
8. Reconstructing Optimal Phylogenetic Trees:

A Challenge in Experimental Algorithmics

Bernard M. E. Moret1 and Tandy Warnow2

1 Department of Computer Science, University of New Mexico
Albuquerque, NM 87131, USA
moret@cs.unm.edu

2 Department of Computer Sciences, University of Texas
Austin, TX 78712, USA
tandy@cs.utexas.edu

Summary.

The benefits of experimental algorithmics and algorithm engineering
need to be extended to applications in the computational sciences. In this
paper, we present on one such application: the reconstruction of evolution-
ary histories (phylogenies) from molecular data such as DNA sequences.
Our presentation is not a survey of past and current work in the area, but
rather a discussion of what we see as some of the important challenges
in experimental algorithmics that arise from computational phylogenetics.
As motivational examples or examples of possible approaches, we briefly
discuss two specific uses of algorithm engineering and of experimental al-
gorithmics from our recent research. The first such use focused on speed:
we reimplemented Sankoff and Blanchette’s breakpoint analysis and ob-
tained a 200, 000-fold speedup for serial code and 108-fold speedup on
a 512-processor supercluster. We report here on the techniques used in
obtaining such a speedup. The second use focused on experimentation:
we conducted an extensive study of quartet-based reconstruction algo-
rithms within a parameter-rich simulation space, using several hundred
CPU-years of computation. We report here on the challenges involved in
designing, conducting, and assessing such a study.

8.1 Introduction

A phylogenetic tree or phylogeny is a representation of the evolutionary his-
tory of a collection of organisms, in which modern organisms are placed at
the leaves of the tree and the (unknown) ancestral organisms occupy internal
nodes; the edges of the tree thus denote evolutionary relationships. Due to
difficulties in rooting the trees, these phylogenies are usually (but not always)
represented by unrooted leaf-labelled trees. Figure 8.1 shows two proposed
phylogenies, one for several species of the Campanulaceae (bluebell flower)
family (from [8.10]) and the other for herpesviruses that are known to affect
humans (from [8.8]). Note that the Campanulaceae tree is rooted through the
use of a distantly related species (here tobacco), called an outgroup in this
context (the root is taken to be the internal node to which the outgroup is
attached); the herpesvirus tree is unrooted.

c© Springer-Verlag Berlin Heidelberg 2002
R. Fleischer et al. (Eds.): Experimental Algorithmics, LNCS 2547, pp. 163–180, 2002.

164 Bernard M. E. Moret and Tandy Warnow

Tobacco

Platycodon

Cyananthus

Codonopsis

Triodanus

Asyneuma

Legousia

Adenophora

Campanula

Symphyandra

Trachelium

Merciera

Wahlenbergia
2.42

0.18

2.82
0.77

3.22

3.39

1.61
1.28

2.59

4.68

3.32
2.22

10.75

2.25

0.78

4.34

1.75

4.25

1.61

0.83

0.063

0.94
0.23

Fig. 8.1. Two phylogenies: some plants of the Campanulaceae family (left) and
some herpesviruses affecting humans (right)

Reconstructing phylogenies is a major component of modern research pro-
grams in many areas of biology and medicine. An understanding of evolution-
ary mechanisms and relationships is at the heart of modern pharmaceutical
research for drug discovery, is helping researchers understand (and defend
against) rapidly mutating viruses such as HIV, is the basis for the design of
genetically enhanced organisms, etc. In developing such an understanding,
the reconstruction of phylogenies is a crucial tool, as it allows one to test new
models of evolution. Due to the importance of phylogenetic trees in biologi-
cal inquiry, there are many methods available for reconstructing phylogenetic
trees. Most of these methods are applied to biomolecular sequences, such as
DNA, RNA, or amino-acid sequences. More recently, methods have also been
developed to reconstruct phylogenies from data on gene content and gene
order within a genome.
Evaluating the performance of phylogenetic reconstruction methods is

complicated. Since many phylogenetic reconstruction methods are explicit
attempts to solve optimization problems, methods may be compared, for ex-
ample, with respect to the value of these optimization criteria on both real
and synthetic data. However, the biological community has also looked at the
performance of these methods with respect to an assumed stochastic model of
evolution and has evaluated phylogenetic methods with respect to the topo-
logical accuracy of the underlying unrooted trees returned by these meth-
ods. Thus, phylogenetic methods are evaluated in two different, yet related,
ways. Furthermore, the difficulty in establishing true evolutionary histories
for many datasets has led the research community to study these questions
largely from results on synthetic, rather than real, data, and to use simu-
lations as the main technique. The design of appropriate simulation studies
presents interesting and subtle challenges to the researcher in experimental
algorithmics.
Fast implementations of phylogenetic methods are also of potentially

tremendous impact, since biologists want to apply these methods to large

8. Reconstructing Optimal Phylogenetic Trees 165

datasets (containing hundreds to thousands of taxa)—and some smaller
datasets have required nearly one hundred CPU-years of computation on
modern machines for acceptable analyses. Thus, algorithm engineering also
has an important role to play in this domain.
In this paper, we review the experimental challenges posed by phylogeny

reconstruction, in terms both of algorithm engineering and of data generation,
collection, and analysis, and present examples from our own experimental
research.

8.2 Data for Phylogeny Reconstruction

Phylogenies are most commonly reconstructed using biomolecular sequences
(DNA, RNA, or amino acid) for particular genes or non-coding regions of
DNA. More recently, “genomic rearrangement” data have been used to infer
deep evolutionary histories (i.e., very ancient evolutionary events), as well as
to clarify evolutionary relationships in difficult datasets. The use of genome
rearrangement data is part of an increased interest in the development of new
sources of phylogenetic information, especially those which can be character-
ized as “rare genomic changes” (see [8.31] for a survey of these approaches).
Sequence data and genomic rearrangement data are highly complementary,
with different rates of evolution especially in organelles (chloroplasts and mi-
tochondria), so that using both types of data holds potential for improving
accuracy in phylogenetic reconstructions.
DNA, RNA, and amino-acid sequences are used for phylogenetic recon-

struction. DNA and RNA sequences can be considered simply as strings over
a 4-letter alphabet (A, C, T, and G for DNA), while amino-acid sequences
can be considered as strings over a 20-letter alphabet (one for each amino-
acid). These sequences evolve through events such as substitutions of one
nucleotide by another, insertions and deletions of substrings, etc. Typical
sources of biomolecular sequence data are individual genes, so that the se-
quence coding for a given gene is used in each of the relevant taxa. These
sequences are then placed in a multiple alignment through the introduction
of spaces; each resulting column of the alignment then corresponds to a place
in the sequence and changes can be identified as mutations (two sequences
have different entries in that column), insertions (a sequence has an entry,
but the other has a space), and deletions (the reverse). Computing a good
multiple sequence alignment is itself a hard optimization problem, but out-
side our scope; we direct the interested reader to [8.38] for an introduction
to this problem.
Genome rearrangement data indicate how the genes are ordered within

the given genomes. Many organellar genomes are composed of a single chro-
mosome and are relatively small, so that every gene within the genome can be
identified and their relative ordering inferred (most accurately through whole
genome sequencing, but also through gene mapping). Given an ordering of

166 Bernard M. E. Moret and Tandy Warnow

the genes, we can represent a given genome by an ordering of signed integers.
Organellar genomes are thought to evolve via inversions (mechanisms that
pick up a segment of a genome and invert it, thus reversing the order of the
affected genes), transpositions (mechanisms that pick up a segment of the
genome and move it to another position, thus changing the order but not the
sign of the affected genes), and inverted transpositions (which are inversions
followed by transposition of the inverted segment).

8.2.1 Phylogenetic Reconstruction Methods

For both biomolecular sequences and gene orders, assumptions are made
about the mechanism by which these objects evolve. Phylogenetic reconstruc-
tions explicitly use assumptions about evolution, but differ in the details of
these assumptions. For example, in an analysis of DNA sequences, we may
have an explicit model about the evolutionary process; we may know the rates
of each type of nucleotide substitution on the true (but unknown) tree. If we
assume these rates, then we can seek the tree which is most likely to have
generated the given data—the so-called “maximum-likelihood” approach. We
can also use these assumptions to infer evolutionary distances between each
pair of the given sequences, where the “evolutionary distance” between two
sequences is the most likely number of individual changes within the se-
quence on the path between the two sequences. Both of these approaches
have theoretical guarantees, with respect to topological accuracy of the re-
sultant trees, provided that the model is not over-parameterized and that
the assumptions about the model are correct. However, maximum-likelihood
methods are computationally very intensive, while the second type of meth-
ods (called “distance-based” methods) tend to run in polynomial time.
A final class of methods (called “maximum parsimony”) does not make

any explicit assumption about the model parameters; instead, it seeks a tree
with a minimum “number of events”. In the context of DNA sequence evolu-
tion, these events are nucleotide substitutions, insertions, or deletions, while
in the context of gene-order data, they are inversions, transpositions, and in-
verted transpositions. Maximum parsimony is thus the Steiner Tree Problem
for the appropriate space—for instance, the maximum parsimony problem
on DNA sequences is the Hamming Distance Steiner Tree problem on strings
over a four-letter alphabet. When the input is just the set of taxa (e.g., DNA
sequences or gene orders), then the problem is to construct a tree and to label
its internal nodes in such a way as to minimize the total number of changes.
This problem is NP-hard for both types of data. The point estimation prob-
lem, i.e., the scoring of a particular tree topology (in which case the input
also includes a specific tree with leaves labelled by the taxa), is solvable in
polynomial time for the biomolecular sequence data case, but is NP-hard for
gene-order data.
These three types of methods, namelymaximum likelihood, distance-based,

and maximum parsimony, account for great majority of the methods used by

8. Reconstructing Optimal Phylogenetic Trees 167

biologists and their relative performance is passionately argued in the biolog-
ical literature. One of the major limitations of both maximum parsimony and
maximum likelihood techniques (even their heuristic versions, which may not
have any performance guarantees) is that they take too long. Even some only
moderately large datasets can take years of real analysis (hundreds of CPU
years), without resolution [8.29]. By comparison, distance-based methods,
including the popular Neighbor-Joining (NJ) method [8.32], are often quite
accurate (with respect to topological accuracy, as determined using simula-
tion studies) and are very fast (polynomial-time and fast in practice). While
the experimental evidence is not yet definitive, the best distance-based meth-
ods appear less accurate than the better heuristics for maximum parsimony
and maximum likelihood, at least on large trees with high rates of evolution
(see, e.g., [8.13]).

8.3 Algorithmic and Experimental Challenges

8.3.1 Designing for Speed

Because both parsimony- and likelihood-based approaches involve NP-hard
optimization problems and because poor approximations may lead to biolog-
ically incorrect conclusions, developing efficient exact algorithms is a major
concern. The range of data used in current analyses is fortunately limited
(e.g., the length of available DNA sequences is bounded, as is the number
of genes in a mitochondrial or chloroplast genome). This bounded range is
tailor-made for applications of algorithm engineering techniques.

8.3.2 Designing for Accuracy

When exact methods fail to terminate, one needs to use approximations.
But it is important to keep in mind that the optimization criterion rarely
has direct biological significance, so that deviations from optimal, even by
small amounts, may yield results that are grossly different from a biological
perspective. Thus the development and evaluation of approximation algo-
rithms must be guided by biological considerations. As discussed earlier, the
main criterion by which biologists judge the quality of a reconstruction is its
topological accuracy, which is only indirectly related to a parsimony or like-
lihood criterion. Indeed, the great success of the neighbor-joining heuristic,
which has no approximation guarantees for the standard optimization crite-
ria, demonstrates that the biological relevance of results matters more than
the traditional algorithmic goal of performance guarantees. Simulation exper-
iments can measure topological accuracy, but designing algorithms to produce
topologically correct trees is another matter—the methods most closely ori-
ented toward this goal, the family of quartet-based methods, turns out to
produce generally much poorer trees than the much simpler neighbor-joining
algorithm.

168 Bernard M. E. Moret and Tandy Warnow

8.3.3 Performance Evaluation

Phylogenetic reconstruction methods are evaluated according to three basic
types of criteria: statistical performance, which addresses the accuracy of the
method under a specified stochastic model of evolution; computational perfor-
mance, which addresses the computational requirements of the method; and
data requirements, which addresses the requirements, in terms of quality and
quantity, placed on the input data. Accuracy in a phylogenetic reconstruc-
tion method is determined primarily by comparing the unrooted leaf-labelled
tree obtained by the method to the “true” tree. Since the true tree is usu-
ally unknown, accuracy is addressed either theoretically, with reference to a
fixed but unknown tree in some model of evolution, or through simulation
studies. A method is said to be accurate if the tree obtained is exactly equal
to the unrooted version of the model (or true) tree; degrees of accuracy are
quantified typically by the percentage of the edges of the true tree that occur
in the estimated tree. A method is said to be statistically consistent with
respect to a specific model of evolution if it is guaranteed to recover the true
tree with probability going to 1 as the amount of data (e.g., sequence length)
goes to infinity. The latter property is not as good as it may sound: nature
provides us with finite data only—for instance, DNA sequences cannot be of
arbitrary length, much less gene orders; thus the rate of convergence is crucial
and needs to be evaluated experimentally as well as bounded theoretically
(see [8.35] for such an evaluation and [8.37] for a theoretical approach). Data
requirements therefore loom large—and indeed may prove more detrimen-
tal than computational requirements, since we can always run the program
longer.
Because the evolutionary models that biologists favor are parameter-rich,

experimental assessment of performance (whether accuracy, convergence rate,
or running time) is a daunting task: choosing how to vary the parameters
while keeping the total computation down is a difficult tradeoff.

8.4 An Algorithm Engineering Example:
Solving the Breakpoint Phylogeny

Blanchette et al. [8.6] developed an approach, which they called breakpoint
phylogeny, for reconstructing phylogenies from gene order data. Their ap-
proach is limited to the special case in which the genomes all have the same
set of genes and each gene appears once. This special case is of interest to
biologists, who hypothesize that inversions (which can only affect gene order,
but not gene content) are the main evolutionary mechanism for a range of
genomes or chromosomes (chloroplast, mitochondria, human X chromosome,
etc.). Simulation studies we conducted suggested that this approach works
well for certain datasets (i.e., it obtains trees that are close to the model
tree), but that the implementation developed by Sankoff and Blanchette, the

8. Reconstructing Optimal Phylogenetic Trees 169

For each tree topology do:
Initially label all internal nodes with gene orders
Repeat

For each internal node v, with neighbors A, B, and C, do
Solve the MPB on A,B,C to yield label m
If relabelling v with m improves the score of T , then do it

until no internal node can be relabelled

Fig. 8.2. BPAnalysis

BPAnalysis software [8.33], is too slow to be used on anything other than
small datasets with a few genes [8.9, 8.10].

8.4.1 Breakpoint Analysis: Details

When each genome has the same set of genes and each gene appears exactly
once, a genome can be described by an ordering (circular or linear) of these
genes, each gene given with an orientation that is either positive (gi) or
negative (−gi). Given two genomes G and G′ on the same set of genes, a
breakpoint in G is defined as an ordered pair of genes, (gi, gj), such that gi and
gj appear consecutively in that order in G, but neither (gi, gj) nor (−gj,−gi)
appears consecutively in that order in G′. The breakpoint distance between
two genomes is the number of breakpoints between that pair of genomes. The
breakpoint score of a tree in which each node is labelled by a signed ordering
of genes is then the sum of the breakpoint distances along the edges of the
tree.
Given three genomes, we define their median to be a fourth genome that

minimizes the sum of the breakpoint distances between it and the other three.
The Median Problem for Breakpoints (MPB) is to construct such a median
and is NP-hard [8.27]. Sankoff and Blanchette developed a reduction from
MPB to the Travelling Salesman Problem (TSP), perhaps the most studied
of all optimization problems [8.15]. Their reduction produces an undirected
instance of the TSP from the directed instance of MPB by the standard
technique of representing each gene by a pair of cities connected by an edge
that must be included in any solution.

BPAnalysis (see Figure 8.2) is the method developed by Blanchette and
Sankoff to solve the breakpoint phylogeny. Within a framework that enumer-
ates all trees, it uses an iterative heuristic to label the internal nodes with
signed gene orders. This procedure is computationally very intensive. The
outer loop enumerates all (2n− 5)!! leaf-labelled trees on n leaves, an expo-
nentially large value.1 The inner loop runs an unknown number of iterations
(until convergence), with each iteration solving an instance of the TSP (with
a number of cities equal to twice the number of genes) at each internal node.

1 The double factorial is a factorial with a step of 2, so we have (2n − 5)!! =
(2n− 5) · (2n− 7) · . . . · 3.

170 Bernard M. E. Moret and Tandy Warnow

The computational complexity of the entire algorithm is thus exponential in
each of the number of genomes and the number of genes, with significant
coefficients. The procedure nevertheless remains a heuristic: even though all
trees are examined and each MPB problem solved exactly, the tree-labeling
phase does not ensure optimality unless the tree has only three leaves.

8.4.2 Re-Engineering BPAnalysis for Speed

Profiling. Algorithmic engineering suggests a refinement cycle in which the
behavior of the current implementation is studied in order to identify prob-
lem areas which can include excessive resource consumption or poor results.
We used extensive profiling and testing throughout our development cycle,
which allowed us to identify and eliminate a number of such problems. For
instance, converting the MPB into a TSP instance dominates the running
time whenever the TSP instances are not too hard to solve. Thus we lav-
ished much attention on that routine, down to the level of hand-unrolling
loops to avoid modulo computations and allowing reuse of intermediate ex-
pressions; we cut the running time of that routine down by a factor of at
least six—and thereby nearly tripled the speed of the overall code. We lav-
ished equal attention on distance computations and on the computation of
the lower bound, with similar results. Constant profiling is the key to such an
approach, because the identity of the principal “culprits” in time consump-
tion changes after each improvement, so that attention must shift to different
parts of the code during the process—including revisiting already improved
code for further improvements. These steps provided a speed-up by one order
of magnitude on the Campanulaceae dataset.

Cache Awareness. The original BPAnalysis is written in C++ and uses a
space-intensive full distance matrix, as well as many other data structures. It
has a significant memory footprint (over 60MB when running on the Campan-
ulaceae dataset) and poor locality (a working set size of about 12MB). Our
implementation has a tiny memory footprint (1.8MB on the Campanulaceae
dataset) and good locality (all of our storage is in arrays preallocated in the
main routine and retained and reused throughout the computation), which
enables it to run almost completely in cache (the working set size is 600KB).
Cache locality can be improved by returning to a FORTRAN-style of pro-
gramming, in which storage is static, in which records (structures/classes)
are avoided in favor of separate arrays, in which simple iterative loops that
traverse an array linearly are preferred over pointer dereferencing, in which
code is replicated to process each array separately, etc. (This style of pro-
gramming is not always easy to reconcile with the currently favored object-
oriented style; fortunately, compiler support for this type of code optimization
is slowly developing—as of January 2002, for instance, at least one commer-
cial compiler could optimize storage access by breaking an array of record
into multiple arrays. We found it easier to code in C, simply because of

8. Reconstructing Optimal Phylogenetic Trees 171

the much greater transparency of the language.) While we cannot measure
exactly how much we gain from this approach, studies of cache-aware algo-
rithms [8.1, 8.11, 8.18, 8.19, 8.20, 8.39] indicate that the gain is likely to be
substantial—factors of anywhere from 2 to 40 have been reported. New mem-
ory hierarchies show differences in speed between cache and main memory
that exceed two orders of magnitude.

Low-Level Algorithmic Changes. Unless the original implementation
is poor (which was not the case with BPAnalysis), profiling and cache-aware
programming will rarely provide more than two orders of magnitude in speed-
up. Further gains can often be obtained by low-level improvement in the
algorithmic details. In our phylogenetic software, we made two such improve-
ments. The basic algorithm scores every single tree, which is clearly very
wasteful; we used a simple lower bound, computable in linear time, to enable
us to eliminate a tree without scoring it. On the Campanulaceae dataset, this
bounding eliminates over 99.95% of the trees without scoring them, resulting
in a 100-fold speed-up. The TSP solver we wrote is at heart the same basic
include/exclude search as in BPAnalysis, but we took advantage of the na-
ture of the instances created by the reduction to make the solver much more
efficient, resulting in a speed-up by a factor of 5–10. These improvements
all spring from a careful examination of exactly what information is readily
available or easily computable at each stage and from a deliberate effort to
make use of all such information.

A High-Performance Implementation.Our implementation, GRAPPA2,
incorporates all of the refinements mentioned above, plus others specifically
made to enable the code to run efficiently in parallel (see [8.23, 8.24, 8.26] for
details). Because the basic algorithm enumerates and independently scores
every tree, it presents obvious parallelism: we can have each processor han-
dle a subset of the trees. In order to do so efficiently, we need to impose a
linear ordering on the set of all possible trees and devise a generator that
can start at an arbitrary point along this ordering. Because the number of
trees is so large, an arbitrary tree index would require unbounded-precision
integers, considerably slowing down tree generation. Our solution was to de-
sign a tree generator that starts with tree index k and generates trees with
indices {k + cn | n ∈ N}, where k and c are regular integers, all without
using unbounded-precision arithmetic. Such a generator allows us to sample
tree space (a very useful feature in research) and, more importantly, allows
us to use a cluster of c processors, where processor i, 0 ≤ i ≤ c− 1, generates
and scores trees with indices {i+ cn | n ∈ N}. We ran GRAPPA on the 512-
processor Alliance cluster Los Lobos at the University of New Mexico and
obtained a 512-fold speed-up. When combined with the nearly 200, 000-fold
speedup obtained through algorithm engineering, our run on the Campan-
ulaceae dataset demonstrated a one hundred million-fold speed-up over the
2 Genome Rearrangement Analysis through Parsimony and other Phylogenetic
Algorithms.

172 Bernard M. E. Moret and Tandy Warnow

original implementation [8.26] (a first speedup of one million was reported
in [8.2]).

8.4.3 A Partial Assessment

Clearly, generating every single tree is a self-defeating approach: even our
huge 108-fold speedup allowed us to move from 10 taxa to just 16 taxa—and
20 or more taxa remain forever out of reach of this computational approach.
A real search strategy should reduce the cost of computation by an enormous
factor. Yet this exercise in algorithm engineering already produced significant
results in both biology and computer science: the analysis of the Campan-
ulaceae dataset conformed to the expectations of the biologists and thus
reinforced the conjecture that gene-order data carries significant information
about evolution (and, incidentally, that inversion-driven rearrangements are
indeed the main mechanism for such evolution), while the improved under-
standing of inversion distance computations gained through the implementa-
tion enabled us to design the first true linear-time algorithm for this purpose.
In turn, the availability of a fast implementation for inversion distance com-
putations and inversion-based phylogenies has spurred renewed interest in
the inversion median problem [8.7, 8.34] and other related problems.

8.5 An Experimental Algorithmics Example:
Quartet-Based Methods for DNA Data

8.5.1 Quartet-Based Methods

A quartet tree is an unrooted binary tree on four taxa. A quartet tree thus
induces a unique bipartition of the four taxa and can be denoted by that
bipartition. If the taxa are {a, b, c, d}, we can use {ab|cd} to denote the quartet
tree that pairs a with b and c with d (see Figure 8.3). A quartet tree {ab|cd}
agrees with a tree T if all four of its taxa are leaves of T and the path from a
to b in T does not intersect the path from c to d in T . Equivalently, {ab|cd}
agrees with a tree if the subtree induced in T by the four taxa is the quartet
tree itself. The quartet tree {ab|cd} is an error with respect to the tree T if it
does not agree with T . If Q(T) denotes the set of all quartet trees that agree
with T , then T is uniquely characterized by Q(T) and can be reconstructed
from Q(T) in polynomial time [8.12].

�

�

�

�

� �

��
❅❅

❅❅
��

a

b

c

d

{ab|cd}
�

�

�

�

� �

��
❅❅

❅❅
��

a

c

b

d

{ac|bd}
�

�

�

�

� �

��
❅❅

❅❅
��

a

d

b

c

{ad|bc}
Fig. 8.3. The three possible quartet trees on four taxa {a, b, c, d} and their bipar-
tition encodings

8. Reconstructing Optimal Phylogenetic Trees 173

Quartet-based methods operate in two phases. In the first phase they
construct a set Q of quartet trees on the different sets of four taxa; in the
second phase, they combine these quartet trees into a tree on the entire set
of taxa. In practice, the input data are not of sufficient quality to ensure that
all quartet trees are accurately inferred, so that quartet methods have to find
ways of handling incorrect quartet trees. With the exception of Quartet Puz-
zling, all quartet methods we examine provide guarantees about the edges of
the true tree that they reconstruct. These guarantees are expressed in terms
of “quartet errors around an edge,” a concept we now define.
Consider an edge e in the true tree T ; its removal defines the bipartition

A|B on the leaves of S. Consider those sets of four leaves {a, a′, b, b′} with
{a, a′} ⊆ A and {b, b′} ⊆ B. A quartet tree t is said to be an “error around
e” if we have t = {ab|a′b′} or t = {ab′|a′b}. Similarly, if T ′ is a proposed tree
and Q is a set of quartet trees, then t ∈ Q is an error around edge e ∈ E(T ′)
if t = {ab|a′b′} or t = {ab′|a′b}, while e defines the bipartition A|B.
Two of the methods we study, the Q∗ method (also known as the Bune-

man method) and the Quartet-Cleaning methods, can be described in terms
of an explicit bound on the number of quartet errors around the edges they
reconstruct. The Q∗ method [8.4] seeks the maximally resolved tree T ′ obey-
ing Q(T ′) ⊆ Q; therefore, there are no quartet errors around any edge in the
tree T ′. Quartet-Cleaning (QC) methods [8.3, 8.5, 8.14] have explicit bounds
on the number of quartet errors around each reconstructed edge e. These
error bounds have the form m

√
q
e
, where qe is the number of quartet trees

around edge e and m is a small constant. Thus, the Q∗ method is a cleaning
method with m = 0. The global cleaning method sets m = 1 and the local
cleaning method sets m = 1

2 ; these methods are guaranteed to recover every
edge of the true tree for which Q contains a small enough number of quartet
errors. The hypercleaning method allows m to be an arbitrary integer and
thus has the potential to recover more edges, at the cost of a high running
time (proportional to n7 ·m4m+2), so that it is impractical form larger than 5.
The final quartet-based method we examined is the best known and the

most frequently used by biologists [8.22, 8.30, 8.17]: the Quartet-Puzzling
(QP) method [8.36]. This heuristic computes quartet trees using maximum
likelihood (ML) and then uses a greedy strategy to construct a tree on which
many input quartets are in agreement. QP uses an arbitrary ordering of
taxa, constructs the optimal quartet tree on the first four, then inserts each
successive taxon in turn, attaching the new leaf to an edge of the current tree
so as to optimize a quartet-based score. Because the input ordering of taxa is
pertinent, QP uses a large number of random input orderings and computes
the majority consensus of all trees found. (The majority consensus is the tree
that contains all bipartitions that appear in more than half of the trees in
the set and is commonly used by biologists.)

174 Bernard M. E. Moret and Tandy Warnow

8.5.2 Experimental Design

We used Jukes-Cantor model trees with varying numbers of taxa and rates of
evolution to generate a large number of synthetic datasets of varying lengths.
(The Jukes-Cantor model [8.16] is the simplest of the various evolutionary
models, with just one parameter.) For each dataset generated, we computed
the neighbor-joining (NJ) and QP trees on the entire dataset and two sets of
quartet trees, one based upon ML, QML, and one based upon NJ, QNJ. We
then applied various cleaning methods to each of the sets QML and QNJ. We
compared quartet trees ofQML, ofQNJ, and of the reconstructed trees, as well
as the reconstructed trees themselves, against the model tree for accuracy.
We randomly generated model tree topologies from the uniform distri-

bution on binary leaf-labelled trees. For each edge of each tree topology, we
generated a random number (from the uniform distribution) between 1 and
1000 and used that number as the initial “length” of the edge. We then scaled
each such “base” model tree by a multiplicative factor, ranging from 10−7

to 10−3. This process produces Jukes-Cantor trees with edge lengths (λe for
edge e) ranging from a minimum of 10−7 to a maximum of 1. The edge length
denotes the probability that a particular character in the sequence at the base
of the edge will be affected by an evolutionary event along the edge; thus the
expected number of changes affecting the sequence at the base of the edge is
the product of the edge length by the sequence length. In the following we
write λe to denote the average edge length in a collection of trees—which is
just 500 times the scaling factor. We generated random DNA sequences for
the root and used the program Seq-Gen [8.28] to evolve these sequences down
the tree under the Jukes-Cantor model of evolution, thus producing sets of
sequences at the leaves, our synthetic datasets.
Because the number of distinct unrooted, leaf-labelled trees on n leaves

is (2n− 5)!! and because our input space is further expanded by the choice
of evolutionary rates, it is not possible to take a fair sample of the entire
input space. In order to obtain statistically robust results, we followed the
advice of McGeoch [8.21] and Moret [8.25] and used a number of runs, each
composed of a number of trials (a trial is a single comparison), computed the
mean outcome for each run, and studied the mean and standard deviation
over the runs of these events.
A critical parameter of our study, one that has not been explored in most

prior studies, is the number of input taxa. Previous experimental studies have
often been limited to a small number of taxa due to computational problems.
However, to resolve phylogenetic trees of interest to biologists, algorithms
must scale reasonably, both in terms of topological accuracy and running
time, to problems of the size that biologists typically study (20–200 taxa), as
well as those they would like to address (a few hundred to several thousand
taxa).
We ran our test suite for 5, 10, 20, 40, and selected sets of 80 taxa.

Our tests included a selection of eight expected evolutionary rates, from 5×

8. Reconstructing Optimal Phylogenetic Trees 175

10−5 to 5× 10−1 per tree edge. For each evolutionary rate and problem size,
we generated a total of 100 topologies, grouped into ten runs of ten trials.
All tests were conducted for four sequence lengths: 500, 2, 000, 8, 000, and
32, 000. We note that sequence lengths above 1, 000 are considered long and
those above 5, 000 extremely long; thus our study explores longer sequence
lengths than are usually encountered in practice. In all, our study used 16, 000
datasets and required many months of computation on two medium-sized
clusters.
Our focus was the accuracy of solutions generated by the various tree

reconstruction methods. To assess topological accuracy, we measured the
number of true positives (edges of the true tree that appear in the recon-
structed tree). For cleaning methods, we measured these values before and
after cleaning. For each run of ten trials, we retained only the mean values.
Our results are composed of the means for each set of ten runs.

8.5.3 Some Experimental Results

We provide only a few illustrative results from our study [8.35]. Because our
focus was accuracy, we wanted to find out whether the goal of minimizing
quartet errors would correlate closely with the true goal of maximizing topo-
logical accuracy. Our results showed convincingly that topological accuracy
is a more demanding criterion than quartet accuracy and should therefore be
used to assess performance of phylogenetic reconstruction methods; typical
results are shown in Figures 8.4 and 8.5. Both NJ and QP can return trees
with only 20% of the edges correct from a set of quartet trees that is 80% cor-
rect. Worse yet, both methods, except when the percentage of correct quartet
trees is close to 100%, can return fewer than 80% of the true tree edges (in

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

% tree edges

% quartets

0

20

40

60

80

100

0 20 40 60 80 100

×××××××
××
×

�
�����
���
�

*

*

+++++++++
+

❜
❜❜
❜❜
❜❜❜❜
❜

(a) seq. length 500

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

% tree edges

% quartets

0

20

40

60

80

100

0 20 40 60 80 100

×××××
××××
×

������
����

******++++++
++++❜❜❜❜❜
❜❜❜❜❜

(b) seq. length 2000

• 0.25

◦ 0.05

� 0.025

+ 0.005

* 0.0025

× 0.0005

λe

Fig. 8.4. Percent of true tree edges recovered by global NJ for various λe as a
function of the percentage of correct induced quartet trees for 40 taxa and two
sequence lengths

176 Bernard M. E. Moret and Tandy Warnow

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

% tree edges

% quartets

0

20

40

60

80

100

0 20 40 60 80 100

�
�
�
�
�
�
��
�

�

×
×× ×××× ×××

**
++++++
+++
+
❜❜❜
❜❜
❜
❜
❜❜❜

(a) seq. length 500

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

% tree edges

% quartets

0

20

40

60

80

100

0 20 40 60 80 100

�

�

�

�
��
�
�
�
�

×××
××××××
×

*++++++++++
❜❜❜❜❜❜
❜❜❜❜

(b) seq. length 2000

• 0.25

◦ 0.05

� 0.025

+ 0.005

* 0.0025

× 0.0005

λe

Fig. 8.5. Percent of true tree edges recovered by QP for various λe as a function
of the percentage of correct induced quartet trees for 40 taxa and two sequence
lengths

the case of QP, some such trees had only 60% of the true tree edges). Because
failure to obtain at least 90 or 95% of the edges can be unacceptable to sys-
tematists, quartet-based measures of accuracy are not acceptable surrogates
for true tree edges.
Theory predicts that the accuracy of methods will degrade as the number

of taxa increases while sequence length and average edge length (the expected
number of changes for a random site on each edge) are held fixed. Figure 8.6
shows the topological accuracy achieved by all six methods as a function
of the number of taxa for a sequence length of 500 and for three different
average edge lengths. All methods decrease in accuracy as the number of taxa
increases, even though both NJ and QP show an initial increase (particularly
for lower evolutionary rates). QC provides a distinct improvement over the
Q∗ method, whether the quartet trees are computed using ML or local NJ.
QCML and QCNJ are very close in performance, although QCNJ slightly
outperforms QCML; similarly Q∗NJ slightly outperforms Q∗ML. Of the five
quartet methods, QP is the best throughout the range of parameters studied,
but NJ completely dominates it.

8.6 Observations and Conclusions

Our two examples illustrate two different facets of computational phylogenet-
ics: the first shows that algorithmic engineering can turn what appears to be
strictly a proof of concept into a usable tool, while the second demonstrates
the scale required in good experimentation when assessing the behavior of
reconstruction algorithms. It is worth stressing that the goal of a biologist
is to analyze a specific dataset—so that the biologist will not mind running
a cluster on the problem for as long as necessary (weeks or months), since

8. Reconstructing Optimal Phylogenetic Trees 177

Fig. 8.6. Number of taxa vs. percentage of edges correct for sequence length 500
and various λe

just one instance must be solved. In contrast, the role of the algorithm de-
signer or engineer is to document the practical performance of an algorithm,
which requires many runs on many different sizes and types of data. In conse-
quence, an algorithm that a biologist finds acceptable computationally may
be judged completely inadequate by an algorithm engineer—a discrepancy
that can only be resolved through a close collaboration between the biologist
and the algorithm engineer.
A boon to the experimentalist in the area is the availability of real

datasets: academic biologists are generally very free with their data and only
too pleased to have an algorithm designer help them answer their questions.
We have a national database that stores most known DNA sequences (Gen-
Bank) and government laboratories that sequence organellar genomes, pro-
viding vast amounts of challenging problems to the algorithms community.
On the other hand, the absence of consensus on a model of evolution makes
it difficult to obtain definitive results. Current models appear to be brittle, in
the sense that small deviations from optimality may cause significant degra-
dation of the quality of the solution as perceived by a biologist; the optimality
criteria need to be refined to remedy this problem. Again, working with a re-
search biologist is crucial, as the biologist can sift through the changes in
model parameters and the output produced under each model and prepare
an analysis and, if necessary, a new model.
On the algorithm engineering side, the area needs a large effort in code

production, code that is made freely available to biologists everywhere, in
order to replace poor existing codes, implement new ideas, and provide the
most efficient tools to the biologists. Perhaps more than in any other area,
there is an opportunity in computational biology, in particular in computa-
tional phylogenetics, for algorithm designers and engineers to have a profound
impact on the course of scientific research.

178 Bernard M. E. Moret and Tandy Warnow

Acknowledgments

This work was supported in part by NSF grants CCR 94-57800 (Warnow),
ACI 00-81404 (Moret), DEB 01-20709 (Moret and Warnow), EIA 01-13095
(Moret), EIA 01-13654 (Warnow), EIA 01-21377 (Moret), and EIA 01-21680
(Warnow), and by the David and Lucile Packard Foundation (Warnow).

References

8.1 L. Arge, J. Chase, J. S. Vitter, and R. Wickremesinghe. Efficient sorting
using registers and caches. In Proceedings of the 4th Workshop on Algorithm
Engineering (WAE’00). Springer Lecture Notes in Computer Science 1982,
2000.

8.2 D. A. Bader and B. M. E. Moret. GRAPPA runs in record time. HPC Wire,
9(47), 2000.

8.3 V. Berry, D. Bryant, T. Jiang, P. Kearney, M. Li, T. Wareham, and H. Zhang.
A practical algorithm for recovering the best supported edges of an evolution-
ary tree. In Proceedings of the 11th ACM/SIAM Symposium on Discrete
Algorithms (SODA’00), pages 287–296, 2000.

8.4 V. Berry and O. Gascuel. Inferring evolutionary trees with strong combina-
torial evidence. Theoretical Computer Science, 240(2):271–298, 2000.

8.5 V. Berry, T. Jiang, P. Kearney, M. Li, and T. Wareham. Quartet cleaning:
improved algorithms and simulations. In Proceedings of the 7th European
Symposium on Algorithms (ESA’99). Springer Lecture Notes in Computer
Science 1643, pages 313–324, 1999.

8.6 M. Blanchette, G. Bourque, and D. Sankoff. Breakpoint phylogenies. In
S. Miyano and T. Takagi, editors, Genome Informatics 1997, pages 25–34.
Univ. Academy Press, Tokyo, 1997.

8.7 A. Caprara. On the practical solution of the reversal median problem. In
Proceedings of the 1st Workshop on Algorithms for Bioinformatics (WABI’01).
Springer Lecture Notes in Computer Science 2149, pages 238–251, 2001.

8.8 J. I. Cohen. Epstein-barr virus infection. New England Journal of Medicine,
343(7):481–492, 2000.

8.9 M. E. Cosner, R. K. Jansen, B. M. E. Moret, L. A. Raubeson, L.-S. Wang,
T. Warnow, and S. K. Wyman. An empirical comparison of phylogenetic
methods on chloroplast gene order data in Campanulaceae. In D. Sankoff
and J. Nadeau, editors, Comparative Genomics: Empirical and Analytical Ap-
proaches to Gene Order Dynamics, Map Alignment, and the Evolution of Gene
Families, pages 99–121. Kluwer, 2000.

8.10 M. E. Cosner, R. K. Jansen, B. M. E. Moret, L. A. Raubeson, L. Wang,
T. Warnow, and S. K. Wyman. A new fast heuristic for computing the break-
point phylogeny and experimental phylogenetic analyses of real and synthetic
data. In Proceedings of the 8th International Conference on Intelligent Sys-
tems for Molecular Biology (ISMB’00), pages 104–115, 2000.

8.11 N. Eiron, M. Rodeh, and I. Stewarts. Matrix multiplication: a case study of
enhanced data cache utilization. ACM Journal of Experimental Algorithmics,
4(3), 1999. Online at www.jea.acm.org/1999/EironMatrix/.

8.12 P. Erdős, M. A. Steel, L. A. Székely, and T. Warnow. A few logs suffice to
build (almost) all trees I. Random Structures and Algorithms, 14:153–184,
1997.

8. Reconstructing Optimal Phylogenetic Trees 179

8.13 D. Huson, S. Nettles, K. Rice, T. Warnow, and S. Yooseph. Hybrid tree
reconstruction methods. ACM Journal of Experimental Algorithmics, 4(5),
1999. Online at www.jea.acm.org/1999/HusonHybrid/.

8.14 T. Jiang, P. E. Kearney, and M. Li. A polynomial-time approximation scheme
for inferring evolutionary trees from quartet topologies and its application.
SIAM Journal on Computing. To appear.

8.15 D. S. Johnson and L. A. McGeoch. The traveling salesman problem: a case
study. In E. Aarts and J.K. Lenstra, editors, Local Search in Combinatorial
Optimization, pages 215–310. John Wiley, 1997.

8.16 T. H. Jukes and C. Cantor. Mammalian Protein Metabolism. Academic Press,
1969.

8.17 P. J. Keeling, M. A. Luker, and J. D. Palmer. Evidence from beta-tubulin phy-
logeny that microsporidia evolved from within the Fungi. Molecular Biology
and Evolution, 17:23–31, 2000.

8.18 R. Ladner, J. D. Fix, and A. LaMarca. The cache performance of traversals
and random accesses. In Proceedings of the 10th ACM/SIAM Symposium on
Discrete Algorithms (SODA’99), pages 613–622, 1999.

8.19 A. LaMarca and R. Ladner. The influence of caches on the performance of
heaps. ACM Journal of Experimental Algorithmics, 1(4), 1996. Online at
www.jea.acm.org/1996/LaMarcaInfluence/.

8.20 A. LaMarca and R. Ladner. The influence of caches on the performance
of sorting. In Proceedings of the 8th ACM/SIAM Symposium on Discrete
Algorithms (SODA’97), pages 370–379, 1997.

8.21 C. C. McGeoch. Analyzing algorithms by simulation: variance reduction tech-
niques and simulation speedups. ACM Computing Surveys, 24:195–212, 1992.

8.22 B. Mishof, C. L. Anderson, and H. Hadrys. A phylogeny of the damselfly
genus Calopteryx (Odonata) using mitochondrial 16s rDNA markers. Molec-
ular Phylogeny Evolution, 15:5–14, 2000.

8.23 B. M. E. Moret, D. A. Bader, and T. Warnow. High-performance algorithm
engineering for computational phylogenetics. In Proceedings of the 2001 Inter-
national Conference on Computational Science (ICCS’01). Springer Lecture
Notes in Computer Science 2073–2074, 2001.

8.24 B. M. E. Moret, S. K. Wyman, D. A. Bader, T. Warnow, and M. Yan. A new
implementation and detailed study of breakpoint analysis. In Proceedings of
the 6th Pacific Symposium Biocomputing (PSB’01). World Scientific, pages
583–594, 2001.

8.25 B. M. E. Moret and H. D. Shapiro. Algorithms and experiments: the new
(and old) methodology. Journal on Universal Computer Science, 7(5):434–
446, 2001.

8.26 B. M. E. Moret, J. Tang, L.-S. Wang, and T. Warnow. Steps toward accurate
reconstruction of phylogenies from gene-order data. Journal on Computer and
System Sciences. To appear.

8.27 I. Pe’er and R. Shamir. The median problems for breakpoints are NP-
complete. Electronic Colloqium on Computational Complexity, 71, 1998.

8.28 A. Rambaut and N. C. Grassly. Seq-Gen: an application for the Monte Carlo
simulation of DNA sequence evolution along phylogenetic trees. Computa-
tional Applications in Biosciences, 13:235–238, 1997.

8.29 K. Rice, M. Donoghue, and R. Olmstead. Analyzing large datasets: rbcl500
revisited. System Biology, 46:554–562, 1997.

8.30 F. Rodrigues-Trelles, L. Alarcon, and A. Fontdevila. Molecular evolution and
phylogeny of the buzzatii complex (D. repleta group): a maximum likelihood
approach. Molecular Biology Evolution, 17:1112–1122, 2000.

180 Bernard M. E. Moret and Tandy Warnow

8.31 A. Rokas and P. W. H. Holland. Rare genomic changes as a tool for phyloge-
netics. Trends in Ecology and Evolution, 15:454–459, 2000.

8.32 N. Saitou and M. Nei. The neighbor-joining method: a new method for recon-
structing phylogenetic trees. Molecular Biology Evolotion, 4:406–425, 1987.

8.33 D. Sankoff and M. Blanchette. Multiple genome rearrangement and breakpoint
phylogeny. Journal on Computational Biology, 5:555–570, 1998.

8.34 A. C. Siepel and B. M. E. Moret. Finding an optimal inversion median:
experimental results. In Proceedings of the 1st Workshop on Algorithms for
Bioinformatics (WABI’01). Springer Lecture Notes in Computer Science 2149,
pages 189–203, 2001.

8.35 K. St. John, T. Warnow, B. M. E. Moret, and L. Vawter. Performance study
of phylogenetic methods: (unweighted) quartet methods and neighbor-joining.
In Proceedings of the 12th Annual ACM/SIAM Symposium on Discrete Algo-
rithms (SODA’01), pages 196–205, 2001.

8.36 K. Strimmer and A. von Haeseler. Quartet puzzling: a maximum likeli-
hood method for reconstructing tree topologies. Molecular Biology Evolution,
13:964–969, 1996.

8.37 T. Warnow, B. M. E. Moret, and K. St. John. Absolute phylogeny: true
trees from short sequences. In Proceedings of the 12th Annual ACM/SIAM
Symposium on Discrete Algorithms (SODA’01), pages 186–195, 2001.

8.38 M. S. Waterman. Introduction to Computational Biology: Sequences, Maps
and Genomes. Chapman Hall, 1995.

8.39 L. Xiao, X. Zhang, and S. A. Kubricht. Improving memory performance of
sorting algorithms. ACM Journal of Experimental Algorithmics, 5(3), 2000.
Online at www.jea.acm.org/2000/XiaoMemory/.

	Reconstructing Optimal Phylogenetic Trees: A Challenge in Experimental Algorithmics
	Introduction
	Data for Phylogeny Reconstruction
	Phylogenetic Reconstruction Methods

	Algorithmic and Experimental Challenges
	Designing for Speed
	Designing for Accuracy
	Performance Evaluation

	An Algorithm Engineering Example: Solving the Breakpoint Phylogeny
	Breakpoint Analysis: Details
	Re-Engineering BPAnalysis for Speed
	A Partial Assessment

	An Experimental Algorithmics Example: Quartet-Based Methods for DNA Data
	Quartet-Based Methods
	Experimental Design
	Some Experimental Results

	Observations and Conclusions

