
FAROS: Illuminating In-Memory Injection 
Attacks via Provenance-based Whole System 

Dynamic Information Flow Tracking
Meisam Navaki Arefi, Geoffrey Alexander,

Hooman Rokham, Aokun Chen, Michalis Faloutsos, Xuetao Wei, 
Daniela Seabra Oliveira and Jedidiah R. Crandall



Problem

2

● In-memory Injection attacks.

● They are becoming more and more common.

● We built a reverse engineering tool to flag them and give analysts the 
information they need to reverse engineer such malware.

● An analyst needs visibly into memory throughout the execution.



In-Memory Injection Attack
● Operates only on memory

● Acts very stealthy

● Hard to detect

● An analyst needs visibly into memory throughout the execution.

3



Threat Model
● Reflective DLL injection

● Process hollowing/replacement

● Code/process injection

4



Threat Model - Reflective DLL Injection
● Reflective DLL injection refers to loading a DLL from memory rather than 

from disk.

● Windows doesn’t have such loading function.

● Write your own load function: Omitting some of the things Windows normally 
does, e.g. registering the DLL as a loaded module.

5



Threat Model - Process Hollowing
● Start a process in a suspended state.

● Replace the process image with a malicious one.

● Run the process.

● Easy!
6



Threat Model - Code Injection
● Write the malicious code directly to the address space of the target process.

● Have the target process run the code.

● Easy!

7



Motivation
● Current malware analysis solutions, e.g. CuckooBox and memory forensics 

tools, are no match.
● An analyst needs visibility into memory throughout the execution to flag such 

attacks.
● Question:

○ How the attack was conducted? 
○ What is the source of the attack?
○ ...

8



Dynamic Information Flow Tracking (DIFT)
● Makes systems transparent for attack detection, enforcement of security 

policies and forensics*

9

*Suh et al. 2004, Minos (Crandall and Chong 2004), TaintCheck (Newsome and Song 2005), and Vigilante (Costa et al. 
2004)



DIFT - How?
I. Introduce the tags/taints

II. Propagate the tags
III. Check the status of tags

10



Shadow Memory

11



DIFT Example

12



DIFT Example

13



DIFT Example

14



DIFT Example

15



DIFT Example

16



DIFT Example

17



Provenance List

● Each byte could have a list of tags (provenance list).

                                            A provenance list for a specific byte

18



Tag Confluence
● Two or more tags of different types can “come together”.

19



Tag Confluence
● A bytes comes in from the network and then moves to the physical memory.

20



Tag Confluence
● Process #1 accesses that byte.

21



Flagging Policy via Provenance-based DIFT

22

Data coming in from the network (Netflow tag) 
SHOULD NOT “come together” with linking/loading data 
exported by the kernel (export table tag).

That shouldn’t happen under normal circumstances!



Flagging Policy via Provenance-based DIFT
● Tag confluence heuristic: 

23



System Architecture

24



Results - Reflective DLL Injection

25



Results - Reflective DLL Injection

26



Comparison with CuckooBox

27

● Most popular open-source malware analysis system.

● We tested CuckooBox on in-memory injection attacks.

● CuckooBox (along with malfind and Volatility plugins) provided limited visibility 
into these attacks.

● With CuckooBox, we are blind as to how the attack was conducted.



True/False Positive Analysis
● Tested against 6 memory injection attacks and successfully flagged them all.

● Tested against 90 non-injecting malware samples and 14 benign software 
from various categories.

○  FAROS presented a very low false positive rate of 2%.

28



Performance Evaluation
● Performance is not a priority for FAROS.

● Focused on providing a low false positive rate.

● FAROS’ slowdown is 56X compared to QEMU.

29



Conclusions
● Presented FAROS, a DIFT-based reverse engineering tool, which can 

illuminate in-memory injection attacks.
● Tag confluence as a promising heuristic.
● Very low false positive (2%).
● FAROS 

○ can save reverse engineers substantial time and effort in practice.
○ can provide reverse engineers with valuable information about any in-memory injection 

attacks.

● FAROS is open source:
○ https://github.com/mnavaki/FAROS

30

https://github.com/mnavaki/FAROS


Acknowledgments
● Our reviewers and our shepherd, Etienne Riviere.

● DARPA Trusted Computing Project (Grant No. FA8650-15-C-7565) and the 
U.S. National Science Foundation (Grant Nos. #1518523, #1518878).

● NSF disclaimer: Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the author and do 
not necessarily reflect the views of the National Science Foundation.

31



                 Thank you!
                 
                             mnavaki@unm.edu

32


