ∈ {toehold, len}. Similarly, we lift the comple-
mentation syntax to possibly-complemented domains, by defining (a∗)∗ = a.

Between each pair of domains on every strand, and on each strand terminus, is a
position that represents the location of that part of the structure in 3D space. The posi-
tion ε(cx,cy,cz), which we may abbreviate as simply (cx,cy,cz), means that part of the
structure is untethered and located at x-coordinate cx, y-coordinate cy, and z-coordinate
cz. (Each of the coordinates may be a variable that can be assigned a value during the
constraint solving procedure, or a real-valued constant that represents a specific loca-
tion.) Similarly, the position tether(cx,cy,cz) represents a tether that attaches that part
of the strand to the underlying surface at the location (cx,cy,cz) where, typically, cz = 0
and cx and cy are real-valued constants. In practice, we may elide certain positions from



Fig. 1. Example of representing a tethered structure. (a) Secondary structure of a three-stator
transmission line after [11], with the three stators arranged in a straight line. (b) Condensed
version of the structure from (a), with all positions fully annotated. Here, the q domains are the
freshly generated domain names. (c) Calculus syntax representing the initial structure from (a).
(d) Calculus syntax representing the condensed structure from (b).

the process syntax altogether, with the understanding that the physical position of junc-
tion between the domains on either side (or the strand terminus, if at the end of the
strand) will be represented by a freshly generated position with syntax (cx

†,cy
†,cz

†),
where cx

†, cy
†, and cz

† are unique, freshly generated variables.
Note that we use the term “process” here for historical reasons. Although the long-

term goal of our work is to enable automated enumeration of interactions in localized
processes, in this paper we focus solely on the problem of analyzing the geometry of a
single state of the localized process, and we use the process syntax solely as a means of
representing the structure in question. Figure 1 presents graphical and syntactic repre-
sentations of the tethered system that will serve as our running example throughout the
paper—a three-stator transmission line after [11].

3 Biophysical model

Before we present our translation of localized processes into constraint sets, we first
present the assumptions about the biophysics of DNA that will underlie the transla-



tion. Crucially, we will model double-stranded DNA duplexes as rigid rods and single-
stranded DNA as infinitely flexible, freely jointed chains. We also assume that joints
(nicks) between double-stranded duplexes are infinitely flexible. We will neglect the
thickness of DNA strands, and will also neglect the length of the bonds between com-
plementary bases by requiring the ends of the two strands that make up a duplex to be
positioned at exactly the same point in space. In computing whether structural compo-
nents may interact, we will also not account for steric effects that could, for example,
eliminate solutions to the constraint problem that would require part of the structure to
pass through another to form a catenane. This model is clearly simplified, and we refer
the user to Section 7 for further discussion of these assumptions and how this model
might be made more realistic.

4 Condensing localized processes

When deriving geometric constraints from localized processes, we will model every
double-stranded duplex as a single rigid rod, as described in Section 3 above, even when
that duplex consists of multiple sequence domains. Thus, before converting a localized
process into a set of constraints we must first condense the process by combining all
domains on a given strand that represent a continuous duplex into a single extended
domain. To reduce the size of the resulting constraint problem, we will also condense
continuous single-stranded regions into extended domains. The condensing process is
a straightforward binary relation −→condense on localized processes that can be defined
by the following rewrite rules:

(<· · · π j d1!i1 π j+1 d2!i2 π j+2 · · ·> |<· · · πk d2
∗!i2 πk+1 d1

∗!i1 πk+2 · · ·> | P)
−→condense (<· · · π j q!i1 π j+2 · · ·> |<· · · πk q∗!i1 πk+2 · · ·> | P)

(<· · · π j d1!i1 π j+1 d2!i2 π j+2 · · · πk d2
∗!i2 πk+1 d1

∗!i1 πk+2 · · ·> | P)
−→condense (<· · · π j q!i1 π j+2 · · · πk q∗!i1 πk+2 · · ·> | P)

(<· · · π j d1 π j+1 d2 π j+2 · · ·> | P)−→condense (<· · · π j q π j+2 · · ·> | P)

where, in each case, q is a freshly-chosen domain name, for which we assume that
len(q) = len(d1)+ len(d2). We also require that any position removed by the condens-
ing process has the form ε(x,y,z), that is, the position is untethered and is specified
solely by variables and not by constants. In the rule definitions, these positions are re-
ferred to as π j+1 and πk+1. This condition essentially says that no information is lost
by discarding that position, because it was not previously constrained to a specific lo-
cation in space. If this condition is violated, the condensing process fails and we cannot
proceed. However, for practical purposes this is a reasonable condition to impose, since
to our knowledge there are no proposed or implemented designs for tethered molecular
circuits that include a tether part way along a DNA duplex.

Thus, a single condensing step takes two neighbouring bound domains, either on
two strands (the first rule) or on a single strand (the second rule), or two neighbour-
ing single-stranded domains on the same strand (the third rule) and converts them into
a single domain with a freshly-generated name (which avoids conflicts with other do-
main names in the system) whose length is the sum of the lengths of the two domains it



replaces. If the domains were initially bound, they remain so in the condensed version
of the process. Furthermore, the coordinates that represent the positions of the end-
points of the new bound domains are the same as those that represented the endpoints
of the neighbouring bound domains that were replaced. Figure 1 presents an example
of condensing, as applied to our running example system.

It is not hard to see that the condensing process preserves well-formedness of pro-
cesses (since, in the first two rules, both occurrences of i2 are removed and i1 connects
two complementary domains in the resulting process), that it is terminating (since every
rule application removes a pair of neighbouring bound domains) and that it produces a
unique normal form when no more rule applications are possible (modulo the choice of
freshly-named new domains that are introduced).

Henceforth we will assume that all processes have been condensed via this proce-
dure, so that all duplexes are represented by a single domain on each bound strand and
all neighbouring single-stranded domains have been similarly collapsed into a given do-
main. This ensures that all domain junctions in the process correspond to points where
the structure is flexible.

5 Geometric constraints for localized processes

This section details the main technical contribution of the paper, where we define a
translation of a (condensed) localized process into a set of arithmetic constraints that
represent the possible geometry of the structure according to the biophysical model
outlined in the previous section. This set of constraints will collectively encode the
geometry of the structure, and our intention is that the set structure represents an implicit
conjunction, so that the set of constraints is satisfied iff all constraints within the set are
simultaneously satisfied (under some mapping of variables to values).

We will use a 3D Cartesian coordinate system that allows us to locate each domain
junction with respect to the surface to which the tethered components are attached. For
simplicity, we assume that all tethered components are attached to the same surface,
though that restriction could be straightforwardly relaxed if we assume that there are no
interactions between components tethered to different surfaces. By convention, we will
assume that the surface (which could model, e.g., a DNA origami tile) lies in the z = 0
plane, and that all components are tethered to the same side of the surface and protrude
on the positive z side. We now begin to define the different classes of constraints that
will make up the constraint-based representation of structure geometry. First, we define
constraints that represent the physical length of each domain in a process.

Definition 2 (Domain length constraints). For a localized process P we define the
corresponding domain length constraints, dlc(P), as follows:

dlc(P) =
⋃

S∈strands(P)

dlc(S)



where dlc(<π0 o1 π1 · · · πN−1 oN πN>) =
dlc(π0,o1,π1)∪dlc(π1,o2,π2)∪·· ·∪dlc(πN−1,oN ,πN)

and dlc(t(cx,cy,cz),o, t ′(c′x,c
′
y,c
′
z)) ={

{(c′x− cx)
2 +(c′y− cy)

2 +(c′z− cz)
2 = (len(a)×Lds)

2} if o = a!i
{(c′x− cx)

2 +(c′y− cy)
2 +(c′z− cz)

2 ≤ (len(a)×Lss)
2} if o = a.

In this definition, we must distinguish between single-stranded and double-stranded
domains. Thus, len(a)× Lds is the (fixed) length of a double-stranded domain a and
len(a)×Lss is the maximum extended length of a single-stranded domain a. The con-
straints then specify the fixed distance between the two ends of a double-stranded do-
main (which we model as a rigid rod) or the maximum distance between the two ends
of a single-stranded domain (which we model as an infinitely flexible freely-jointed
chain), in terms of the variables used to represent the coordinates of each end of the
domain. We now define the constraints that encode hybridization between domains.

Definition 3 (Hybridization constraints). For a localized process P we define the cor-
responding hybridization constraints, hc(P), as follows:

hc(P) =
⋃

i∈bonds(P)

hcP(i)

where hcP(i) = {cx = c′′′x ,cy = c′′′y ,cz = c′′′z ,c
′
x = c′′x ,c

′
y = c′′y ,c

′
z = c′′z }

and <· · · t(cx,cy,cz) a!i t ′(c′x,c
′
y,c
′
z) · · ·> ∈ strands(P)

and <· · · t ′′(c′′x ,c′′y ,c′′z ) a∗!i t ′′′(c′′′x ,c
′′′
y ,c

′′′
z ) · · ·> ∈ strands(P).

As one of the key simplifications in our biophysical model, we assume that the
diameter of a DNA duplex is negligible. Thus, if the two (complementary) domains are
hybridized, the 5’ end of one domain must be colocated with the 3’ end of the other, and
vice versa. Note that, in the above definition, since i ∈ bonds(P) and since we assume
that P is well-formed, it follows that there exists precisely one pair of complementary
domains connected via the bond i, which will satisfy the side conditions.

Finally, we define constraints that situate the structure with respect to the tile sur-
face. This includes the constraints imposed by tethers, which anchor one end of a do-
main at a fixed location on the tile surface, and constraints that stipulate that no part of
the structure may pass through the tile surface.

Definition 4 (Tile constraints). For a localized process P we define the corresponding
tile constraints, tc(P), as follows:

tc(P) =
⋃

π∈posns(P)

tc(π)

where tc(tether(cx,cy,cz)) = {cz = 0}
and tc(ε(cx,cy,cz)) = {cz ≥ 0}.

Thus, positions on a strand where a tether appears (in practice this is typically at the
end of the strand, though our model does not require this) are constrained to specific



coordinates, with a z coordinate of 0. Non-tethered positions are simply constrained to
have a non-negative z coordinate, i.e., they cannot be “below” the tile. We now combine
the different kinds of constraint defined above to create a constraint-based model that
encodes the possible geometric configurations of a localized process.

Definition 5 (Constraint-based biophysical models). For a condensed, localized pro-
cess P, we writeMP for the full, constraint-based model, which is defined as follows:

MP = dlc(P)∪hc(P)∪ tc(P).

Thus, all constraints from domain lengths, hybridization, and tethers are unioned
together to produce a single set of constraints that represents the possible geometric
configurations of the structure of the localized process.

Definition 6 (Plausibility of localized processes). We say that a localized process P is
plausible iff its associated constraint set is satisfiable, that is, if there exists a mapping
from the variables to real numbers such that all constraints in the constraint set are
simultaneously satisfied when the mapping is applied. A localized process that is not
plausible is implausible.

If a localized process is implausible, this means there is no way to arrange the
domains in space to form the specified structure without breaking one or more of the
geometric constraints imposed by that structure. For example, in the case of a tethered
DNA circuit, this may mean that the tethered locations of two components may leave
them too far apart to interact with each other. Thus, we can enumerate reactions between
tethered components while respecting the tether geometry by checking plausibility of
the localized process P that represents the candidate product structure, i.e., by checking
satisfiability of the corresponding constraint problemMP.

6 Results

6.1 Prototype implementation

We implemented a prototype system for checking satisfiability of constraint-based ge-
ometric models using the Z3 SMT solver [16]. The prototype is written in Python, and
takes as input a localized process, expressed in the syntax from Definition 1. This is
then condensed and converted into the corresponding constraint problem (as defined in
Definition 5) using the Z3 Python API which can then be checked for satisfiability.

Our preliminary experiments represented domain positions using real-valued vari-
ables, because Z3 includes a complete algorithm for solving non-linear constraints
over real variables exactly [17]. However, while this algorithm is complete it can be
very computationally expensive, and even just changing the values of certain constants
within a constraint problem (without changing the structure of the problem) can cause
the time taken to solve the constraints to increase from microseconds to many hours.
Therefore, we adopted an alternative approach to encode the constraints using floating-
point variables, which can be represented within Z3 as bit-vectors of a fixed width.
This makes the time taken to solve the constraints far more predictable, on the order of



thirty seconds to one minute depending on the particular problem. However, floating-
point representations are inexact, which introduces the possibility of constraints being
incorrectly deemed unsatisfiable if any of the required variable assignments cannot be
represented exactly using the floating-point representation in question. (The width of
the bit vector, and the numbers of bits used to represent the significand and exponent,
can be tuned to reduce numerical inaccuracy at the cost of increased compute time to
solve the constraints.) We addressed this issue by modifying our constraints slightly, by
introducing a tolerance parameter ε , so that variables will be considered equal if their
values fall within that range. This addresses the issue of numerical inaccuracy because,
for a judicious choice of ε , it is highly likely that there will be representable values
within the tolerance range that satisfy the constraints. To implement this (approximate)
solving algorithm, we simply modify the generated constraints in the model as follows,
where e is an arithmetic expression and c is a constant. Thus:

· e⊕ c becomes e⊕ (c− ε), for ⊕ ∈ {>,≥};
· e⊕ c becomes e⊕ (c+ ε), for ⊕ ∈ {<,≤}; and
· e = c becomes {e≥ (c− ε),e≤ (c+ ε)}.

This transformation from exact to inexact constraints causes the number of constraints
to double at most, and does not increase the number of variables at all. Furthermore, the
terms of the form c± ε are constants that can be pre-computed.

6.2 Example

We tested our approach using an example taken from the repeater system in the Seelig
lab on hairpin-based circuits on DNA origami tiles [11], introduced in Figure 1. We
are particularly interested in the reaction between two tethered species, i.e., when the
first stator hairpin has been opened, the freely diffusing fuel hairpin has bound and
opened, and the opened fuel hairpin is trying to bind to the second stator hairpin, which
is still closed. Because the stator hairpins share common nucleotide sequences, there
are two possible interactions, which are shown in Figure 2(a),(b). Figure 2(a) shows
the desired interaction, where the opened fuel hairpin binds to the second stator hairpin
(S1), and Figure 2(b) shows an undesirable interaction, where the opened fuel hairpin
binds to the third stator hairpin (S2). In our presentation, every hairpin has a “loop
spacer” domain (lsp), and every tethered hairpin has a “tether spacer” domain (tsp).
Adjusting the lengths of these domains and the inter-stator distance (d) changes the
possible behaviors of the system, and the goal of our analysis is to find the parameter
sets that enable correct signal transmission, i.e., so that the opened stator S0 can bind to
S1, resulting in the desired product structure shown in Figure 2(a), but not to S2, which
would result in the undesired product structure shown in Figure 2(b).

Results from constraint-based analysis of this example system with the stators ar-
ranged in a straight line are presented in Figure 2(c). As described above, we used a
floating-point representation for our constraint variables, with an 8 bit exponent and an
8 bit significand. The ε value was 10−5. Values for Lds and Lss were as used in pre-
vious work [12], that is, Lds = 0.34nm and Lss = 0.68nm. The lengths of all toehold
domains were 5 nucleotides and the lengths of all long domains were 30 nucleotides.
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Fig. 2. Results on constraint-based structure modeling. (a) Illustration of the product structure
for a three-stator transmission line after [11], when S0 binds to S1, as desired. (b) Illustration of
the product structure for the undesirable interaction of the three-stator transmission line, when
S0 binds to S2. (c) Results from constraint-based analysis of the transmission line system when
all three stators are arranged in a straight line (bird’s eye view shown in inset). Each bar shows
the range of integer values of d for which S0 can bind to S1 but not to S2, as required for correct
signal transmission, for various combinations of loop spacer (lsp) and tether spacer (tsp) domain
lengths. (d) Results from constraint-based analysis of the transmission line system when all three
stators are arranged in a 90◦ degree angle (bird’s eye view shown in inset), with data analysis
carried out as specified in part (c).

For each combination of loop spacer (lsp) and tether spacer (tsp) lengths (5, 10, 15, and
20 nucleotides each) we used our prototype system to construct the condensed, local-
ized process representation of the candidate structures formed by interactions between
S0 and S1 and between S0 and S2, convert them to our constraint representation, and test
plausibility of each using Z3, for values of the inter-stator distance (d) chosen at 1nm
intervals ranging from 1nm to 100nm. ? Each bar in Figure 2(c) represents the range of
d values for which S0 can bind to S1 but not to S2, as required for correct signal trans-
mission. Below the bar, the stators are close enough together that S0 can bind directly

? See the Supporting Information (available from the first author’s web page) for full details of
the examples and corresponding constraints.



to S2, and above the bar, the stators are so far apart that S0 cannot even reach S1. These
results show that the range of acceptable values for d increases as the lengths of the lsp
and tsp domains increase, as we would expect.

We also analyzed a similar example system that used the same structures, except
that the three stator hairpins are arranged to form a 90◦ angle on the tile surface. In
the straight line system, we added extra constraints that all y-coordinates equal zero, as
this decreases solving time, but this was not done for the 90◦ angle system. Hence, this
example illustrates the applicability of our approach to processes whose components
occur in non-trivial geometric arrangements. Results from constraint-based analysis of
the 90◦ angle system are presented in Figure 2(d). These results show that, for identical
loop spacer (lsp) and tether spacer (tsp) domain lengths, the maximum safe inter-stator
distances are the same in both the straight-line and 90◦ angle cases, but the minimum
safe distance is larger in the 90◦ angle case. This is because S2 can be reached diagonally
from S0 when the stators are not arranged in a straight line. Thus, our constraint-based
analysis can determine the feasible range of inter-stator distances that enable correct
signal transmission without skipping any stators in the sequence, and thereby serves as
a proof of concept for automated analysis of tethered molecular circuits.

7 Discussion

The main contribution of this paper is the development of a constraint-based method-
ology for automatically analyzing molecular geometry to determine if certain interac-
tions between species are possible, given the physical constraints imposed by tethers
that attach components to a surface (e.g., a DNA origami tile) at specific locations. Our
approach therefore offers a principled, general-purpose alternative to the somewhat ad
hoc rules adopted to handle molecular geometry in other reaction enumerators, e.g., our
strand graph system [15] or the DyNAMiC Workbench [18].

7.1 Reaction enumeration

The key advantage of our fully automated analysis is that it could be used in the main
loop of a compiler for tethered molecular reaction networks. In this vein, Algorithm 1
presents a pseudocode algorithm for enumerating the state space of a tethered molecular
reaction network, in which our constraint-based analysis of the plausibility of tethered
molecular structures is used as a filter to prevent the addition of a transition to the state
space, even if the domains match, if the reaction would yield a product process whose
structure is implausible. We note that, strictly speaking, the constraint-solving process is
only required for interactions between different parts of a single tethered structure since,
for bimolecular reactions where one or both of the reactants is not tethered, one may
assume that the non-tethered species can diffuse and adopt any conformation required
to react.

7.2 Biophysical model

The procedure outlined here is for computing whether two domains may bind, and an
extension of this problem would be to determine at what rate that binding reaction may



Algorithm 1: Pseudocode algorithm for constructing the reachable state space of
a localized process. This pseudocode assumes the existence of several functions:
unprocessed_states(S), which returns the set of states in S that have not yet been
processed by the algorithm; candidate_reactions(P), which returns the set of pos-
sible reactions in the process P when considering only sequence complementarity
and not molecular geometry; and is_plausible(P), which decides whether the lo-
calized process P is geometrically plausible, using our constraint-based technique.

begin
initialize state space S with localized process Pinit as the initial state;
mark state Pinit as unprocessed;
while unprocessed_states(S) 6=∅ do

let Preactant be some element of unprocessed_states(S);
for (Preactant A Pproduct) ∈ candidate_reactions(Preactant) do

if is_plausible(Pproduct) then
if Pproduct 6∈ S then

add state Pproduct to S;

add transition (Preactant A Pproduct) to S;
mark state Preactant as processed;

occur. In solution-phase systems, one approach to approximate binding rates for partic-
ular domains is to use free energy models to compute the free energy of a bound toehold
domain, and then make the assumption that binding rates of that domain are dominated
by diffusion, which allows an approximation of the off-rate to be computed. However,
in tethered systems we cannot necessarily assume that on-rates are primarily influenced
by diffusion. An alternative is to use the local concentration approach [19], which cor-
responds to calculating the probability that the domains will be in a conformation such
that they may bind. It is possible that the output from the constraint solver could be
used to estimate the number of different coordinate variable instantiations and hence
the size of the parameter space in which the constraints are satisfied, which one might
be able to use to approximate the rate. This would require us to consider not just the
maximum possible extension of single-stranded domains, but also the probability that
they are extended to given lengths e.g., using a worm-like chain biophysical model [19].

Indeed, the biophysical model that we have used in this paper is deliberately sim-
ple, so that the structures can be compiled directly to tractable constraint problems.
Some of our assumptions seem necessary for the technique to work, such as the as-
sumption that hybridized domains are co-localized in space, because to do otherwise
would require additional constraints on the angles of certain domains to ensure that
they are parallel, which would greatly complicate the constraint problems to be solved.
Other assumptions, such as the condensing of single-stranded domains, make sense as
a simple optimization which reduces the number of variables present in the constraint
problem. An interesting direction for future research will be to consider further opti-
mizations that could speed up the analysis of structures and enable larger structures to
be analyzed: one possibility might be to prune constraints that arise from parts of the



structure that are not actually essential to determining whether the structure is plausible
or not, another might be to remove domain length constraints that are technically redun-
dant because the length of those domains has already been constrained by hybridization
to some other domain. The Z3 solver itself includes facilities for the simplification of
constraint problems, which could be directed in specific ways to optimize solving the
type of problems produced by our translation process. Another possibility might be
to explore alternative methods for deciding plausibility that do not involve SMT solv-
ing, e.g., employing sampling, search, or genetic algorithms over the space of variable
instantiations to try to find an instantiation that satisfies all of the constraints. These
alternative approaches could enable larger constraint problems, corresponding to more
sophisticated molecular structures, to be tackled.

While our biophysical model is clearly not suited to in-depth biophysical investi-
gations of nucleic acid dynamics, it is useful as a simplified model for (automated)
preliminary investigations, that can be used to rule out certain designs and to guide
more in-depth analyses, e.g., using coarse-grained simulation models [20]. The key ad-
vantage of an automated structural analysis tool such as ours is that it may significantly
reduce the number of iterative experimental design cycles that must be carried out in or-
der to successfully implemented a tethered molecular circuit, thereby reducing wasted
labour and reagents expended on unsuccessful designs.

A fruitful avenue for further research will be to determine how much more real-
istic our biophysical model can be made without sacrificing ease-of-use or constraint
solving performance. One possibility would be to include additional constraints, e.g., to
enforce a minimum extension on single-stranded domains, or to require that the lengths
of double-stranded domains must be within some factor of the true value, to model
slight fluctuations in the duplex structure. (The latter constraint could be imposed at
no extra cost because our floating-point constraint expansion already includes an error
term.) Another possibility would be to constrain the angles that can be formed at the
junctions between domains, but this could adversely impact performance.

It would be an interesting future research direction to investigate whether our bio-
physical model is conservative, in the sense that if two strands cannot interact in our
model, then they will not be able to interact in a more realistic model. It seems likely
that certain assumptions would need to be made for this statement to be true, such as
rigidity of the underlying origami tile. Furthermore, the biophysical constants, such as
the internucleotide distances, would need to be chosen judiciously. It is worth pointing
out that the converse may not hold, i.e., our system may permit certain reactions that
a more detailed model might rule out, e.g., due to steric effects that might present the
DNA from actually adopting the required conformation.

7.3 Extensions

The discussion above is phrased entirely in terms of tethered structures, however, simi-
lar techniques could be used in non-tethered but non-trivial DNA structures, e.g., those
studied in our previous work on strand graphs [15]. In this context, we would sim-
ply pick an arbitrary position from the structure to serve as the origin and would omit
the tc(P) term from Definition 5 (which would also remove the constraints that prohibit
negative z-coordinates). This would enable us to use constraint solving to find reachable



domain bindings in a complex DNA nanostructure, with the caveat that issues such as
potential steric hindrance between strands would not be modelled. Existing free energy
approaches allow calculation of base-pairing probabilities [21] for nucleic acid nanos-
tructures that include certain restricted classes of pseudoknots in polynomial time. As
before, this thermodynamic model will be more physically accurate than our model, as
it is based on thermodynamic experiments at the individual base-pair level. However,
our work could similarly be used as a precursor to a more detailed analysis using free
energy methods.

It is worth noting that, in all of the examples presented above, it is the case that for
any position tether(cx,cy,cz), then cx = rx, cy = ry, and cz = 0, for some constants rx and
ry. It is also the case that for any position ε(cx,cy,cz), then cx = x, cy = y, and cz = z, for
some variables x, y, and z. That is, the locations of all tethers are fixed and are always
in the z = 0 plane, and all untethered domain junctions are completely free to vary
(subject to the other constraints). However, our approach is more general than this—in
principle, we could leave certain tether coordinates unspecified and let the constraint
solver search for satisfying instantiations. Thus, this work lays the foundation for the
development of further automated tools for tethered molecular computing systems, such
as circuit synthesis tools that take a logic function as input and return a layout for
a molecular circuit that will implement that logic function without crosstalk. In this
context, our constraint-based system would be used to determine the positioning and
spacing of components that would be required to make the products of the desired
reactions plausible but the products of the undesired reactions implausible. Ideally, any
circuit synthesis algorithm of this type would keep the constraint problems that must be
solved as small as possible for maximum efficiency, and might use some kind of global
optimization procedure or genetic algorithm to converge towards a suitable design. We
could also allow non-zero z-coordinates for tether locations, which would correspond
to the underlying surface being a 3D nanostructure as opposed to a flat tile.
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