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Abstract

The breakpoint phylogeny is an optimization problem
proposed by Blanchett al. for reconstructing evolutionary
trees from gene order data. These same authors developed
and implementedBPAnal ysi s [4], a heuristic method
(based upon solving many instances of the Travelling
Salesman Problem) for estimating the breakpoint phylogeny
We present a new heuristic for estimating the breakpoint
phylogeny which, although not polynomial-time, is much
faster in practice thaBPAnal ysi s. We use this heuristic to
conduct a phylogenetic analysis of the flowering plant famil
Campanulaceae. We also present and discuss the results
of experimentation on this real dataset with three methods:
our new methodBPAnal ysi s, and the neighbor-joining
method [21], using breakpoint distances, inversion distan
and inversion plus transposition distances.

Introduction

Phylogenetic tree reconstruction is a major aspect of muc
biological research. This is a very difficult computational
problem because most optimization tasks related to tree
reconstruction are NP-hard and can require years to solve
on real datasets. With the recent introduction of whole
genomes for use in phylogenetic reconstruction, the prob-
lem has become even more complex. In this paper, we
present a new technique for reconstructing trees from gene
order data and we compare this new technique to other
approaches using chloroplast genomes from the flowering
plant family Campanulaceae.

The genomes of some organisms have a single chromo-
some or contain single-chromosome organelles (such as
mitochondria or chloroplasts) whose evolution is largely
independent of the evolution of the nuclear genome for
these organisms. Many single-chromosome organisms and
organelles have circular chromosomes. Given a particular
strand from a single chromosome, whether linear or cirgular
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we can infer the ordering of the genes, along with direc-
tionality of the genes, thus representing each chromosome
by an ordering (linear or circular) of signed genes. Note
that picking the complementary strand produces a different
ordering, in which the genes appear in the reverse direction
and reverse order. The evolutionary process that operates
on the chromosome can thus be seen as a transformation of
signed orderings of genes.

The first heuristic for reconstructing phylogenetic trees
from gene order data was introduced by Blanchett&g. in
[4]. It sought to reconstruct thiereakpoint phylogeny and
was applied to a variety of datasets [5, 24].

A different technique for reconstructing phylogenies from
gene order data was introduced by Cosner in [8]. This
method also attempts to find the breakpoint phylogeny,
but has a very different approach. We call this technique
Maximum Parsimony on Binary Encodings (MPBE). The
MPBE method first encodes a set of genomes as binary se-
guences and then constructs maximum-parsimony trees for
these sequences. Cosner used this method to reconstruct
a phylogeny for 18 chloroplast genomes from tGam-
panulaceae. This analysis revealed an incredible diversity
of genome rearrangements, including inversions, ingestio
deletions, gene duplications, and putative transpostion
Transpositions in particular have only rarely been hypoth-
esized for chloroplast evolution, therefore the infereate
these events for theampanulaceaewas surprising. Also in-
teresting were the extensive contractions and expansions o
the inverted repeats, and the disruption of highly conskrve
operons. The variety of rearrangements far exceeds that re-
ported in any group of land plants, making it challenging to
determine the exact numbers and the evolutionary sequence
of rearrangement events. Several of these events are of par-
ticular interest because they have not been encountered els
where, or because they are common in@aenpanulaceae.

In this paper, we report on an extensive phylogenetic
analysis of a subset of the original dataset (12 of the aaigin
18 genera) using a simple version of the MPBE technique.

tSupported by National Science Foundation grant DEB-970614 Ve also compare the performance of this method to two
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Definitions
We assume a fixed set of genég,g2,-.-,9n}. Each

genome is then an ordering of some multi-subset of these
genes, each gene given with an orientation that is either

positive (g;) or negative {g;). The multi-subset formula-
tion allows for deletions or duplications of a gene. A linear

genome is then simply a permutation on this multi-subset,

into another. The inversion distance between two genomes
is computable in polynomial time for signed genomes
[14, 16] and is available in software @& gned._di st

but is NP-hard [6]—indeed APX-hard [2]—in the unsigned
case. Theransposition distance between two genomes is

the minimum number of transpositions needed to transform

one genome into the other. Computing the transposition dis-

while a circular genome can be represented in the same Waytance is _of unknown computational complexity but, for the
under the implicit assumption that the permutation closes ¢@S€ of linear genomes, Bafna and Pevzner [1] have found a

back on itself. For example, the circular genome on gene

setG = {g1,92,.-. ,96} given bygs, g2, —gs, 94, g, g2 has
one duplication of the geng, has a deletion of the gegs,
and has a reversal of the gege. That same circular

1.5-approximation algorithm. When both transpositiors an
inversions are allowed, nothing is known about the compu-

tational complexity or approximability of computing edit

distances, although heuristics have been developed for tha

genome could be represented by several different linear PUrPOSe and are available in software. (In particulr;

orderings, each given by rotating the linear ordering abov
Furthermore the ordering, g2,- .. ,9,, Whether linear

or circular, is considered equivalent to that obtained by

e range2[3]is afast heuristic for estimating these distances,

and has been used both by Sanlethl. [23] and by us.)
Another genome metric that is not a direct evolutionary

considering the complementary strand, i.e., to the orderin Metric is thebreakpoint distance. Given two genomes/

—9n, _gnjla"' » —91- . . .
In tracing the evolutionary history of a collection of

andG’ on the same set of genes, a breakpoiit iis defined
as an ordered pair of gengs;, g;) such thatg; and g;

single-chromosome genomes, we use inversions, transpo-appear consecutively in that orderdh but neither(g;, g;)

sitions and transversions (inverted transpositions)abse

nor(—g;, —g;) appear consecutively in that orderGt. For

these events only rearrange gene orders; a more complexinstance, ifG = g1, g2, —g4, —gs andG’ = g1, g2, g3, 94,

set of structural changes has been considered in [8].
Let G be the genome with signed orderigg gs, - - - , gn-
An inversion between indices andj, for ¢ < j, produces
the genome with linear ordering
91,925 .- ydn

y9i—15 =095, —9j—15--- 5 —Giy gj+1,- - -

If we havej < i, we can still apply an inversion to a circular
(but not linear) genome by simply rotating the circular or-
dering until the two indices are in the proper relationship—
recall that we consider all rotations of the complete cacul
ordering of a circular genome as equivalent.

A transposition on the (linear or circular) ordering
acts on three indices, j, k, with i < j andk ¢ [i, 4], and
operates by picking up the interval, giy1,...,9; and
inserting it immediately afteg,,. Thus the genomé& above
(with the additional assumption &f> j) is replaced by
91,925 .- y9ky 9is Jit1y- - - ydn

y9i—15 9541, - - - 3955 9k+15- - -

Once again, if we havg > i, we can still apply the
transposition to a circular (but not linear) genome by first
rotating it to establish the desired index relationship.

An edit sequence describes how one genome evolves into

another through a sequence of these evolutionary events.

For example, letG be a genome and las, po, ... ,p
be a sequence of evolutionary events operatingn
thenpy,ps,... ,pr(G) defines a genomé&’. When each
operation is assigned a cost, then mhiaimum edit distance
between two genomeé& and G' is defined to be the
minimum cost of any edit sequence transformihgmto G'.

then there are exactly two breakpoints Gh (g2, —g4),

and (—gs, g1); the pair(—g4, —gs3) is not a breakpoint in
G’ since(gs, g4) appear consecutively and in that order in
G'. The breakpoint distance is the number of breakpoints
in G relative to G’ (or vice-versa, since the measure is
symmetric).

An evolutionary tree (or phylogeny) for a setS of
genomes is a binary tree witl§| leaves, each leaf labeled
by a distinct element of. A putative evolutionary tree is
“correct” as long as this leaf-labeled topology is ideritica

to the true evolutionary tree (which we do not know for

real data sets). The process of tree reconstruction géneral
involves the inference of additional aspects of the tree. Fo
example, a given method may infer weights on the edges
(also called “branch lengths”), genomes at internal nodes
(i.e., “ancestral” genomes), or probabilities for eachetyb
evolutionary event on each edge of the tree. These topolo-
gies and additional parameters are estimated in order to
optimize some objective criterion; the three basic optaniz

tion criteria in use by biologists af@aximum Parsimony,

Distance-Based Methods, and Maximum Likelihood. We
briefly review the first two criteria.

Maximum parsimony: Assume that we are given a tree
in which each node is labelled by a genome. We define the
cost of the tree to be the sum of the costs of its edges, where

the cost of an edge is one of the edit distances between the
two genomes that label the endpoints of the edge. Finding
the tree of minimum cost for a given set of genomes and

a given definition of the edit distance is the problem of

When the cost of each operation is finite, any two genomes Maximum Parsimony for Rearranged Genomes (MPRG);

have a finite edit distance. (Similarly, if the probabilityy o

the optimal trees are called the maximum-parsimony trees.

each edit operation is given, we can define the edit sequence(The MPRG problem is related to the more usual maximum-

of maximum probability.)
Theinversion distance between two genomes is the mini-

parsimony problem for biomolecular sequences, where the
edit distance between two sequences is just the number of

mum number of inversions needed to transform one genome positions in which they differ, or the Hamming distance.)



Distance-based methods: Distance-based methods for Distance-Based Methods for Reconstructing Trees
tree reconstruction operate by first computing all pairwise There has been little use of distance-based methods for

distances between the taxa in the dataset, thus computing &¢cqnstructing phylogenies from gene order data. However,
representation of the input data as a distance mditrix the in a recent publication, Blanchetteal . [5] evaluated two of

pogtext gf genome evolution, thisdpa(\jlpulation Otf) distgnces the most popular polynomial-time distance-based methods
Is done by computing minimum edit distances, based upon ¢, hhviogenetic reconstruction, neighbor-joining anttFi
some cost function for each of the allowed operations (nver \15r40liash [11], for the problem of reconstructing the phy-
smns, (tjransposﬂmns, eté:.). G“{eﬂ thde dlstanhce m?trﬂ:e loaf109€NY Of metazoans. They calculated a breakpoint distance
method computes an edge-weighted tree whose leaf-to-leaf ) 5y for inferring the metazoan phylogeny from mitochon-
distances closely fit the distance matrix. Since almost all drial gene order data. The trees obtained by these methods
optimization problems related to tree reconstruction are \yare’nacceptable because they violated assumptions about
NP-hard, the most frequently used distance-based methodsya(a,0an evolutionary history.  Later, they examined a
are polynomial-time methods such as neighbor-joiningi[21] - yigterent dataset and found the result to be acceptable with

these do not explicitly seek to optimize any criterion, lrc — oqnect to evolutionary assumptions about that dataspt [22
have good performance in empirical studies. In particular,

neighbor-joining has had excellent performance in studies Computational Complexity of MPRG
based upon simulating biomolecular sequence evolution

and is probably the most popular distance-based method. MPRG seems to be the optimization criterion of choice.
Indeed, most approaches to reconstructing phylogenetic

trees from gene order data have explicitly sought to find the
maximum-parsimony tree with respect to some definition
of genomic distances (inversion distances or a weighted

Evaluating Phylogenies: The False Positive and
False Negative Rate

Let T be a tree leaf-labelled by the s§t Given an edge sum of inversions, transpositions, and transversions). Al
in T, the deletion of the edge froffi produces a bipartiton ~ these problems are NP-hard however, or of unknown com-
me Of G into two sets. The sef'(T) = {n.: e € E(T)} putational complexity. Even the fundamental problem of

uniquely defines the tre#; this characterization is called ~ computing optimal labels (genomes) for the internal nodes
the character encoding of 7. Given a collection of trees is very difficult. When only inversions are allowed, it is NP-
Ty, Ts,... , Ty, each leaf-labelled by, we define thesrict hard, even for the case where there are only three leaves [7].
consensus of the trees to be that unique trd§. defined )

by C(T,.) = N;C(T;). This is the maximally resolved tree  Breakpoint Phylogeny

which is a common contraction of each tr€g Character Recently, Blanchettet al. [5] proposed a new optimization

encodings are used to compare trees and to evaluate theproblem for phylogeny reconstruction on gene order data.
performance of a phylogenetic reconstruction method. Let | this problem, the tree sought is that with the minimum

T be the *true” tree and Ief” be the estimate &F. Thenthe  nymber of breakpoints, rather than that with the minimum
false negatives of T" with respect td" are those edgesthat number of evolutionary events (e.g., inversions, tranispos
obeym, € C(T) —C(T"),i.e., edgesin the true tree thatthe  tjons, transversions, etc.). It has long been known that the
method fails to infer. Théalse positives of 7" with respect breakpoint distance is at most twice the inversion distance
to T' are those edgesthat obeyr. € C(T") — C(T), i.e., for any two genomes. For some datasets, however, there can

edges in the inferred tree that do not exist in the true ree pe a close-to-linear relationship between the breakpdsat d
and should not have been inferred. Note that every trivial tance and either the inversion distance or the weighted sum
bipartition (induced by the edge incident to a leaf) exists i of inversions and transpositions. When a linear relatignsh
every tree. Consequently, false positives and false negati  exists, the tree with the minimum number of breakpoints
are calculated only with respect to the internal edges of the s also the tree with the minimum number of evolutionary
tree and expressed as a percentage of the number of internakyents. Consequently, when a close-to-linear relatignshi

edges. exists, the tree with the minimum number of breakpoints
may be close to optimal with respect to the number of

Previous Work in Reconstructing Trees from evolutionary events. Blanchetet al. [5] observed such a
Gene Order Data close-to-linear relationship in a group of metazoan gersome

(the correlation coefficient between the two measures for
Most of the work done by computer scientists related to their set was 0.9815) and went on to develop a heuristic for
genome rearrangements has focused on the problem offinding the breakpoint phylogeny.
computing minimum edit distances, i.e., inversion disénc Computing the breakpoint phylogeny is NP-hard for the
or inversion plus transposition distances between twaltine  case of just three genomes [20], a special case known as
(or circular) orderings on (signed or unsigned) genes. Most the Median Problem for Breakpoints (MPB). Blanchetteet
of these problems are not yet known to be solvable in al. however, showed that the MPB reduces to the Travelling
polynomial time, so that heuristics of unknown accuracy Salesman Problem (TSP) and designed special heuristics for
are used. We focus instead on the problem of inferring the resulting instances of TSP. Their heuristic approach to
phylogenetic trees from the gene order data, a problem that solving the breakpoint phylogeny exactly solves numerous
has seen comparatively little work to date. instances of the TSP. Specifically, their algorithm consid-



ers each tree topology in turn; for each tree, it fills in in-  Sequence Maximum Parsimony (BSMP) problem as follows:
ternal nodes by computing medians of triplets of genomes the input consists of a st of binary sequences, each of
iteratively (until no change occurs) and scores the regylti  lengthk; the output is a tre& with leaves labelled by and
tree. The best tree is returned at the end of the procedure.internal nodes labelled by additional binary sequences of
This heuristic is computationally intensive on severallev lengthk in such a way as to minimizg, H(e) ase ranges
els. First, the number of unrooted binary treesidaaves is over the edges of the tree. The trees with the minimum
(2n—>5)-(2n—"T)-...-3), so that the outer loop is exponential ~ score are called maximum-parsimony trees.
in the number of genomes. Secondly, the inner loop itselfis ~ Our first phase then operates as follows. First, each
computationally intensive, since computing the median of genome is replaced by a binary sequence. The BSMP
three genomes is NP-hard [20] and since the technique usedproblem is then solved exactly or approximately, depending
by Blanchetteet al. involves solving many instances of TSP upon the dataset size; BSMP is NP-hard [12], but fast
in a reduction where the number of cities equals the number heuristics exist that are widely available in standard phy-
of genes in the input. Finally, the number of instances of logeny software packages, suchR&UP [25]. Although
TSP can be quite large, since the procedure iterates until no no study has been published on the accuracy of these
further change of labelling occurs within the tree. Thus the heuristics on large datasets, it is generally believed that
computational complexity of the entire algorithm is expo- these heuristics usually work well on datasets of size up to
nential ineach number of genomes and the number of genes. about 40 genomes. Moreover, exact solutions on datasets
The accuracy ofBPAnal ysis for the breakpoint of up to about 20 genomes can be obtained through branch-
phylogeny problem depends upon the accuracy of its com- and-bound techniques in reasonable amounts of time;
ponent heuristics. While it evaluates every tree, the ladggl consequently, BSMP has been solved exactly in some cases.
given to each tree is only locally optimal: although it save
TSP exactly at each node, it labels nodes with an iterative Phase II: Screening the Maximum-Parsimony Trees
method that can easily be trapped at a local optimum.
our experiments, we have found tHBPAnal ysi s often
needed to be run on several different random starting points
in order to score a given tree accurately. This is typical
of hill-climbing heuristics [18], but will affect the runng
time proportionally.

I Once the maximum-parsimony trees are obtained, the
internal nodes are labelled by circular signed gene orders
by giving the topology of the maximum-parsimony tree as
a constraint toBPAnal ysi s, thus producing a labelling
which (hopefully) minimizes the breakpoint distance of
the tree. The labelling also allows us to score each tree
. . for the minimum number of inversions (by scoring each
Our New Method: Maximum Parsimony on edge usingsi gned_di st [13]), or for the minimum
Binary Encodings of Genomes (MPBE) number of inversions/transpositions/transversions tsven

Our new technique has two phases. In the first phase, (0¥ scoring each edge usirder ange2 [3]), depending

we encode the input genomes as a collection of binary UPON the relative costs of these events. Depending upon
sequences and analyze these sequences under maximurfﬁh'Ch objective criterion is desired, the tree that miniesiz
parsimony. In the second phase, we screen the set of € total costis then returned.

maximum-parsimony trees found, and select those that

minimize the number of breakpoints, number of inversions, RuUnning Time of MPBE

or number of inversions/transpositions/transversions. The computational complexity of MPBE, while less than
that of BPAnal ysi s, remains high. Evaluating a single

Phase . Solving Maximum Parsimony on Binary tree topology in the search space takes polynomial time—

Encodings of Genomes more precisely, take®(nk) time, wheren is the number

of genomes and is the number of genes in each genome,
but the search for the maximum-parsimony trees is based
upon hill-climbing through the space of tree topologies.
Thus finding the maximum parsimony trees is exponential
in the number of genomes but only polynomial in the
number of genes. Labelling the internal nodes of each
maximum-parsimony tree by using constraint trees for
BPAnal ysi s is expensive, but we generally only examine
a small percentage of the space of trees and thus reduce

We now show how we define the binary sequences. We note
all ordered pairs of signed gengs, g;) that appear consec-
utively in at least one of the genomes. Each such pair defines
a position in the sequences (the choice of index is arbitrary
If (9i,9;) or (—g;,—g:) appear consecutively in a genome,
then that genome haslain the position for this ordered
pair, and otherwise it has@ These “characters” can also
be weighted. (In this study, we did not weight any charac-
ters; however, in the study reported in [8], character weigh . b .
ing was used, along with other characters such as gene segN€ computational cost significantly by comparison to
the exhaustive search strategy BPAnal ysi s. Eval-

ment insertions and deletions, duplications of inverted re . . ) .
peats, etc. Thus, the method can be extended to allow for Yating the cost of each tree with respect to inversion or

evolutionary events more complex than gene order changes.) inversion/transposition/transversion distances iseffaist.

Now let H(e) be the Hamming distance between the .
sequences labelling the endpoints of the edgethe Accuracy of MPBE for the Breakpoint Phylogeny
Hamming distance between two sequences is the numberWe now show that MPBE should be seen as a heuristic
of positions in which they differ. We define th@inary for the breakpoint phylogeny problem. SuppdBeis



the breakpoint phylogeny for the sét, Ga,... ,G, of and contractions of the inverted repeat). In order to compar
genomes. Each node fis labelled by a circular ordering  our technique witlBPAnal ysi s and other reconstruction
of signed genes and the number of breakpoints in the tree is techniques based upon gene orders, we reduced the dataset
minimized. If each node in the tree is then replaced by the to 12 genera and 105 genes after eliminating repeated genes.
binary encoding, using the technique described earlier, th We included the tobacco genome as an outgroup for this
parsimony length of the tree (given these sequences at eachanalysis, thus producing a dataset of 13 genomes.
node) is exactly twice the number of breakpointsin the tree.  This chloroplast dataset is interesting to us for several
Thus, seeking a tree with the minimum number of break- reasons. The phylogeny reconstructed by our analysis is
points is exactly the same as seeking a tree (based uponextremely close to that obtained by other analyses, inotudi
binary encodings) with the minimum parsimony length, neighbor-joining analyses based upon either breakpoint
provided that each binary sequence can be realized by a distances or inversion and transposition distances. The
circular ordering of signed genes. (Not all binary sequence genome phylogeny is also very similar to the gene phylo-
are derivable from signed circular orderings on genomes!) genies that have been reconstructed. Thus, it represents an
This is why we have included Phase Il in our method. easy test case for the topology estimation problem and it is
The accuracy of the MPBE method with respect to the reasonable to assume that the topology is reliable. However
breakpoint phylogeny problem depends upon several issues.because of the diversity of types of evolutionary events, it
The major issue is whether the topology of the breakpoint suggests an interesting model of genome evolution and also
phylogeny will be one of the maximum-parsimony trees makes the inference of the gene orderings for the internal
obtained in the first phase (in our experiments it has nodes quite complicated.
been, but this may not hold true throughout the parameter
space, and further experiments will be needed to estab- Chloroplast Data Analysis
lish thiS). The other issues are simpler: since each of We used gene maps to encode each of the 13 genera as a
the problems we solve (maximum parsimony on binary circular ordering of signed gene segments. We represent
sequences, the median problem for breakpoints, and the each circular ordering as a linear ordering, beginning at
inversion/transposition/transversion distance) is egith gene segment 1. In order to conserve space (and make the
known or conjectured to be NP-hard, the accuracy of the rearrangements easier to observe), we have represented
heuristics will determine whether we find globally optimal each Ordering Compacﬂy by noting the maximal intervals

or only locally optimal solutions. of consecutive gene segments with the same orientation.
Thus the sequence 1, 24, -3, 5, 6, 7, 10, 8, 9 would be
Chloroplast DNA Structure represented as (1-2)(4-3)(5-7)(10)(8-9). Tobacco has the

“unrearranged” ordering 1, 2, . , 105, which we represent

s (1-105). Figure 1 gives the compact representations of
he genomes for the 13 genera.

We used these 13 circular orderings as inpiBRénal -
ysi s. The program spent over 43 hours of computation
time without completing. We also encoded these orderings
with our binary encoding technique and conducted an
analysis of the resulting binary sequences under maximum
parsimony using the branch-and-bound procedufRAafP.
We obtained four maximum parsimony trees from this
gataset. (The sequences, as well as the four MP trees, are
available on our web page[26]. They can also be calculated
directly from the gene order data. Note that the ordering of
the sequence of breakpoints does not affect the results.) We
then inferred circular orderings of signed gene segments
for each internal node by giving each of the four binary MP
trees as a constraint treeB®Anal ysi s. This produces a
tree in which each node (internal and leaf) is represented by
circular signed orderings on genes, potentially miningzin

The Campanulaceae cpDNA Dataset the number of breakpoints in the trge. (An actual mini-

We have used the chloroplast genomes of the flowering plant mization is not guaranteed, becauBBAnal ysi s uses
family Campanulaceae for a test case of our technique. In  hill-climbing on each fixed-tree and thus may find only a
earlier work [8], Cosner obtained detailed restrictioe sihd local minimum.) We then scored each tree for the number
gene maps for 18 genera of t@ampanulaceae and used of breakpoints. Interestingly, the labelling of internaldes
a variant of the MPBE analysis described above to obtain obtained byBPAnal ysi s produced the same number of
a phylogenetic analysis of these genera. When restricted breakpoints on all four trees, .
to gene order rearrangements, 6 of the genera are shown to We note that the best breakpoint score obtained in
be duplicates of other genera (they differ only in terms of 43 hours of computation byBPAnal ysi s from the
insertions and deletions of gene segments, or expansionsoriginal orderings was 96—substantially larger than the

Chloroplast DNA is generally highly conserved in nu-
cleotide sequence, gene order and content, and genome siz
[19]. The genomes contain approximately 120 genes which
are involved in photosynthesis, transcription, transtati
and replication. Major changes in gene order, such as
inversions, gene or intron losses, and loss of one copy of
the inverted repeat, are usually rare. Therefore, they are
extremely useful as phylogenetic markers because they are
easily polarized and exhibit very little homoplasy when
properly characterized [9]. In groups in which more than
one gene order change has been detected, the order of event
is usually readily determined (e.g., [17, 15]). Chloroplas
DNA gene order changes have been useful in phylogenetic
reconstruction in many plant groups (see [9]). These
changes have considerable potential to resolve phylogenet
relationships and they provide valuable insights into the
mechanisms of cpDNA evolution.



Trachelium
(1-15)(76-56)(53—49)(37-40)(35-26)(44-41)(45-48)
(—36)(25-16)(90-84)(77-83)(91-96)(55-54)(105-97)

Campanula
(1-15)(76-49)(39-37)(40)(35-26)(44—-41)(45-48)
(—36)(25-16)(90-84)(77-83)(91-96)(55-54)(105-97)

Adenophora
(1-15)(76—49)(39-37)(29-35)(40)(26-27)(44—-41)(45-48
(—36)(25-16)(90-84)(77-83)(91-96)(55-54)(105-97)

Symphyandra
(1-15)(76-56)(39—-37)(49-53)(40)(35—-26)(44-41)(45-48
(—36)(25-16)(90-84)(77-83)(91-96)(55-54)(105-97)

Legousia
(1-15)(76-56)(27-26)(44-41)(45-48)(36—35)(25-16)
(90-84)(77-83)(91-96)(5-8)(55-53)(105-98)(28—34)
(40-37)(49-52)¢97)

Asyneuma
(1-15)(76-57)(27-26)(44-41)(45-48)(36-35)(25—-16)829
(77-83)(90-96)(105-98)(28—34)(40-37)(49-597)

Triodanus
(1-15)(76-56)(27-26)(44-41)(45-48)(36—35)(25-16)
(89-84)(77-83)(90-96)(55-53)(105—-98)(28—34)(40-37)
(49-52)-97)

Wahlenbergia
(1-11)(60—49)(37-40)(35-28)(12-15)(76—61)(27-26)
(44-41)(45-48)¢ 36)(54)(25-16)(90-84)(77-83)(91-96)
(—55)(105-97)

Merciera
(1-10)(49-53)(28-35)(40-37)(60-56)(11-15)(76—61)
(27-26)(44-41)(45-48}36)(54)(25-16)(90-85)(77—84)
(91-96)&55)(105-97)

Codonopsis
(1-8)(36-18)(15-9)(40)(56—60)(37—39)(44—-41)(45-53)
(16-17)(54-55) (61-76)(96—77)(105-97)

Cyananthus
(1-8)(29)(36—26)(40)(56—60)(37—39)(25-9)(44-48)
(55-49)(61-96)(105-97)

Platycodon
(2)(8)(2-5)(29-36)(56—50)(28—26)(9)(49-45)(41-44)
(37-40)(16-25)(10-15)(57-59)(6—7)(60-96)(105-97)

Tobacco
(1-105)

Figure 1. 12 genera dfampanulaceae and the outgroup
Tobacco, as circular orderings of signed gene segments

breakpoint score obtained by our parsimony analysis of
binary sequences.

We then scored each tree (using the labels assigned by
BPAnal ysi s) for the inversion distance and for the inver-
sion/transposition/transversion distance. We used veigh
2.1 for transpositions and transversions arfdr inversions.
Using this weighting scheme, the first tree has a total of 40
inversions and 12 transpositions/transversions; thergkeco
has 48 inversions and 18 transpositions/transversioms; th
third has 40 inversions and 12 transpositions/transvessio
and the fourth has 67 inversions and 32 transpositions. See
our web page for figures with edge weights labelled [26].
Thus, the first and third trees are superior (under this anal-
ysis) to the second and fourth. We then evaluated the first
and third trees with respect to the inversion distance,rgive
the labelling on internal nodes obtained ByAnal ysi s:

Trachelium
Campanula
Adenophora

Symphyandra
Wahlenbergia
Merciera
Legousia

Triodanus

2t or 5i;5bp Asyneuma
3i;5bp

5i,1t or 7i;9bp
Codonopsis

3i,1t or 7i8bp CyananthUS
6i,2t or 10j12bp

3i,1t or 5i6bp

Platycodon
3i;5bp

Tobacco

Figure 2: The reconstructed phylogeny of 12 gene@af-
panulaceae and the outgroup tobacco based upon an MPBE
analysis of 185 binary characters. The number of inversions
and transpositions is given above each edge followed by the
number of inversions in an inversion-only scenario; the hum
ber of breakpoints is given last.

the first tree has a total number of 68 inversions, while the
third has 67. Both trees have zero-length edges (i.e., the
endpoints of some edges have the same gene orderings);
when these edges are contracted, the two trees are identical
The contracted tree is shown in Figure 2.

Interestingly, that tree is also a contraction of each of the
trees obtained by the MPBE analysis [8] on the original 18
genera encoded using a larger set of characters (in which
insertions, deletions, duplications, contractions/es@ns
of the inverted repeat, etc., were also used).

Table 1: The false negative rate matrix of trees from various
reconstruction methods on ti@ampanulaceae data in Fig-
ure 1. MPBE1 through MPBE4 are the four most parsimo-
nious trees by the MPBE method. NJ(BP), NJ(I), and NJ(IT)
are the neighbor joining trees from the distance matrix us-
ing MPBE estimationger ange?2 with inversion only, and
der ange2 with cost ratioinversion : transposition =
1:2.1.

NJ(BP) NJ(INV) NJ(IT) MPBE1 MPBE2 MPBE3 MPBE4
0 0 0 1 2 1 2

NJ(BP)
NJ(INV)

NJ(IT)
MPBE1
MPBE2
MPBE3
MPBE4

N B N R O O
N B N R O O
N BN P O O
N P P O Rk R
P N O R NN
P O N R B R
O R, B N NN



Wahlenbergia
Merciera
Trachelium
Symphyandra
Campanula
Adenophora
Legousia

Asyneuma

Triodanus
6.45

6.55
11.33

\ 4.67

(a) Neighbor joining tree on the distance matrix
of binary encodings.

0.45 / Codonopsis

Cyananthus

Platycodon

Tobacco

175 Wahlenbergia
4.25 Merciera

0.063 Trachelium
0.94

Symphyandra
Campanula
Adenophora
Legousia
Asyneuma

Triodanus
4.68

3.32
10.75

\ 2.25

(b) Neighbor joining tree on the distance matrix

222 Codonopsis

Cyananthus

Platycodon

Tobacco

fromsi gned_di st , inversion only.

1.48 Wahlenbergia
4.52 Merciera

0.048 Trachelium
0.95

Symphyandra
Campanula
Adenophora
Legousia
Asyneuma

Triodanus
4.81

3.48
10.91

220 Codonopsis

Cyananthus

Platycodon

\ 238 Topacco
(c) Neighbor joining tree on the distance matrix

fromder ange?2, cost ratio isinversion : trans—

position = 1: 2.1.

Figure 3: The reconstructed phylogeny of 12 genef@aoi-
panulaceaeand the outgroup tobacco using neighbor joining

on various distance estimation methods.

Wabhlenbergia

Merciera

Trachelium
Symphyandra
Campanula
Adenophora
Legousia
Asyneuma

Triodanus

Codonopsis

Cyananthus

Platycodon

Tobacco

Figure 4. The consensus tree of the four MPBE trees and
three neighbor joining trees from the 12 genera dataset of
Campanulaceae and the outgroup tobacco. The tree has 8
internal edges, out of at most 10 internal edges allowed in a
13-taxa phylogeny.

We also computed neighbor-joining trees (usity | i p
[10]) on two different distance matrices: the inver-
sion/transposition/transversion distance matrix (cotegu
with der ange2 with relative weights of 1, 2.1, and 2.1)
and the breakpoint matrix (computed usBigAnal ysi s).

We show theder ange?2 distance matrix in Table 2; the
other distance matrices are available on our web page [26].

All of the trees we reconstructed (whether by neighbor-
joining or maximum parsimony) are fairly similar, diffegn
pairwise in at most two edges. Table 1 shows the false
negative rate for the 7 trees: 3 neighbor-joining trees and 4
MP trees. The similarity between all the trees reconstdicte
indicates a high level of confidence in the the accuracy of
the common features of the phylogenetic reconstructions.
The conditions under which these genomes evolved (low

Table 2: The distance matrix computed wiler ange2
and a2.1 weight ratio

Tra Cam Ade Sym Leg Asy Tri Wah Mer Cod Cya Pla Tob

Tra | 0.0 1.0 40 10 83 104 83 41 8.1 152 14.1 19.2 10.0
Cam 1.0 0.0 30 20 93114 93 51 9.2 151 152 20.2 11.2
Ade| 40 3.0 0.0 5.1 1211 143 12.1 8.1 11.2 16.2 15.2 20.2 13.1
Sym| 1.0 2.0 51 0.0 9.2 114 93 51 9.1 142 133 20.2 11.1
Leg| 83 93 121 92 0.0 84 41 122 143 18.1 16.1 23.2 14.2
Asy |10.4 11.4 143 114 84 0.0 4.2 124 16.2 182 16.2 21.1 12.2
Tri 83 93121 93 41 42 0.0 12.2 14.4 18.2 15.2 21.2 12.2
Wah| 41 51 8.1 5.1 12.2 124 12.2 0.0 6.0 18.1 16.2 23.1 14.2
Mer| 8.1 9.2 11.2 9.1 143 16.2 144 6.0 0.0 17.2 16.3 24.1 16.1
Cod|15.2 15.1 16.2 14.2 18.1 18.2 18.2 18.1 17.2 0.0 8.3 18.2 10.2
Cya|14.1 15.2 15.2 13.3 16.1 16.2 15.2 16.2 16.3 8.3 0.0 16.3 10.2
a [19.2 20.2 20.2 20.2 23.2 21.1 21.2 23.1 24.1 18.2 16.3 0.0 13.3
Tob |10.0 11.2 13.1 11.1 14.2 12.2 12.2 14.2 16.1 10.2 10.2 13.3 0.0

3




25 ‘ ‘ ‘ ‘ O(n%k*) time. For our datasek, was 105 anch was 13.
g | Mo=0.9819 . We timed each method on the chloroplast dataset.
€20l te Finding the four maximum-parsimony trees wiBPAUP
B et took 0.15 seconds on a Macintosh G4. Labelling the
= .. internal nodes withBPAnal ysi s took 0.38 seconds
:% 15¢ e ] for each tree. = Computing inversion distances using
§ .« o si gned_di st took 45.65 seconds per edge and com-
S10l ot ] puting inversion/transposition/transversion distanesisig
% oot der ange2 took 0.01 seconds per edge. Our experiments
9 . thus suggest thaBPAnal ysi s evaluates approximately
o 5 oo ] 120 trees a minute; at this rate, since the number of trees
= . on 13 leaves is 13,749,310,58RAnal ysi s would take
° ‘ ‘ ‘ ‘ well over 200 years to complete its search of tree space for
0 5 10 15 20 25 our problem. Blanchettet al. did complete their analysis of

Breakpoint dist .
reakpolt distances the metazoan dataset, which has 11 genomes on a set of 37

genes. This is a much easier problem, as there are far fewer

Figure 5: Comparison of distance _calculations o_n(ﬂam ~ trees to examine (only 2,027,025) and as scoring each tree
panulaceae Chloroplast dataset with a correlation coeffi- involves solving a smaller number of TSP instances on a
cient ofrho = 0.9819. much smaller number of cities (37 rather than 105). Overall,

it is clear that datasets of sizes such as ours are curretly t
, large to be fully analyzed bBPAnal ysi s. More effective
rates of evolution and a large number of gene segments) arejmplementations of the basic concept, such as hill-clingbin
probably responsible for this high level of similarity, whi o hranch-and-bound through the tree space and abandoning
is observable at various levels. For instance, the breakpoi  gyrict optimality in solving the TSP instances in favor of
distance and the inversion/transposition/transversisa d 5 fast and reliable heuristic (such heuristics abound in the
tance (using relative costs of 1, 2.1, and 2.1) are very Blose - 1gp |iterature), could make the method run fast enough to

related, as illustrated in Figure 5. (The high correlation o applicable to datasets comparable to ours.
coefficient indicates that the two distances stand in a yearl

linear relationship to each other.) These observations :
suggest that this dataset forms an easy case for phylogeny Conclusions

reconstruction; other evolutionary conditions may prove In view of these results, our new method stands as a good
more difficult for phylogenetic reconstruction and may compromise between speed and accuracy. Neighbor-joining

distinguish between different methods. is faster (guaranteed polynomial-time), but returns omlg o
tree and thus tells us little about the space of near-optimal
Software Issues trees, whileBPAnal ysi s is much slower. Furthermore,

our preliminary results confirm that our new method re-
turns results as good as any of the other methods, and does
so within very reasonable times, even on sizes at which
BPAnal ysi s cannot run to completion in a reasonable
amount of time.

Running time may be a real issue with respect to recon-
structing phylogenetic trees. While neighbor-joiningastf
(technicallyO(n?), but very fast in practice), none of the
other methods are. Maximum parsimony is NP-hard (and
some searches do take a long time), but by comparison
BPAnal ysi s is significantly slower. On our dataset
(13 genomes, 105 gene segments), maximum parsimony References
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