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Phylogenies:What?

A phylogeny is a reconstruction of the
evolutionary history of a collection of
organisms.

It usually takes the form of a tree.

• Modern organisms are placed at the leaves.
• Edges denote evolutionary relationships.
• “Species” correspond to edge-disjoint paths.
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The Great Apes

– p. 6



12 Species of Campanulaceae
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Phylogenies:Why?

Phylogenies provide the framework around
which to organize all biological and
biomedical knowledge.

They help us understand and predict:
• functions of and interactions between genes
• relationship between genotype and phenotype
• host/parasite co-evolution
• origins and spread of disease
• drug and vaccine development

• origins and migrations of humans
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Herpes Viruses that Affect Humans
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Epidemiology ofWest Nile Virus

Romania 1996
Israel 1952
South Africa
Egypt 1951
Senegal 1979
Italy 1998

Romania 1996
Kenya 1998

New York 1999
Israel 1998
Central African Republic 1967
Ivory Coast 1981

India 1955−1980

Kunjin 1966−1991
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Drug Design: Antivenins

Australian copperhead

Black whip snake

Taipan

Fierce snake

Common brown

Western brown

Dugte

Collatt’s snake
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Butler’s snake
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Red−bellied black
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Small−eyed snake
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Broad−headed snake

Recommended Antivenin

Taipan

Brownsnake

Blacksnake

Death adder

Tiger snake

– p. 11



The Tree of Life

AnimalsPurple bacteria
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The Tree of Life: Scale?

• 20 fully sequenced eukaryotic (plants, animals,
protists) genomes

• 600 fully sequenced bacterial genomes
• Several sequenced genes for perhaps 50,000 species
• 1,5 million described species
• Estimates for existing species vary from 10 million to

200 million.
• Genome-based tools can handle 20–50organisms.
• Gene-based tools can handle 200–500 organisms.

• Both sets of tools scale exponentially with the amount
of data.
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Phylogenetic Reconstruction: How?

• Data:
behavioral, morphological, metabolic, molecular, etc.
Main data today are DNA sequence data.

• Models:
models of speciation, of population evolution, of
molecular character evolution, etc.

• Algorithms:
clustering, optimization, estimation of distributions,
and heuristics.

– p. 14



Molecular Data

Typically the DNA sequence of a few genes.
Characters are individual positions in the string and can
assume 4 states (nucleotides) or 20 states (codons).
Evolve through point mutations, insertions (incl.
duplications), and deletions.

• Find homologous genes across all organisms.
• Align gene sequences for the entire set (to identify

gaps—insertions and deletions—and point
mutations).

• Decide whether to use a single gene for each analysis
or to combine the data.

• Lengths limited by size of genes
(typically several hundred base pairs)
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Sequence Data: Illustration

AGGCAT TAGCCCA TAGACTT AGCGCTTAGCACAATGAACTT

AGCACTTTAGCCCT

TGGACTT

AAGACTT

AAGGCCT

AGGGCAT
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Sequence Data: Attributes

• Advantages:
• Large amounts of data available.
• Accepted models of sequence evolution.
• Models and objective functions provide a

reasonable computational framework.

• Problems:
• Fast evolution restricts use to a few million years.
• Gene evolution need not be identical to organism

evolution.
• Multiple alignments are not well solved.

– p. 17



Gene-Order Data

The ordered sequence of genes on one or
more chromosomes.
Entire gene-order is a single character, which can assume
a huge number of states.
Evolves through inversions, insertions (incl. duplications),
and deletions; also transpositions (in mitochondria) and
translocations (between chromosomes).

• Identify homologous genes, including duplications.
• Refine rearrangement model for collection of

organisms (e.g., handle bacterial operons or
eukaryotic exons explicitly).
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Gene-Order: Guillardia Chloroplast
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Gene-Order Data: Rearrangements
1
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Gene-Order Data: Attributes

• Advantages:
• No need for multiple alignments.
• No gene tree/species tree problem.
• Rare evolutionary events and unlikely to cause

“silent" changes—so can go back hundreds of
millions years.

• Problems:
• Mathematics much more complex than for

sequence data.
• Models of evolution not well characterized.
• Very limited data (mostly organelles).
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Other Data

• protein folds
remarkably conserved, but give rise to very complex
models

• metabolic pathways
highly specific, but insufficient for large datasets

• morphological characters
not as clearly inherited and inherently fuzzy

• etc.!
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Models

Good models emerge from collaborations
among biologists, mathematicians, and
computer scientists; they are:
• biologically plausible: they produce credible

data and possess explanatory power.

• mathematically sound: it is possible to prove
desirable properties (convergence, consistency, etc.).

• computationally tractable: producing data is
easy and reversing the model is possible.
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SpeciationModels

Usually based on a birth-death process: in
any time interval, there are given probabilities
for extinction or speciation; also known as
the coalescent or Yule-Harding model.
Need more data and refinements:

• inheritance of tendency to speciate

• punctuated equilibrium

• connection to population genetics
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Molecular EvolutionModels

Based on large amounts of data, models
build transition matrices (4 × 4 for
nucleotides, 20 × 20 for aminoacids).
• Widely used to estimate evolutionary rates and well

supported by data.

• Still assume independence among sites (e.g., each
nucleotide or codon evolves independently of the
others).

• Remain unconnected to speciation model.
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Algorithms

Two main categories of methods:
• Distance-based methods (UPGMA, neighbor-joining)

work from a matrix of pairwise distances.
• Criterion-based methods (Minimum Evolution,

Maximum Parsimony, and Maximum Likelihood) rely
on an underlying model and attempt to infer or
reconstruct additional data.

In addition:
• Meta-methods (quartet-based methods, disk-covering

method) decompose the data into smaller subsets,
construct trees on those subsets, and use the
resulting trees to build a tree for the entire dataset.
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Evolutionary Distances

• True evolutionary distance:
the actual number of permitted evolutionary events
that took place to transform one datum into the other.

• Edit distance:
the minimum number of permitted evolutionary events
that can transform one datum into the other.

• Expected true evolutionary distance:
obtained from the edit distance by correcting for the
known (model or experiments) statistical relationship
between true and edit distances.
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Distance-BasedMethods

• Use edit or expected true evolutionary distances.
• Usually run in low polynomial time.
• Reconstruct only topologies: no ancestral data.
• Prototype is Neighbor-Joining.
• NJ is optimal on additive distances (where the

distance along a path in the true tree equals the
pairwise distance in the matrix).

• NJ is statistically consistent (produces the true tree
with probability 1 as the sequence length goes to
infinity).
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The Number of Trees for N Organisms

• 3 organisms: 1 tree

• 4 organisms: 3 trees

• 5 organisms: 15 trees
• 13 organisms: 13.5 billion trees
• n organisms: (2n-5)!! trees

(2n-5)!! = (2n-5)*(2n-7)*...*5*3
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Parsimony-BasedMethods

• Aim to minimize total number of character changes
(which can be weighted to reflect statistical evidence).

• Assume that characters are independent .
• Reconstruct ancestral data.
• Are known not to be statistically consistent with

sequence data (but examples are fairly contrived).
• Finding most parsimonious tree is computational very

expensive (NP-hard).

• Optimal solutions limited to sizes around 30; heuristic
solutions appear fairly good to sizes of 500.
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Likelihood-BasedMethods

• Are based on a specific model of evolution and
must estimate all model parameters.

• Produce likelihood estimate (prior or posterior
conditional) for each tree.

• Are statistically consistent.
• Reconstruct only topologies.
• Are prone to numerical problems:

likelihood of typical trees is infinitesimal.
• Are presumably NP-hard; even scoring one tree is

very expensive.

• Optimal solutions limited to sizes below 10; heuristic
solutions appear fairly good to sizes of 100.
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Meta-Methods

General Principle:
decompose the dataset into smaller, overlapping subsets,
reconstruct trees for the subsets (by some base method),
and combine the results into a tree for the entire dataset.

• Quartet-based methods:
use all possible smallest subsets (quartet: set of 4
genomes); best-known is Tree-Puzzle.
Slow and inherently inaccurate for any base method.

• Disk-covering method (DCM):
set up graph from distance matrix, find overlapping
triangulated subgraphs, use them for decomposition.

High-powered machinery succeeds very well,
especially when tree is imbalanced.
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Limitations and Challenges

• Accuracy
not a matter of optimization, but of scientific truth!
how does it scale? how do we evaluate it?

• Computational Demands
all criterion-based optimizations are NP-hard
the more accurate the model, the worse the problem

• Data Integration
a single type of data cannot answer all questions
but integration is beyond our reach

• Database Design
database “search" is often a linear search: complex
objects give rise to difficult queries
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Limitations on Accuracy

• true distances cannot be computed
• insufficient sequence length
• primitive or erroneous models
• algorithmic idiosyncrasies

(NJ suffers with high diameter, MP suffers from long
branch attraction, ML from numerical problems)

• gene evolution is not species evolution
• not a tree, but a directed acyclic graph

(due to hybridization, lateral gene transfer, etc.)
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Evaluating Accuracy

• there is only one instance!
• we want the truth,

but it cannot be known or measured
• optimization is done on surrogate criteria
• simulation studies are only as good as

models
• parameter space is ridiculously large
• what matters: tree structure? edge

lengths? data at internal nodes?
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Database Challenges

A simple query such as

what is the percentage of trees in the DB in which
organisms x1, . . . , xm and organisms y1, . . . , yn

occur in distinct subtrees?

requires a linear search through the DB.
The famous BLAST algorithm was designed to speed up
a similar linear search.

How can we preprocess and store the data
so as to avoid linear searches?
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Research inmy Laboratory

• Scaling up methods through algorithm design, algorithm
engineering, and high-performance computing.

• Whole-genome rearrangements in phylogenetic
analysis and comparative genomics.

• Reticulate (non-tree) evolution and its reconstruction.

• Computing directly from databases (rather than
in-core).

compbio.unm.edu
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Scaling Up

Distance-based methods scale poorly in accuracy,
so use criterion-based methods.
Criterion-based methods scale poorly for computation,
so use meta-methods.

Our latest findings:

• To ensure 95% accuracy in reconstructing trees on n leaves,
the criterion must be optimized with less than 1

n
error!

(Unheard of in normal approximation problems!)
• Using recursion and iteration, our latest Disk-Covering Method

(Rec-I-DCM3) can handle datasets of 10,000–50,000 sequences
as well as previous algorithms could handle 100–500.

• Another DCM approach can scale whole-genome analysis from

10 to over 1,000 genomes.
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Gene Rearrangement Phylogeny

Theory Example Reconstruction Software

1995
inversion distance
Hannenhalli & Pevzner

1997
breakpoint phylogeny
Blanchette, Bourque, & Sankoff

2000
inversion + deletion
distance
El-Mabrouk

2001
distance correction
Wang, Warnow, & Moret

2003
inversion + deletion +
insertion distance
Marron, Swenson, & Moret

12 Campanulaceae + Tobacco
Jansen, Moret, & Warnow 2000

Tobacco

Platycodon

Cyananthus

Codonopsis

Triodanis

Asyneuma

Legousia

Adenophora

Campanula

Symphyandra

Trachelium

Merciera

Wahlenbergia

1998 BPAnalysis
Sankoff
8 taxa⇒ 1 day
13 taxa⇒ 250 years

2000 GRAPPA
Moret, Bader, & Warnow
13 taxa⇒ 1 day (512-proc.)
(200 serial, 100,000 parallel speedup)

2001 GRAPPA
Moret, Tang, Wang, & Warnow
13 taxa⇒ 1 hr (laptop)
(2,000,000 serial speedup)

20 taxa⇒ 3 million years
2003 DCM-GRAPPA

Tang, Moret, & Warnow
1,000 taxa⇒ 2 days
(effectively unbounded speedup)

2004 DCM-GRAPPA
Tang & Moret
handles unequal gene content
(first method with that capability)
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Unequal Gene Content

Tang/Moret/Cui/DePamphilis (2004): chloroplast data

organismal Tang/Moret GRAPPA

NJ (inv.) breakpoint GRAPPA
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Large Genomes and Distances
(unpublished)
13 gamma proteobacteria (Lerat/Daubin/Moran 2003)
Only gene families occurring in at least 3 species.
Over 3,400 genes, with 540–3,000 genes and 3%–30% duplications
per genome; pairwise distances from 170 to 1700 events.

Xanthomonas campestris

Xanthomonas axonopodis

Xylella fastidiosa

Pseudomonas aeruginosa

Vibrio cholerae

Buchnera aphidicola

Wigglesworthia brevipalpis

Escherichia coli

Salmonella typhimurium

Yersinia pestis−KIM

Yersinia pestis−CO92

Haemophilus influenzae

Pasteurella multocida

100

100

S. typhimurium

E. coli

Y. pestis−CO92

Y. pestis−KIM

W. brevipalpis

B. aphidicola

V. cholerae

P. aeruginosa

P. multocida

H. influenzae

X. fastidiosa

X. campestris

X. axonopodis

100

100

100

100

100

100

87

100

Only one error in red tree: {P. multocida/H. influenzae}
moved (long branch attraction in NJ).
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The CIPRES Project

Cyber Infrastructure for Phylogenetic Research
www.phylo.org

A community project funded for 5 years by the US National Science
Foundation for $12M under the ITR program, with the aim to develop
the infrastructure (hardware, software, and databases) to support the
reconstruction of the Tree of Life.

• over 15 institutions, including three museums
• over 40 researchers, evenly split between CS and Biology
• director: Bernard Moret
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CIPRES: Participants
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Conclusions

• Computational Molecular Biology is a marvelous
playground for algorithm design, algorithm
engineering, database design, etc.

• The computational challenges are truly awe-inspiring:
scaling by at least four more orders of magnitude and
ensuring 99.999999% accuracy!

• The Tree of Life project is active in Asia, New Zealand,
Europe, and North and South America. Data are
being collected at a rate that far exceeds Moore’s law.

• Assembling the Tree of Life will be a major milestone
in understanding life on Earth, and mankind in
particular.
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compbio.unm.edu

Laboratory for
High-Performance Algorithm Engineering

and Computational Molecular Biology

Includes all publications by our lab, GRAPPA source files,
email addresses, and links to our main collaborators.
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