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Abstract

The breakpoint phylogeny is an optimization problem
proposed by Blanchetteet al. for reconstructing evolutionary
trees from gene order data. These same authors developed
and implementedBPAnalysis [4], a heuristic method
(based upon solving many instances of the Travelling
Salesman Problem) for estimating the breakpoint phylogeny.
We present a new heuristic for estimating the breakpoint
phylogeny which, although not polynomial-time, is much
faster in practice thanBPAnalysis. We use this heuristic to
conduct a phylogenetic analysis of the flowering plant family
Campanulaceae. We also present and discuss the results
of experimentation on this real dataset with three methods:
our new method,BPAnalysis, and the neighbor-joining
method [21], using breakpoint distances, inversion distances,
and inversion plus transposition distances.

Introduction
Phylogenetic tree reconstruction is a major aspect of much
biological research. This is a very difficult computational
problem because most optimization tasks related to tree
reconstruction are NP-hard and can require years to solve
on real datasets. With the recent introduction of whole
genomes for use in phylogenetic reconstruction, the prob-
lem has become even more complex. In this paper, we
present a new technique for reconstructing trees from gene
order data and we compare this new technique to other
approaches using chloroplast genomes from the flowering
plant familyCampanulaceae.

The genomes of some organisms have a single chromo-
some or contain single-chromosome organelles (such as
mitochondria or chloroplasts) whose evolution is largely
independent of the evolution of the nuclear genome for
these organisms. Many single-chromosome organisms and
organelles have circular chromosomes. Given a particular
strand from a single chromosome, whether linear or circular,
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we can infer the ordering of the genes, along with direc-
tionality of the genes, thus representing each chromosome
by an ordering (linear or circular) of signed genes. Note
that picking the complementary strand produces a different
ordering, in which the genes appear in the reverse direction
and reverse order. The evolutionary process that operates
on the chromosome can thus be seen as a transformation of
signed orderings of genes.

The first heuristic for reconstructing phylogenetic trees
from gene order data was introduced by Blanchetteet al. in
[4]. It sought to reconstruct thebreakpoint phylogeny and
was applied to a variety of datasets [5, 24].

A different technique for reconstructing phylogenies from
gene order data was introduced by Cosner in [8]. This
method also attempts to find the breakpoint phylogeny,
but has a very different approach. We call this technique
Maximum Parsimony on Binary Encodings (MPBE). The
MPBE method first encodes a set of genomes as binary se-
quences and then constructs maximum-parsimony trees for
these sequences. Cosner used this method to reconstruct
a phylogeny for 18 chloroplast genomes from theCam-
panulaceae. This analysis revealed an incredible diversity
of genome rearrangements, including inversions, insertions,
deletions, gene duplications, and putative transpositions.
Transpositions in particular have only rarely been hypoth-
esized for chloroplast evolution, therefore the inferenceof
these events for theCampanulaceae was surprising. Also in-
teresting were the extensive contractions and expansions of
the inverted repeats, and the disruption of highly conserved
operons. The variety of rearrangements far exceeds that re-
ported in any group of land plants, making it challenging to
determine the exact numbers and the evolutionary sequence
of rearrangement events. Several of these events are of par-
ticular interest because they have not been encountered else-
where, or because they are common in theCampanulaceae.

In this paper, we report on an extensive phylogenetic
analysis of a subset of the original dataset (12 of the original
18 genera) using a simple version of the MPBE technique.
We also compare the performance of this method to two
other methods for phylogeny reconstruction based upon
gene order data:BPAnalysis (the heuristic designed and
implemented by Blanchetteet al. [4]) and the polynomial-
time, distance-based method of neighbor-joining [21], using
a variety of distance measures.



Definitions
We assume a fixed set of genes�� � � �� � � � � � �� �. Each
genome is then an ordering of some multi-subset of these
genes, each gene given with an orientation that is either
positive (� �) or negative (	��). The multi-subset formula-
tion allows for deletions or duplications of a gene. A linear
genome is then simply a permutation on this multi-subset,
while a circular genome can be represented in the same way
under the implicit assumption that the permutation closes
back on itself. For example, the circular genome on gene
set
 � �� � � �� � � � � � � � � given by� � � �� � 	�
 � �� � �� � �� has
one duplication of the gene�� , has a deletion of the gene�� ,
and has a reversal of the gene�
. That same circular
genome could be represented by several different linear
orderings, each given by rotating the linear ordering above.
Furthermore the ordering� � � �� � � � � � �� , whether linear
or circular, is considered equivalent to that obtained by
considering the complementary strand, i.e., to the ordering
	�� � 	���� � � � � � 	� �.

In tracing the evolutionary history of a collection of
single-chromosome genomes, we use inversions, transpo-
sitions and transversions (inverted transpositions), because
these events only rearrange gene orders; a more complex
set of structural changes has been considered in [8].

Let � be the genome with signed ordering� � � �� � � � � � �� .
An inversion between indices� and� , for � � � , produces
the genome with linear ordering

� � � �� � � � � � � ��� � 	�� � 	�� �� � � � � � 	� � � ��� � � � � � � ��
If we have� � �, we can still apply an inversion to a circular
(but not linear) genome by simply rotating the circular or-
dering until the two indices are in the proper relationship—
recall that we consider all rotations of the complete circular
ordering of a circular genome as equivalent.

A transposition on the (linear or circular) ordering�
acts on three indices,� � � � �, with � � � and� �� �� � � �, and
operates by picking up the interval� � � � �� � � � � � � �� and
inserting it immediately after�� . Thus the genome� above
(with the additional assumption of� � � ) is replaced by

� � � �� � � � � � � ��� � ��� � � � � � � � � � � � � � �� � � � � � � �� � � �� � � � � � � ��
Once again, if we have� � �, we can still apply the
transposition to a circular (but not linear) genome by first
rotating it to establish the desired index relationship.

An edit sequence describes how one genome evolves into
another through a sequence of these evolutionary events.
For example, let� be a genome and let� � � � � � � � � � � �
be a sequence of evolutionary events operating on� ;
then� � �� � � � � � � � � ��  defines a genome� !. When each
operation is assigned a cost, then theminimum edit distance
between two genomes� and � ! is defined to be the
minimum cost of any edit sequence transforming� into � !.
When the cost of each operation is finite, any two genomes
have a finite edit distance. (Similarly, if the probability of
each edit operation is given, we can define the edit sequence
of maximum probability.)

Theinversion distance between two genomes is the mini-
mum number of inversions needed to transform one genome

into another. The inversion distance between two genomes
is computable in polynomial time for signed genomes
[14, 16] and is available in software assigned dist,
but is NP-hard [6]—indeed APX-hard [2]—in the unsigned
case. Thetransposition distance between two genomes is
the minimum number of transpositions needed to transform
one genome into the other. Computing the transposition dis-
tance is of unknown computational complexity but, for the
case of linear genomes, Bafna and Pevzner [1] have found a
1.5-approximation algorithm. When both transpositions and
inversions are allowed, nothing is known about the compu-
tational complexity or approximability of computing edit
distances, although heuristics have been developed for that
purpose and are available in software. (In particular,de-
range2 [3] is a fast heuristic for estimating these distances,
and has been used both by Sankoffet al. [23] and by us.)

Another genome metric that is not a direct evolutionary
metric is thebreakpoint distance. Given two genomes�
and� ! on the same set of genes, a breakpoint in� is defined
as an ordered pair of genes�� � � ��  such that� � and ��
appear consecutively in that order in� , but neither�� � � ��  
nor �	�� � 	� � appear consecutively in that order in� !. For
instance, if� � �� � �� � 	�� � 	�
 and� ! � � � � �� � �
 � ��,
then there are exactly two breakpoints in� : ��� � 	��  ,
and �	�
 � � �  ; the pair �	�� � 	�
  is not a breakpoint in
� ! since ��
 � ��  appear consecutively and in that order in
� !. Thebreakpoint distance is the number of breakpoints
in � relative to � ! (or vice-versa, since the measure is
symmetric).

An evolutionary tree (or phylogeny) for a set " of
genomes is a binary tree with#" # leaves, each leaf labeled
by a distinct element of" . A putative evolutionary tree is
“correct” as long as this leaf-labeled topology is identical
to the true evolutionary tree (which we do not know for
real data sets). The process of tree reconstruction generally
involves the inference of additional aspects of the tree. For
example, a given method may infer weights on the edges
(also called “branch lengths”), genomes at internal nodes
(i.e., “ancestral” genomes), or probabilities for each type of
evolutionary event on each edge of the tree. These topolo-
gies and additional parameters are estimated in order to
optimize some objective criterion; the three basic optimiza-
tion criteria in use by biologists areMaximum Parsimony,
Distance-Based Methods, and Maximum Likelihood. We
briefly review the first two criteria.

Maximum parsimony: Assume that we are given a tree
in which each node is labelled by a genome. We define the
cost of the tree to be the sum of the costs of its edges, where
the cost of an edge is one of the edit distances between the
two genomes that label the endpoints of the edge. Finding
the tree of minimum cost for a given set of genomes and
a given definition of the edit distance is the problem of
Maximum Parsimony for Rearranged Genomes (MPRG);
the optimal trees are called the maximum-parsimony trees.
(The MPRG problem is related to the more usual maximum-
parsimony problem for biomolecular sequences, where the
edit distance between two sequences is just the number of
positions in which they differ, or the Hamming distance.)



Distance-based methods: Distance-based methods for
tree reconstruction operate by first computing all pairwise
distances between the taxa in the dataset, thus computing a
representation of the input data as a distance matrix�. In the
context of genome evolution, this calculation of distances
is done by computing minimum edit distances, based upon
some cost function for each of the allowed operations (inver-
sions, transpositions, etc.). Given the distance matrix�, the
method computes an edge-weighted tree whose leaf-to-leaf
distances closely fit the distance matrix. Since almost all
optimization problems related to tree reconstruction are
NP-hard, the most frequently used distance-based methods
are polynomial-time methods such as neighbor-joining [21];
these do not explicitly seek to optimize any criterion, but can
have good performance in empirical studies. In particular,
neighbor-joining has had excellent performance in studies
based upon simulating biomolecular sequence evolution
and is probably the most popular distance-based method.

Evaluating Phylogenies: The False Positive and
False Negative Rate

Let � be a tree leaf-labelled by the set" . Given an edge�
in � , the deletion of the edge from� produces a bipartition�� of � into two sets. The set� ��  � ��� � � � � ��  �
uniquely defines the tree� ; this characterization is called
the character encoding of � . Given a collection of trees
� � � � � � � � � � � � , each leaf-labelled by" , we define thestrict
consensus of the trees to be that unique tree��	 defined
by � ���	  � 
 �� �� �  � This is the maximally resolved tree
which is a common contraction of each tree� �. Character
encodings are used to compare trees and to evaluate the
performance of a phylogenetic reconstruction method. Let
� be the “true” tree and let� ! be the estimate of� . Then the
false negatives of � ! with respect to� are those edges� that
obey�� � � ��  	 � �� !  , i.e., edges in the true tree that the
method fails to infer. Thefalse positives of � ! with respect
to � are those edges� that obey�� � � �� !  	 � ��  , i.e.,
edges in the inferred tree that do not exist in the true tree
and should not have been inferred. Note that every trivial
bipartition (induced by the edge incident to a leaf) exists in
every tree. Consequently, false positives and false negatives
are calculated only with respect to the internal edges of the
tree and expressed as a percentage of the number of internal
edges.

Previous Work in Reconstructing Trees from
Gene Order Data

Most of the work done by computer scientists related to
genome rearrangements has focused on the problem of
computing minimum edit distances, i.e., inversion distances
or inversion plus transposition distances between two linear
(or circular) orderings on (signed or unsigned) genes. Most
of these problems are not yet known to be solvable in
polynomial time, so that heuristics of unknown accuracy
are used. We focus instead on the problem of inferring
phylogenetic trees from the gene order data, a problem that
has seen comparatively little work to date.

Distance-Based Methods for Reconstructing Trees
There has been little use of distance-based methods for
reconstructing phylogenies from gene order data. However,
in a recent publication, Blanchetteet al. [5] evaluated two of
the most popular polynomial-time distance-based methods
for phylogenetic reconstruction, neighbor-joining and Fitch-
Margoliash [11], for the problem of reconstructing the phy-
logeny of metazoans. They calculated a breakpoint distance
matrix for inferring the metazoan phylogeny from mitochon-
drial gene order data. The trees obtained by these methods
were unacceptable because they violated assumptions about
metazoan evolutionary history. Later, they examined a
different dataset and found the result to be acceptable with
respect to evolutionary assumptions about that dataset [22].

Computational Complexity of MPRG
MPRG seems to be the optimization criterion of choice.
Indeed, most approaches to reconstructing phylogenetic
trees from gene order data have explicitly sought to find the
maximum-parsimony tree with respect to some definition
of genomic distances (inversion distances or a weighted
sum of inversions, transpositions, and transversions). All
these problems are NP-hard however, or of unknown com-
putational complexity. Even the fundamental problem of
computing optimal labels (genomes) for the internal nodes
is very difficult. When only inversions are allowed, it is NP-
hard, even for the case where there are only three leaves [7].

Breakpoint Phylogeny
Recently, Blanchetteet al. [5] proposed a new optimization
problem for phylogeny reconstruction on gene order data.
In this problem, the tree sought is that with the minimum
number of breakpoints, rather than that with the minimum
number of evolutionary events (e.g., inversions, transposi-
tions, transversions, etc.). It has long been known that the
breakpoint distance is at most twice the inversion distance
for any two genomes. For some datasets, however, there can
be a close-to-linear relationship between the breakpoint dis-
tance and either the inversion distance or the weighted sum
of inversions and transpositions. When a linear relationship
exists, the tree with the minimum number of breakpoints
is also the tree with the minimum number of evolutionary
events. Consequently, when a close-to-linear relationship
exists, the tree with the minimum number of breakpoints
may be close to optimal with respect to the number of
evolutionary events. Blanchetteet al. [5] observed such a
close-to-linear relationship in a group of metazoan genomes
(the correlation coefficient between the two measures for
their set was 0.9815) and went on to develop a heuristic for
finding the breakpoint phylogeny.

Computing the breakpoint phylogeny is NP-hard for the
case of just three genomes [20], a special case known as
the Median Problem for Breakpoints (MPB). Blanchetteet
al. however, showed that the MPB reduces to the Travelling
Salesman Problem (TSP) and designed special heuristics for
the resulting instances of TSP. Their heuristic approach to
solving the breakpoint phylogeny exactly solves numerous
instances of the TSP. Specifically, their algorithm consid-



ers each tree topology in turn; for each tree, it fills in in-
ternal nodes by computing medians of triplets of genomes
iteratively (until no change occurs) and scores the resulting
tree. The best tree is returned at the end of the procedure.
This heuristic is computationally intensive on several lev-
els. First, the number of unrooted binary trees on� leaves is
���	 � � ��� 	 � � � � ���  , so that the outer loop is exponential
in the number of genomes. Secondly, the inner loop itself is
computationally intensive, since computing the median of
three genomes is NP-hard [20] and since the technique used
by Blanchetteet al. involves solving many instances of TSP
in a reduction where the number of cities equals the number
of genes in the input. Finally, the number of instances of
TSP can be quite large, since the procedure iterates until no
further change of labelling occurs within the tree. Thus the
computational complexity of the entire algorithm is expo-
nential ineach number of genomes and the number of genes.

The accuracy ofBPAnalysis for the breakpoint
phylogeny problem depends upon the accuracy of its com-
ponent heuristics. While it evaluates every tree, the labelling
given to each tree is only locally optimal: although it solves
TSP exactly at each node, it labels nodes with an iterative
method that can easily be trapped at a local optimum. In
our experiments, we have found thatBPAnalysis often
needed to be run on several different random starting points
in order to score a given tree accurately. This is typical
of hill-climbing heuristics [18], but will affect the running
time proportionally.

Our New Method: Maximum Parsimony on
Binary Encodings of Genomes (MPBE)

Our new technique has two phases. In the first phase,
we encode the input genomes as a collection of binary
sequences and analyze these sequences under maximum
parsimony. In the second phase, we screen the set of
maximum-parsimony trees found, and select those that
minimize the number of breakpoints, number of inversions,
or number of inversions/transpositions/transversions.

Phase I: Solving Maximum Parsimony on Binary
Encodings of Genomes
We now show how we define the binary sequences. We note
all ordered pairs of signed genes�� � � ��  that appear consec-
utively in at least one of the genomes. Each such pair defines
a position in the sequences (the choice of index is arbitrary).
If �� � � ��  or �	�� � 	� � appear consecutively in a genome,
then that genome has a� in the position for this ordered
pair, and otherwise it has a�. These “characters” can also
be weighted. (In this study, we did not weight any charac-
ters; however, in the study reported in [8], character weight-
ing was used, along with other characters such as gene seg-
ment insertions and deletions, duplications of inverted re-
peats, etc. Thus, the method can be extended to allow for
evolutionary events more complex than gene order changes.)

Now let � �� be the Hamming distance between the
sequences labelling the endpoints of the edge�—the
Hamming distance between two sequences is the number
of positions in which they differ. We define theBinary

Sequence Maximum Parsimony (BSMP) problem as follows:
the input consists of a set" of binary sequences, each of
length�; the output is a tree� with leaves labelled by" and
internal nodes labelled by additional binary sequences of
length� in such a way as to minimize	 � �� as� ranges
over the edges of the tree. The trees with the minimum
score are called maximum-parsimony trees.

Our first phase then operates as follows. First, each
genome is replaced by a binary sequence. The BSMP
problem is then solved exactly or approximately, depending
upon the dataset size; BSMP is NP-hard [12], but fast
heuristics exist that are widely available in standard phy-
logeny software packages, such asPAUP [25]. Although
no study has been published on the accuracy of these
heuristics on large datasets, it is generally believed that
these heuristics usually work well on datasets of size up to
about 40 genomes. Moreover, exact solutions on datasets
of up to about 20 genomes can be obtained through branch-
and-bound techniques in reasonable amounts of time;
consequently, BSMP has been solved exactly in some cases.

Phase II: Screening the Maximum-Parsimony Trees
Once the maximum-parsimony trees are obtained, the
internal nodes are labelled by circular signed gene orders
by giving the topology of the maximum-parsimony tree as
a constraint toBPAnalysis, thus producing a labelling
which (hopefully) minimizes the breakpoint distance of
the tree. The labelling also allows us to score each tree
for the minimum number of inversions (by scoring each
edge usingsigned dist [13]), or for the minimum
number of inversions/transpositions/transversions events
(by scoring each edge usingderange2 [3]), depending
upon the relative costs of these events. Depending upon
which objective criterion is desired, the tree that minimizes
the total cost is then returned.

Running Time of MPBE
The computational complexity of MPBE, while less than
that of BPAnalysis, remains high. Evaluating a single
tree topology in the search space takes polynomial time—
more precisely, takes
 ���  time, where� is the number
of genomes and� is the number of genes in each genome,
but the search for the maximum-parsimony trees is based
upon hill-climbing through the space of tree topologies.
Thus finding the maximum parsimony trees is exponential
in the number of genomes but only polynomial in the
number of genes. Labelling the internal nodes of each
maximum-parsimony tree by using constraint trees for
BPAnalysis is expensive, but we generally only examine
a small percentage of the space of trees and thus reduce
the computational cost significantly by comparison to
the exhaustive search strategy ofBPAnalysis. Eval-
uating the cost of each tree with respect to inversion or
inversion/transposition/transversion distances is quite fast.

Accuracy of MPBE for the Breakpoint Phylogeny
We now show that MPBE should be seen as a heuristic
for the breakpoint phylogeny problem. Suppose� is



the breakpoint phylogeny for the set� � � � � � � � � � � � of
genomes. Each node in� is labelled by a circular ordering
of signed genes and the number of breakpoints in the tree is
minimized. If each node in the tree is then replaced by the
binary encoding, using the technique described earlier, the
parsimony length of the tree (given these sequences at each
node) is exactly twice the number of breakpoints in the tree.
Thus, seeking a tree with the minimum number of break-
points is exactly the same as seeking a tree (based upon
binary encodings) with the minimum parsimony length,
provided that each binary sequence can be realized by a
circular ordering of signed genes. (Not all binary sequences
are derivable from signed circular orderings on genomes!)
This is why we have included Phase II in our method.

The accuracy of the MPBE method with respect to the
breakpoint phylogeny problem depends upon several issues.
The major issue is whether the topology of the breakpoint
phylogeny will be one of the maximum-parsimony trees
obtained in the first phase (in our experiments it has
been, but this may not hold true throughout the parameter
space, and further experiments will be needed to estab-
lish this). The other issues are simpler: since each of
the problems we solve (maximum parsimony on binary
sequences, the median problem for breakpoints, and the
inversion/transposition/transversion distance) is either
known or conjectured to be NP-hard, the accuracy of the
heuristics will determine whether we find globally optimal
or only locally optimal solutions.

Chloroplast DNA Structure
Chloroplast DNA is generally highly conserved in nu-
cleotide sequence, gene order and content, and genome size
[19]. The genomes contain approximately 120 genes which
are involved in photosynthesis, transcription, translation,
and replication. Major changes in gene order, such as
inversions, gene or intron losses, and loss of one copy of
the inverted repeat, are usually rare. Therefore, they are
extremely useful as phylogenetic markers because they are
easily polarized and exhibit very little homoplasy when
properly characterized [9]. In groups in which more than
one gene order change has been detected, the order of events
is usually readily determined (e.g., [17, 15]). Chloroplast
DNA gene order changes have been useful in phylogenetic
reconstruction in many plant groups (see [9]). These
changes have considerable potential to resolve phylogenetic
relationships and they provide valuable insights into the
mechanisms of cpDNA evolution.

The Campanulaceae cpDNA Dataset
We have used the chloroplast genomes of the flowering plant
family Campanulaceae for a test case of our technique. In
earlier work [8], Cosner obtained detailed restriction site and
gene maps for 18 genera of theCampanulaceae and used
a variant of the MPBE analysis described above to obtain
a phylogenetic analysis of these genera. When restricted
to gene order rearrangements, 6 of the genera are shown to
be duplicates of other genera (they differ only in terms of
insertions and deletions of gene segments, or expansions

and contractions of the inverted repeat). In order to compare
our technique withBPAnalysis and other reconstruction
techniques based upon gene orders, we reduced the dataset
to 12 genera and 105 genes after eliminating repeated genes.
We included the tobacco genome as an outgroup for this
analysis, thus producing a dataset of 13 genomes.

This chloroplast dataset is interesting to us for several
reasons. The phylogeny reconstructed by our analysis is
extremely close to that obtained by other analyses, including
neighbor-joining analyses based upon either breakpoint
distances or inversion and transposition distances. The
genome phylogeny is also very similar to the gene phylo-
genies that have been reconstructed. Thus, it represents an
easy test case for the topology estimation problem and it is
reasonable to assume that the topology is reliable. However,
because of the diversity of types of evolutionary events, it
suggests an interesting model of genome evolution and also
makes the inference of the gene orderings for the internal
nodes quite complicated.

Chloroplast Data Analysis
We used gene maps to encode each of the 13 genera as a
circular ordering of signed gene segments. We represent
each circular ordering as a linear ordering, beginning at
gene segment 1. In order to conserve space (and make the
rearrangements easier to observe), we have represented
each ordering compactly by noting the maximal intervals
of consecutive gene segments with the same orientation.
Thus the sequence 1, 2,	4, 	3, 5, 6, 7, 10, 8, 9 would be
represented as (1–2)(4–3)(5–7)(10)(8–9). Tobacco has the
“unrearranged” ordering 1, 2,� � � , 105, which we represent
as (1–105). Figure 1 gives the compact representations of
the genomes for the 13 genera.

We used these 13 circular orderings as input toBPAnal-
ysis. The program spent over 43 hours of computation
time without completing. We also encoded these orderings
with our binary encoding technique and conducted an
analysis of the resulting binary sequences under maximum
parsimony using the branch-and-bound procedure ofPAUP.
We obtained four maximum parsimony trees from this
dataset. (The sequences, as well as the four MP trees, are
available on our web page[26]. They can also be calculated
directly from the gene order data. Note that the ordering of
the sequence of breakpoints does not affect the results.) We
then inferred circular orderings of signed gene segments
for each internal node by giving each of the four binary MP
trees as a constraint tree toBPAnalysis. This produces a
tree in which each node (internal and leaf) is represented by
circular signed orderings on genes, potentially minimizing
the number of breakpoints in the tree. (An actual mini-
mization is not guaranteed, becauseBPAnalysis uses
hill-climbing on each fixed-tree and thus may find only a
local minimum.) We then scored each tree for the number
of breakpoints. Interestingly, the labelling of internal nodes
obtained byBPAnalysis produced the same number of
breakpoints on all four trees, .

We note that the best breakpoint score obtained in
43 hours of computation byBPAnalysis from the
original orderings was 96—substantially larger than the



Trachelium
(1–15)(76–56)(53–49)(37–40)(35–26)(44–41)(45–48)
(�36)(25–16)(90–84)(77–83)(91–96)(55–54)(105–97)

Campanula
(1–15)(76–49)(39–37)(40)(35–26)(44–41)(45–48)
(�36)(25–16)(90–84)(77–83)(91–96)(55–54)(105–97)

Adenophora
(1–15)(76–49)(39–37)(29–35)(40)(26–27)(44–41)(45–48)
(�36)(25–16)(90–84)(77–83)(91–96)(55–54)(105–97)

Symphyandra
(1–15)(76–56)(39–37)(49–53)(40)(35–26)(44–41)(45–48)
(�36)(25–16)(90–84)(77–83)(91–96)(55–54)(105–97)

Legousia
(1–15)(76–56)(27–26)(44–41)(45–48)(36–35)(25–16)
(90–84)(77–83)(91–96)(5–8)(55–53)(105–98)(28–34)
(40–37)(49–52)(�97)

Asyneuma
(1–15)(76–57)(27–26)(44–41)(45–48)(36–35)(25–16)(89–84)
(77–83)(90–96)(105–98)(28–34)(40–37)(49–52)(�97)

Triodanus
(1–15)(76–56)(27–26)(44–41)(45–48)(36–35)(25–16)
(89–84)(77–83)(90–96)(55–53)(105–98)(28–34)(40–37)
(49–52)(�97)

Wahlenbergia
(1–11)(60–49)(37–40)(35–28)(12–15)(76–61)(27–26)
(44–41)(45–48)(�36)(54)(25–16)(90–84)(77–83)(91–96)
(�55)(105–97)

Merciera
(1–10)(49–53)(28–35)(40–37)(60–56)(11–15)(76–61)
(27–26)(44–41)(45–48)(�36)(54)(25–16)(90–85)(77–84)
(91–96)(�55)(105–97)

Codonopsis
(1–8)(36–18)(15–9)(40)(56–60)(37–39)(44–41)(45–53)
(16–17)(54–55) (61–76)(96–77)(105–97)

Cyananthus
(1–8)(29)(36–26)(40)(56–60)(37–39)(25–9)(44–48)
(55–49)(61–96)(105–97)

Platycodon
(1)(8)(2–5)(29–36)(56–50)(28–26)(9)(49–45)(41–44)
(37–40)(16–25)(10–15)(57–59)(6–7)(60–96)(105–97)

Tobacco
(1–105)

Figure 1: 12 genera ofCampanulaceae and the outgroup
Tobacco, as circular orderings of signed gene segments

breakpoint score obtained by our parsimony analysis of
binary sequences.

We then scored each tree (using the labels assigned by
BPAnalysis) for the inversion distance and for the inver-
sion/transposition/transversiondistance. We used weights of� �� for transpositions and transversions and� for inversions.
Using this weighting scheme, the first tree has a total of 40
inversions and 12 transpositions/transversions; the second
has 48 inversions and 18 transpositions/transversions; the
third has 40 inversions and 12 transpositions/transversions;
and the fourth has 67 inversions and 32 transpositions. See
our web page for figures with edge weights labelled [26].
Thus, the first and third trees are superior (under this anal-
ysis) to the second and fourth. We then evaluated the first
and third trees with respect to the inversion distance, given
the labelling on internal nodes obtained byBPAnalysis:
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Figure 2: The reconstructed phylogeny of 12 genera ofCam-
panulaceae and the outgroup tobacco based upon an MPBE
analysis of 185 binary characters. The number of inversions
and transpositions is given above each edge followed by the
number of inversions in an inversion-onlyscenario; the num-
ber of breakpoints is given last.

the first tree has a total number of 68 inversions, while the
third has 67. Both trees have zero-length edges (i.e., the
endpoints of some edges have the same gene orderings);
when these edges are contracted, the two trees are identical.
The contracted tree is shown in Figure 2.

Interestingly, that tree is also a contraction of each of the
trees obtained by the MPBE analysis [8] on the original 18
genera encoded using a larger set of characters (in which
insertions, deletions, duplications, contractions/expansions
of the inverted repeat, etc., were also used).

Table 1: The false negative rate matrix of trees from various
reconstruction methods on theCampanulaceae data in Fig-
ure 1. MPBE1 through MPBE4 are the four most parsimo-
nious trees by the MPBE method. NJ(BP), NJ(I), and NJ(IT)
are the neighbor joining trees from the distance matrix us-
ing MPBE estimation,derange2 with inversion only, and
derange2 with cost ratio��� ������ � ���� �� ������� �
� � � ��.

NJ(BP) NJ(INV) NJ(IT) MPBE1 MPBE2 MPBE3 MPBE4

NJ(BP) 0 0 0 1 2 1 2

NJ(INV) 0 0 0 1 2 1 2

NJ(IT) 0 0 0 1 2 1 2

MPBE1 1 1 1 0 1 1 2

MPBE2 2 2 2 1 0 2 1

MPBE3 1 1 1 1 2 0 1

MPBE4 2 2 2 2 1 1 0
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Figure 3: The reconstructed phylogeny of 12 genera ofCam-
panulaceae and the outgroup tobacco using neighbor joining
on various distance estimation methods.
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Figure 4: The consensus tree of the four MPBE trees and
three neighbor joining trees from the 12 genera dataset of
Campanulaceae and the outgroup tobacco. The tree has 8
internal edges, out of at most 10 internal edges allowed in a
13-taxa phylogeny.

We also computed neighbor-joining trees (usingPhylip
[10]) on two different distance matrices: the inver-
sion/transposition/transversion distance matrix (computed
with derange2 with relative weights of 1, 2.1, and 2.1)
and the breakpoint matrix (computed usingBPAnalysis).
We show thederange2 distance matrix in Table 2; the
other distance matrices are available on our web page [26].

All of the trees we reconstructed (whether by neighbor-
joining or maximum parsimony) are fairly similar, differing
pairwise in at most two edges. Table 1 shows the false
negative rate for the 7 trees: 3 neighbor-joining trees and 4
MP trees. The similarity between all the trees reconstructed
indicates a high level of confidence in the the accuracy of
the common features of the phylogenetic reconstructions.
The conditions under which these genomes evolved (low

Table 2: The distance matrix computed withderange2
and a

� �� weight ratio

Tra Cam Ade Sym Leg Asy Tri Wah Mer Cod Cya Pla Tob

Tra 0.0 1.0 4.0 1.0 8.3 10.4 8.3 4.1 8.1 15.2 14.1 19.2 10.0

Cam 1.0 0.0 3.0 2.0 9.3 11.4 9.3 5.1 9.2 15.1 15.2 20.2 11.2

Ade 4.0 3.0 0.0 5.1 12.1 14.3 12.1 8.1 11.2 16.2 15.2 20.2 13.1

Sym 1.0 2.0 5.1 0.0 9.2 11.4 9.3 5.1 9.1 14.2 13.3 20.2 11.1

Leg 8.3 9.3 12.1 9.2 0.0 8.4 4.1 12.2 14.3 18.1 16.1 23.2 14.2

Asy 10.4 11.4 14.3 11.4 8.4 0.0 4.2 12.4 16.2 18.2 16.2 21.1 12.2

Tri 8.3 9.3 12.1 9.3 4.1 4.2 0.0 12.2 14.4 18.2 15.2 21.2 12.2

Wah 4.1 5.1 8.1 5.1 12.2 12.4 12.2 0.0 6.0 18.1 16.2 23.1 14.2

Mer 8.1 9.2 11.2 9.1 14.3 16.2 14.4 6.0 0.0 17.2 16.3 24.1 16.1

Cod 15.2 15.1 16.2 14.2 18.1 18.2 18.2 18.1 17.2 0.0 8.3 18.2 10.2

Cya 14.1 15.2 15.2 13.3 16.1 16.2 15.2 16.2 16.3 8.3 0.0 16.3 10.2

Pla 19.2 20.2 20.2 20.2 23.2 21.1 21.2 23.1 24.1 18.2 16.3 0.0 13.3

Tob 10.0 11.2 13.1 11.1 14.2 12.2 12.2 14.2 16.1 10.2 10.2 13.3 0.0
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Figure 5: Comparison of distance calculations on theCam-
panulaceae Chloroplast dataset with a correlation coeffi-
cient of��� � � ��� ��.

rates of evolution and a large number of gene segments) are
probably responsible for this high level of similarity, which
is observable at various levels. For instance, the breakpoint
distance and the inversion/transposition/transversion dis-
tance (using relative costs of 1, 2.1, and 2.1) are very closely
related, as illustrated in Figure 5. (The high correlation
coefficient indicates that the two distances stand in a nearly
linear relationship to each other.) These observations
suggest that this dataset forms an easy case for phylogeny
reconstruction; other evolutionary conditions may prove
more difficult for phylogenetic reconstruction and may
distinguish between different methods.

Software Issues
Running time may be a real issue with respect to recon-
structing phylogenetic trees. While neighbor-joining is fast
(technically� �� 
  , but very fast in practice), none of the
other methods are. Maximum parsimony is NP-hard (and
some searches do take a long time), but by comparison
BPAnalysis is significantly slower. On our dataset
(13 genomes, 105 gene segments), maximum parsimony
took 0.15 seconds to find the four best trees using the
branch-and-bound option inPAUP. However, for the same
dataset,BPAnalysis, after running for 43 hours, had still
not searched more than a small fraction of the tree space.

Even calculating the distance matrix between every pair
of signed circular genomes in a large data set is compu-
tationally challenging. derange2 is fast, but inexact:
because it heuristically computes the distance between two
genomes by using inversions, transpositions, and inverted
transpositions (transversions) using a greedy strategy, it
only allows an operation if that operation decreases the
breakpoint distance between the two genomes. Conse-
quently, it can miss minimal edit sequences, as we observed
in our tests. Hannenhalli’s softwaresigned dist for
pairwise distances runs in slow polynomial-time (
 �� �  to
compute distances between a pair of genomes on� genes);
in order to compute all pairwise distances, it requires


 �� ���  time. For our dataset,� was 105 and� was 13.
We timed each method on the chloroplast dataset.

Finding the four maximum-parsimony trees withPAUP
took 0.15 seconds on a Macintosh G4. Labelling the
internal nodes withBPAnalysis took 0.38 seconds
for each tree. Computing inversion distances using
signed dist took 45.65 seconds per edge and com-
puting inversion/transposition/transversion distancesusing
derange2 took 0.01 seconds per edge. Our experiments
thus suggest thatBPAnalysis evaluates approximately
120 trees a minute; at this rate, since the number of trees
on 13 leaves is 13,749,310,575,BPAnalysis would take
well over 200 years to complete its search of tree space for
our problem. Blanchetteet al. did complete their analysis of
the metazoan dataset, which has 11 genomes on a set of 37
genes. This is a much easier problem, as there are far fewer
trees to examine (only 2,027,025) and as scoring each tree
involves solving a smaller number of TSP instances on a
much smaller number of cities (37 rather than 105). Overall,
it is clear that datasets of sizes such as ours are currently too
large to be fully analyzed byBPAnalysis. More effective
implementations of the basic concept, such as hill-climbing
or branch-and-bound through the tree space and abandoning
strict optimality in solving the TSP instances in favor of
a fast and reliable heuristic (such heuristics abound in the
TSP literature), could make the method run fast enough to
be applicable to datasets comparable to ours.

Conclusions
In view of these results, our new method stands as a good
compromise between speed and accuracy. Neighbor-joining
is faster (guaranteed polynomial-time), but returns only one
tree and thus tells us little about the space of near-optimal
trees, whileBPAnalysis is much slower. Furthermore,
our preliminary results confirm that our new method re-
turns results as good as any of the other methods, and does
so within very reasonable times, even on sizes at which
BPAnalysis cannot run to completion in a reasonable
amount of time.
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