
Pattern formation by spatially organized
approximate majority reactions

Matthew R. Lakin1 and Darko Stefanovic1,2

1 Department of Computer Science, University of New Mexico, Albuquerque, NM, USA
2 Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, USA

{mlakin,darko}@cs.unm.edu

Abstract. Pattern formation is a topic of great interest in biology and nanotech-
nology. In this paper we investigate a system of spatially-organized reactions in-
spired by a well-known distributed algorithm for approximate majority voting,
and demonstrate that this system can lead to pattern formation from a randomly
initialized starting state. We also show that the approximate majority reaction
scheme can preserve an existing pattern in the face of noise, and that exerting
control over reaction rates can influence the generated pattern. This work has
potential applications in the rational design of pattern-forming systems in DNA
nanotechnology and synthetic biology.

1 Introduction

Pattern formation is a fundamental topic in many areas of developmental biology. Tur-
ing [1] showed that certain systems of reaction-diffusion equations may give rise to
spatiotemporal patterns, which can account for certain features of plant morphogenesis.
Since nature has repeatedly found programmed pattern formation to be a robust means
of directing the development of biological structures, the implementation of synthetic
biochemical systems with similar spatial behavior has been a key goal of molecular
programming [2, 3].

Spatiotemporal patterning systems such as those discovered by Turing depend on
a balance between diffusion timescales: short-range inhibition and long-range activa-
tion are required for pattern formation. This fact has made it challenging to engineer
synthetic biological systems for programmed pattern formation, because suitable dif-
fusible molecules must be chosen to set up the morphogen gradients. In this paper we
investigate the formation and preservation of spatial patterns by purely local reaction
rules, which could form the basis of simplified synthetic patterning systems. The reac-
tion rules in question are the approximate majority reaction scheme of Angluin et al.
[4], which were originally developed as a distributed voting algorithm but which we
employ as a set of spatial reaction rules to enable pattern formation.

The remainder of this paper is structured as follows. We introduce the approximate
majority reaction scheme in Section 2 and use it as the basis for a spatial reaction system
in Section 3. We present the results of simulations of the spatial approximate majority
system in Section 4 and conclude with a discussion in Section 5.



2 The approximate majority system

The approximate majority (AM) system was introduced by Angluin et al. [4] as a lead-
erless algorithm for rapidly converging to a consensus between distributed agents with
limited computing power. In its simplest form, the AM system is a chemical reaction
network comprising three species (A, B, and X) and three reactions:

A+B −→ X +X (1)
A+X −→ A+A (2)
B+X −→ B+B (3)

From an initial state consisting of just species A and B, the intent of the AM reaction
system is to convert all of the individuals into whichever species was initially present
in the majority. When an A and a B meet, they are each converted into an X by reaction
(1). When an X subsequently encounters an A or a B, the X is converted into another
copy of the species it encountered, by either reaction (2) or reaction (3). The original
formulation of the AM system assumes that the system is dilute and well-mixed, and
therefore obeys the laws of mass action chemical kinetics. In this situation, the intuition
behind the AM algorithm is that when an X species is created, it will be more likely
to subsequently encounter whichever of A and B is present in the majority. Hence it is
more likely for the initial majority species to catalyze the conversion of the minority
species into the majority than for the initial minority species to catalyze the conversion
of the majority species into the minority.

Implementations of the AM system using DNA strand displacement reactions have
been studied both theoretically [5, 6] and in the laboratory [7], and networks with simi-
lar dynamic behavior have been observed in the regulatory systems that govern the cell
cycle [8]. Hence this system of chemical reactions is of theoretical and practical interest
as an object of study.

3 Spatially-organized approximate majority reactions

In this paper we consider the AM reactions in the context of a spatially-organized re-
action system. To our knowledge, this is the first paper to consider the approximate
majority system in a spatial context. As shown in Figure 1, we consider a grid of hexag-
onal cells in which every cell is labeled with a species: either A, B, or X . If two neigh-
bouring cells are labeled with species that are reactants for one of the AM reactions
from Section 2, then those cells can be relabeled with the products from the corre-
sponding reaction, as shown in Figure 1. Our scheme is essentially a hexagonal cellular
automaton—we choose to work in a hexagonal structure to avoid the potentially thorny
issue of whether a given cell should be able to interact with a diagonally adjacent cell. In
the interest of simplicity, we do not consider diffusion, which is required for alternative
models of pattern formation, such as Turing patterning.

The rationale behind the use of AM reactions for spatial pattern formation is as fol-
lows. When species A and B occur in proximity, reaction (1) converts them both into
X . Then, depending on whether A or B is predominant in that part of the grid, the oc-
currences of X will be preferentially converted to either A or B by reaction (2) or (3).



(a) A grid with two cells selected to in-
teract (identified by a bold outline).

(b) The grid after relabeling the se-
lected cells according to reaction (1).

Fig. 1: Hexagonal reaction grids with AM species and reactions. Here and henceforth,
green cells represent species A, red cells represent species B, and grey cells represent
species X .

By this mechanism, patterning in the occurrence of species A and B should be, roughly,
preserved by the AM reactions. The AM reactions may also provide a means to generate
a stable, spatially heterogeneous pattern from a uniformly-distributed, random starting
state. Furthermore, if there is a possibility of noise that causes species A and B spon-
taneously to interconvert, the AM reactions may enable us to prevent a heterogeneous
pattern from degenerating towards a uniform species distribution due to the effects of
noise. Below we present the results of simulations designed to investigate these proper-
ties of the spatial AM reaction system.

4 Results

4.1 Pattern formation

We investigated the pattern formation capabilities of spatially organized AM reac-
tions by running stochastic simulations starting from randomly-initialized, non-periodic
grids, using a Gillespie-style algorithm [9]. In all simulations we used grids that are 40
cells wide and 40 rows tall. Each cell was initialized to either species A or B with equal
probability—we did not include any cells of the intermediate species X in the initial
grids. In these initial simulations, we fixed a uniform rate constant of 1.0 for all three
AM reactions, throughout the grid. We ran all simulations for 100,000 time units, as
this was empirically found to be a suitable timescale to observe the phenomena under
study.

The simulation algorithm can be summarized as follows. At the beginning of the
simulation, the set of all possible reactions between cells in the initial grid was enu-
merated. The next reaction to occur was selected at random, with the probability of se-
lecting a given reaction proportional to its rate constant. Simulation time was advanced
by the time until the next reaction, which was drawn from an exponential distribution
with mean 1/ρ , with ρ being the rate constant of the selected reaction. The grid was
transformed by applying the selected reaction, the select of possible reactions was up-
dated to reflect the changes in the grid. The simulation loop was iterated until either the



(a) Initial grid. (b) Final grid #1.

(c) Final grid #2. (d) Final grid #3.

Fig. 2: An initial grid and three example final grids generated from the initial grid via
stochastic simulations.

time limit was reached or the grid reached a state from which no further reactions were
possible.

Figure 2 shows a randomly-initialized grid together with three example grids de-
rived from the initial grid by stochastic simulations using the AM reactions. In each
case, we observe that the grid pattern evolves towards a state in which cells of a par-
ticular species accumulate into uniform patches, with the only subsequent reactions
occurring at the borders between patches. These examples demonstrate that spatially-
organized AM reactions can introduce long-distance order into a grid via purely local-
ized reactions. This happens because the AM reactions allow the species that is domi-
nant in a particular area of the grid to convert neighbouring cells of the other species to
the dominant species, leading to the development of uniform patches.

To quantify this pattern-forming effect, we define a metric to measure the uniformity
of the pattern around a given cell in a grid. We assume that each cell in the grid is
labelled with a unique index i, and write G(i) for the species of the cell in G that is
labeled with i. We say that a path, p, is a finite list [i1, . . . , in] of indices such that the
grid cell labeled with ik+1 is a direct neighbour of the grid cell labeled with ik and write
pathsG(i1, i2) for the set of paths that start from cell i1 and end at cell i2 in grid G. The
length, len(p), of a path p is the number of steps in the path, i.e., len([i1, . . . , in]) = n−1.
For two indices i1 6= i2 in the grid G, we write distG(i1, i2) for the length of the shortest



path from i1 to i2 in grid G, i.e.:

distG(i1, i2) = min({len(p) | p ∈ pathsG(i1, i2)})

We write spG(i1, i2) for the set of paths from pathsG(i1, i2) that have length distG(i1, i2).
Then, we can define the n-neighbour metric, µn,G, as follows:

µn,G(i) = {i′ | distG(i, i′) = n∧∃p ∈ spG(i, i
′). ∀i′′ ∈ p. G(i′′) = G(i)}

The set µn,G(i) contains the indices of all cells at distance n from i in the grid G that
contain the same species as cell i and are connected to i by a path of length n that only
traverses cells that also contain the same species as cell i. This set excludes cells that are
either not part of the same contiguous patch as i or are in the same contiguous patch but
not directly connected by a minimal-length path within the patch. This gives a robust
measure of the uniformity of the pattern around cell i, because circuitous routes and
non-connected cells are not counted. To account for the fact that cells near the edge
of the grid may have fewer neighbours, in practice we report the size of µn,G(i) as a
percentage of the total number of cells at distance n from i, i.e.:

πn,G(i) =
( |µn,G(i)|
|{i′ | distG(i, i′) = n}|

)
×100

If πn,G(i) is close to 100% then the region of radius n around cell i has a highly uniform
pattern containing the same species as i. If πn,G(i) is close to 0% then the pattern in the
region of radius n around cell i is either highly fragmented or dominated by a different
species than the species in i. The distribution of the values of πn,G(i) for all of the
cells in a grid allows us to visualize the extent to which the pattern has separated out
into well-defined, uniform patches. Figure 3 shows a worked example of computing the
value of this metric for an example grid.

To measure the changes between grids G1 and G2 of the same size and shape, we
use the Hamming distance, H(G1,G2), which is the number of cells that have different
species in G1 and G2. Since the grids have the same size, this can be straightforwardly
expressed as a percentage of the total number of cells in the grid, which we write as
Hp(G1,G2).

We ran simulations starting from 200 randomly-initialized grids, with 50 stochastic
runs from each initial grid. Figure 4a plots the percentage Hamming distance between
the grid states at time t and 1,000 time units earlier, i.e., Hp(G(t),G(t−1000)). The
mean value of this metric decreases towards zero over time, showing that the rate of
change of the pattern slows over time. Figure 4b quantifies the change in structure of
the grid patterns by plotting the aggregated values of the π3,G metric for each cell in
the initial and final grids from all 10,000 grid simulations. Here and henceforth, we
report the values of neighbour metrics for n = 3 because the metric computation masks
features of size less than n, so for larger values of n we may fail to detect some pattern
features. Conversely, for smaller values of n the metric may be overly sensitive to small-
scale pattern features in the computation. The initial grids show a broad distribution
of π3,G values between 0% and 40%, which corresponds to a chaotic initial pattern.
Conversely, the vast majority of the final grid cells have π3,G values between 95% and
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µ3,G(35) = {14,20,42}.

|{i′ | distG(35, i′) = 3}|= 13.

Hence, π3,G(35) = 3
13 ×100≈ 23%.

Fig. 3: Computing the value of the π3,G metric for cell 35 (identified by a bold outline) in
an example grid. Note that 12,17,39 6∈ µ3,G(35) because those cells are not connected to
cell 35 by any path of cells with the same species as cell 35, i.e., species A. Furthermore,
note that 8 6∈ µ3,G(35) because it is not connected to cell 35 by a path of A cells with
length 3 (the shortest such path is [8,14,25,30,35], which has length 4).

100%, which means that almost all cells are surrounded by a highly homogeneous patch
with a radius of at least 3 cells. Together, these results demonstrate that the grids tend to
evolve towards a pattern consisting of homogeneous patches, where further interactions
can only occur at patch boundaries, which causes the rate of change of the pattern to
slow over time.

4.2 Pattern preservation in the face of noise

The ability of the spatial AM reaction scheme to generate patterns from randomized
starting conditions should also make it well suited to preserve an existing pattern in the
face of noise. To test this hypothesis, we augmented the standard AM reactions with
two “noise” reactions that enable cells to unilaterally switch between species A and B
with a noise rate ν , as follows:

A ν−→ B B ν−→ A.

Instead of starting from a grid with uniformly-distributed species, we generated a uni-
form grid of A cells and added a number of hexagonal patches of B cells at random
positions and with random sizes. We fixed the rates of the standard AM reactions at 1.0,
and ran a total of 1,000 simulations (50 repetitions from 20 initial grids) to observe how
well the spatial AM reactions preserved the initial pattern over 100,000 time units in the
face of noise reactions with rate ν = 0.1. Example initial and final grids from these sim-
ulations are presented in Figure 5, where we see that noise reactions alone completely
obliterate the initial pattern. However, the inclusion of AM reactions preserves the pat-
tern as well (or better) than in the noise-free case where only AM reactions may occur.
This may be explained by the observation that, when noise reactions are included, some
time is spent suppressing noise instead of altering the overall grid pattern, meaning that
the overall pattern may be modified less in a given period of simulation time.

Figure 6a plots the percentage Hamming distance between the grid state at time t
and the initial grid state, i.e., Hp(G(t),G(0)). With just noise reactions, the mean value
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Fig. 4: Statistics from simulations with randomly-initialized grids. (a) Solid line is the
mean from 10,000 simulations, and dotted lines are one standard deviation above and
below the mean. (b) Values of π3,G were computed for all cells in the initial and final
grids of 10,000 simulations and combined into two histograms.

of this metric converges to 50%, which is to be expected because the end result in this
case will be a grid in which species A and B are uniformly distributed across the grid,
so each cell has a 50% chance of being in a different species than in the initial grid.
With both noise and AM reactions, however, the mean value rises more slowly. With
just AM reactions, the mean value is in between the two, but with a larger variance
due to the wide range of possible final states of the AM system. Figure 6b plots the
distribution of π3,G values across all initial grids and final grids. In the initial grids, we
see that almost all cells have π3,G values close to 100%, representing the highly ordered
initial grid states. With just AM reactions, the final grid state is even more ordered,
with an even higher percentage of cells whose π3,G values are close to 100%. With
just noise reactions, the distribution in the final states is shifted significantly, such that
almost all π3,G values are between 0% and 50%, which represents the expected highly
fragmented pattern. With the inclusion of AM reactions, however, the final states retain
a significant proportion of cells with π3,G values between 50% and 100%, with the
highest frequency between 90% and 95%. There is an additional peak between 0% and
5% which we interpret as cells whose species have been flipped by noise but which have
not yet been flipped back by the AM reactions. These results demonstrate that the AM
reactions significantly slow pattern degradation by noise and help to preserve regions of
homogeneity in the initial pattern. As simulation time tends to infinity, we expect that
the combination of noise and AM reactions would eventually disrupt the initial pattern,
but this process should be slowed by the AM reactions.



(a) Initial grid. (b) Final grid with just noise.

(c) Final grid with just AM reactions. (d) Final grid with noise and AM reactions.

Fig. 5: An initial grid and final grids generated under different reaction schemes from
the initial grid via stochastic simulations. The noise rate was ν = 0.1 in all cases.

4.3 Controlling pattern formation

In the reactions studied in Section 4.1, we observed pattern formation but without a
means of controlling or predicting the resulting pattern. To demonstrate some control
over the resulting pattern, we ran simulations starting from randomized initial grids with
non-uniform reaction rates across the grid. We set the rate of the reaction B+X −→ B+B
to ρ < 1.0 when one or both reactants are on the left-hand side of the grid (defined by
a vertical line between the 20th and 21st columns of cells, which splits the grid into
halves) and 1.0 when both reactants are on the right-hand side. The positions of the two
reactants relative to each other were not used when computing these rates, only their
absolute position on the grid. Similarly, we set the rate of the reaction A+X −→ A+A
to be 1.0 when one or both reactants are on the left-hand side of the grid and ρ < 1.0
when both reactants are on the right-hand side. The rate of the reaction A+B −→ X +X
was fixed at 1.0 across the whole grid. Since the reaction to replace X with B will be
slower than the other reactions on the left-hand side of the grid, and the reaction to
replace X with A will be slower than the other reactions on the right-hand side of the
grid, the expected result of the simulations would be to generate a pattern in which the
left-hand side of the grid is dominated by species A and the right-hand side of the grid
is dominated by species B.
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Fig. 6: Statistics from noise simulations. (a) Central lines are the mean from 1,000
simulations, and dotted lines are one standard deviation above and below the mean. (b)
Combined values of π3,G for all cells in the initial grids for 1,000 simulations, and for
the final grids in the presence of just AM reactions, just noise, and both noise and AM
reactions. The noise rate was ν = 0.1 in all cases.

We ran a total of 1,000 simulations (50 repetitions from 20 initial grids, initialized
with a uniform distribution of A and B) with non-uniform reaction rates as described
above, using ρ = 0.9 as the slower reaction rate. Figure 7 shows an initial grid and
example grids derived from it by a single stochastic simulation, at various time points.
We observe that the grid pattern gradually moves from the chaotic initial grid towards
a state in which the grid is split in half, with the left-hand side dominated by species
A and the right-hand side dominated by species B. This supports our hypothesis that
modifying the reaction rates as described above would produce a pattern of this kind.

Figure 8a plots the percentage Hamming distance between the grid state at time t
and the expected grid GAB (split exactly in half with the left-hand side containing only
species A and the right-hand side containing only species B), i.e., Hp(G(t),GAB). The
mean value of this metric is initially around 50% due to the uniform initial distribution
of species in the grid, rises as cells are initially converted to the intermediate X species,
and subsequently decreases towards zero, indicating that the simulations are tending to
converge towards the expected pattern. Figure 8b plots the distribution of π3,G values
across all initial grids and final grids. As discussed above, the distributions are indica-
tive of a chaotic initial state and a well-ordered final state with well-defined patches.
These results show that increasing the relative rate of the reaction that converts X into a
given species in one part of the grid biases the pattern towards that species in that area,
demonstrating that we can control pattern formation by controlling reaction rates.



(a) Initial grid. (b) Example grid after 25,000 time units..

(c) Example grid after 50,000 time units. (d) Example grid after 75,000 time units.

Fig. 7: An initial grid and example grids generated by a stochastic simulation using
non-uniform reaction rates to control pattern formation, with ρ = 0.9. The choice of
reaction rates causes the chaotic initial pattern to move towards a pattern in which the
left and right sides of the grid are dominated by species A and B, respectively.

5 Discussion

To summarize, we have demonstrated that the AM reaction scheme of Angluin et al. [4]
provides a simple means for large-scale pattern generation via local interaction rules.
The reactions enable the emergence of long-range order from random initial condi-
tions and can preserve an established pattern in the face of noise. Manipulating reaction
rates provides a possible means of controlling the generated pattern. This work has
potential applications in morphogenetic engineering for synthetic biology [10], and in
autonomous generation of patterned surfaces for DNA-templated nanofabrication [11].

Pattern formation is a well-developed field of study in many areas of science [12]. In
statistical physics, a particular emphasis is placed on Ising spin models [13], which are
capable of pattern generation [14]. In biology, reaction-diffusion systems were proposed
by Turing [1] as the basis for various naturally-occurring patterns [15], and were first
observed by Castets et al. [16]. Spatiotemporal patterns of predator and prey species are
well-known in ecology, most famously predicted by the Lotka-Volterra model [17, 18].
Pattern formation in chemistry is known to occur in a number of systems, in particular
the Belousov-Zhabotinsky reaction [19, 20], which can exhibit non-trivial spatiotem-
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Fig. 8: Statistics from simulations to control pattern formation. (a) The expected grid is
split in half, with the left-hand side containing only species A and the right-hand side
containing only species B. Solid line is the mean from 1,000 simulations and dotted
lines are one standard deviation above and below the mean. (b) Values of π3,G were
computed for all cells in the initial grids for 1,000 simulations, and for the final grids
obtained via stochastic simulations, using non-uniform reactions with ρ = 0.9.

poral behaviour [21, 22]. In DNA nanotechnology, similar spatiotemporal waves have
been observed in synthetic genetic oscillators [3]. To our knowledge, the pattern forma-
tion scheme proposed in this paper is novel in that it specifically exploits the properties
of the AM reactions as a rationally designed method to impose spatial order via local
communication, as opposed to long-range coordination. Our work has clear links to
recent attempts to understand the role of the AM reaction scheme in cell biology [8]
and to implement the AM reactions in mass action chemistry using two-domain DNA
strand displacement [7].

For future work, it will be important to investigate the robustness of the pattern for-
mation process to changes in the experimental conditions. Our results from Section 4.3
suggest that variations in reaction rates can have dramatic effects on the generated pat-
tern, which may be challenging for a practical implementation. It will also be interest-
ing to investigate other methods of exerting control over the resulting pattern, and the
classes of patterns that can be formed or preserved by this mechanism, e.g., patterns
with complicated shapes such as mazes with thin walls of species A overlaid on a back-
ground of species B. As an alternative to modulating reaction rates, it may be possible
to augment the basic AM reaction set with additional reactions to favour certain kinds
of pattern. A detailed theoretical study of this pattern formation mechanism, e.g., to
prove properties of the way the patterns evolve over time, may shed light on these is-
sues. In particular, incorporating a temperature parameter and expressing reaction rates
as functions of temperature may reveal non-linear, temperature-dependent effects in the



pattern formation process. It may also be enlightening to simulate spatial AM reactions
on larger grids, and in a toroidal cellular automaton framework with periodic boundary
conditions. These would reduce any edge effects, as discussed in Section 4.1.

From a practical perspective, spatial reaction grids such as those described in this
paper could be constructed in the laboratory using hexagonal DNA origami assem-
bled on a pre-formed scaffold [23] or on tethered microspheres [24, 25]. The pattern-
generating interactions could be implemented using DNA strand displacement reactions
[26, 7]. Alternatively, spatial AM reaction systems could be constructed within net-
works of communicating bacteria [27–30], providing a means for rationally designed
pattern generation [31, 32] via local interactions, without a reliance on long-range dif-
fusion.
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