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Phylogenies

A phylogeny is a reconstruction of the
evolutionary history of a collection of
organisms.

It usually takes the form of a tree.

• Modern organisms are placed at the leaves.
• Edges denote evolutionary relationships.
• “Species” correspond to edge-disjoint paths.
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The Great Apes
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Phylogenies:Why?

Phylogenies provide the framework around
which to organize all biological and
biomedical knowledge.

They help us understand and predict:
• functions of and interactions between genes
• relationship between genotype and phenotype
• host/parasite co-evolution
• drug and vaccine development
• origins and spread of disease

• origins and migrations of humans
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The Tree of Life

It is to Biology what the periodic table is to Chemistry
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Scale of The Tree of Life

• 1,5 million described species.
• 10 million to 200 million existing species.
• Reconstruction tools can handle around

500 organisms.
• Reconstruction tools scale exponentially

with the amount of data.
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• Phylogenies: What and Why?
• Phylogenetic Reconstruction:

a fast review from a CS standpoint
• Scaling Up: The Issues
• Scaling Up: A Solution
• Gene-Order Data: What and Why?
• Computing with Gene-Order Data
• Ancestral Gene Orders
• Reconstruction from Gene-Order Data
• Some Open Problems
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Phylogenetic Reconstruction

Two categories of methods:
• Criterion-Based methods, such as Maximum

Parsimony (MP) and Maximum Likelihood (ML)
• Ad hoc, usually distance-based and using clustering

ideas, such as Neighbor-Joining (NJ)

In addition:
• Meta-methods decompose the data into smaller

subsets, construct trees on those subsets, and use
the resulting trees to build a tree for the entire dataset
(quartets, disk-covering)
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Phylogenetic Distances

• True evolutionary distance:
the actual number of evolutionary events that took
place to transform one datum into the other.

• Edit distance:
the minimum number of permitted evolutionary events
that can transform one datum into the other.

• Estimated evolutionary distance:
our best estimate of the true evolutionary distance,
obtained heuristically or by correcting the edit
distance according to a model of evolution.
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Distance-BasedMethods
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Parsimony-BasedMethods

• Aim to minimize total number of character changes.

• Assume that characters are independent.

• Reconstruct ancestral data.

• Are known not to be statistically consistent with
sequence data, but yield good results in most cases.

• Finding most parsimonious tree is NP-hard.

• Optimal solutions are limited to sizes around 30.
Heuristic solutions are fairly good to sizes of 500.
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Likelihood-BasedMethods

• Aim to return tree with highest likelihood of having
produced the observed data.

• Are based on a specific model of evolution and
usually estimate model parameters.

• Produce likelihood estimate (prior or posterior
conditional) for each tree.

• Are statistically consistent for most models.

• Even scoring a fixed tree is very expensive.

• Optimal solutions are limited to specific sets of 4 taxa.
Heuristics run to completion on at most 10 taxa,
but appear good to about 100 taxa (e.g., PhyML).
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Meta-Methods

Decompose dataset into smaller, overlapping subsets,
reconstruct trees for the subsets (with a base method),
and combine results into a tree for the entire dataset.

• Quartet-based methods: use all possible smallest
subsets (quartets); include Q* and Tree-Puzzle.
Slow and inaccurate regardless of base method.

• Disk-Covering methods (DCMs): decompose the
dataset into overlapping “disks" (tight subsets).
High-powered machinery succeeds, especially when
tree is imbalanced.
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Scaling Up: The Issues

• Distance-based methods are (fairly) fast,
but not accurate enough on large
problems (large evolutionary diameter).

• Criterion-based methods take days for a
few hundred taxa and scale exponentially.

• All methods perform better with longer
sequences and larger state spaces,
but biological sequences are bounded.
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Scaling Up: The Requirements

• Distance-based methods are (fairly) fast, but not
accurate enough on large problems.
Decompose large problems into smaller ones so as to
reduce evolutionary diameter.

• Criterion-based methods take days for a few hundred
taxa and scale exponentially.
Use algorithmic techniques to bypass the exponential
growth, such as divide-and-conquer.

• All methods perform better with longer sequences and
larger state spaces, but biological sequences are
bounded.

Design methods that converge on short sequences,
so-called fast converging methods.
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Scaling Up: Disk-Covering

Basic idea:
• decompose dataset into overlapping

compact subsets—the disks
• reconstruct a tree for each subset
• assemble these trees into a single tree

Variations so far: DCM1, DCM2, DCM3,
recursive versions, iterative versions
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DCMDecompositions

Given set S of items, distance matrix on S,
D = (dij), and threshold T :
• Construct threshold graph

G = (S, {(i, j) | dij ≤ T}).

• Compute min. triangulation of G.

• DCM1: find all maximal cliques,
then each clique is a disk.

DCM2: find graph separator X , let {Si}
be connected components of G − X ,
then each X ∪ Si is a disk.
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DCM1 and DCM2

DCM1

4 disks

DCM2

separator in green
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Improvement: DCM3

DCM1 and DCM2: decomposition based on
distance matrix only
DCM3: use best tree so far to guide the
decomposition

Given set S and tree T ,
compute short subtree
graph G(S, T ) and find
clique separator in G to
form subproblems.
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Using DCM3: Recurse & Iterate

Obtain initial guide tree

Output tree
with tree?
 Satisfied

Replace guide tree
     by new tree

recursively decompose
  down to desired size

    Using guide tree,

Refine tree

Assemble subtrees
      into full tree

with chosen base method
 Solve final subproblems
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Merging Trees in DCM

We designed a specialized supertree method
for DCMs: the strict consensus merger (SCM)
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Results with DCM1 and NJ

using Kimura 2-parameter plus Γ model
reduced sequence length

(0.15 error rate)
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Results with Rec-I-DCM3 andMP

Rec-I-DCM3(TNT) vs. TNT

10,000 RNA sequences
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– p. 28



Results with Rec-I-DCM3 andMP

Rec-I-DCM3(TNT) vs. TNT

10,000 RNA sequences

1 24 48 72 96 120 144 168 192 216 240 264 288 312 336
0

0.05

0.1

0.15

0.2

0.25

Time (hours)

A
ve

ra
ge

 %
 a

bo
ve

 th
e 

be
st

 s
co

re

TNT−default
Rec(25%)−I−DCM3(TNT)
Rec(12.5%)−I−DCM3(TNT)

10 datasets
(from 4,000 to 15,000)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

1 2 3 4 5 6 7 8 9 10
Dataset#

TNT Rec-I-DCM3

Finding: 0.01% error is the maximum allowed!!
– p. 28



Scaling Up: Current and Future

• DCM4: combine DCM1 and guide tree to obtain
smaller subsets.

• Develop a statistical framework to enable DCM
approaches to Bayesian and ML reconstruction.

• Design new supertree algorithms to maximize
resolution.

• Include direct database storage and retrieval within
the algorithms (lab notebook ).

• Test scaling to tens of millions of taxa using highly
accurate simulations of sequence evolution.
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Phylogenetic Data

• All kinds of data have been used:
behavioral, morphological, metabolic, etc.

• Current data of choice are molecular data.
• Two main kinds of molecular data:

• sequence data
(nucleotide/codon sequences from genes)

• gene-order data
(gene ordering on chromosomes)
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Sequence Data: Attributes

• Advantages:
• Large amounts of data.
• Familiar data, many tools.
• Accepted models of character evolution.

• Problems:
• Few character states, so high risk of homoplasy.
• Poor models of sequence evolution.
• Multiple alignments poorly solved.
• Gene evolution different from organism evolution;

recombination problematic for lineage sorting.
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Gene-Order Data

The ordered sequence of genes on one or
more chromosomes.
The entire gene order is a single character, which can
assume a huge number of states.

Evolves through inversions, insertions (incl. duplications),
and deletions; also transpositions (seen in mitochondria)
and translocations (between chromosomes).

• Need to identify genes and gene families.

• Need to refine model for specific organisms
to handle operons, exons, etc.
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Genome Rearrangements

Model based on three types of rearrangements:
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Gene-Order Data: Attributes

• Advantages:
• Rare genomic events (sensu Rokas/Holland) and

huge state space, so very low risk of homoplasy.
• No need for alignments.
• No gene tree/species tree problem.

• Problems:
• Mathematics much more complex than for

sequence data.
• Models of evolution not well characterized.
• Very limited data (mostly organelles and bacteria).
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Gene-Order Data vs. Sequence Data

Sequence Gene-Order
evolution fast slow

data type a few genes whole genome

data amount abundant sparse

models good (sites)
primitive (seqs.)

primitive

computation easy hard
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Distances for Gene-Order Data

• BP [Sankoff et al. 1998]:
Distance counting the number of altered adjacencies
(breakpoints) for identical gene content; linear time.

• INV [Bader/Moret/Yan 2001]:
Edit distance (inversions) for identical gene content;
linear time.

• EDE, IEBP [Moret et al. 2002, Wang/Warnow 2001]:
Distance corrections to estimate true evolutionary
distance; quadratic time.

• INV-DEL [El-Mabrouk 2000]:
Edit distance (inversions and insertions/deletions, but
no duplications); linear time [Liu/Moret 2003].

• ALL [Marron/Swenson/Moret 2003]:
Estimated evolutionary distance (inversions,
insertions/deletions, duplications).

– p. 38



Breakpoint Distance

The number of adjacencies present in one
genome, but not the other.

G2=(1  2 −5 −4 −3  6  7  8)

G1=(1  2  3  4  5  6  7  8)
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Inversion Distance

Given signed gene orders of equal content,
compute the inversion-only edit distance.

• Hannenhalli/Pevzner 1995: cubic time
• Kaplan/Shamir/Tarjan 1997: quadratic time
• Bader/Moret/Yan 2001: linear time
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Gene-Order Distances in General

Signed gene orders may include duplicates,
need not have identical gene content.

Previous work (not useable for phylogeny):

• Exemplar heuristic for duplications by Sankoff
(NP-hard).

• Exact inversions plus deletions, but no duplications
allowed, by El-Mabrouk.

• Heuristic by Bourque, used only on very small sets.

Our work:

• Bounded approximation for unequal gene content.
• Direct estimate of evolutionary distance.
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Direct Estimate of Distance

• Highly accurate even on large genomes with large
distances.

• Accounts for insertions, duplications, deletions, and
inversions.

• Key lemma: there always exists a shortest sequence
that first does all insertions, then all inversions, and
finally all deletions.

• Matches elements of gene families using optimal
covering; treats unmatched elements as
insertions/deletions.

• Tracks sequence of deletions and inversions
backward to figure out how to parcel out insertions.
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Direct Distance Estimate: Example

Simulated 800-gene genomes, 70% inversions (mean of
20, located uniformly), 16% deletions, 7% insertions, and
7% duplications (all mean 10).

left: expected pairwise distances from 40 to 160 events
right: expected pairwise distances from 80 to 320 events
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Using the Swenson et al. Estimate
(unpublished)
13 gamma proteobacteria (Lerat/Daubin/Moran 2003)
Over 3,400 genes, with 540–3,000 genes and 3%–30% duplications
per genome; pairwise distances from 170 to 1700 events.

Xanthomonas campestris

Xanthomonas axonopodis

Xylella fastidiosa

Pseudomonas aeruginosa

Vibrio cholerae

Buchnera aphidicola

Wigglesworthia brevipalpis

Escherichia coli

Salmonella typhimurium

Yersinia pestis−KIM

Yersinia pestis−CO92

Haemophilus influenzae

Pasteurella multocida

Reference phylogeny: 2 years of work, over 60 gene sequences.
Using our distance estimates and naïve NJ:
1 hour to compute distances, 1 second to construct tree,
and only one error (long branch attraction, trivially fixed).
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Reconstructing Ancestral Genomes

Goal: Reconstruct a signed gene order at
each internal node in the tree to minimize
sum of edge distances.

Problem is NP-hard even for just three leaves, no
duplications, and simplest of distances (breakpoint, plain
inversion)!

This is the median problem for signed genomes: given
three genomes, produce a new genome that will minimize
the sum of the distances from it to the other three.
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Median Problem for Breakpoints

Sankoff showed to to convert MPB for identical gene
content to the Travelling Salesperson Problem

cost = 2

cost = 1

cost = 0

cost = − max

4
+

1

+ −

−
2

+

−
3

+−
edges not shown have cost = 3

+2 −3 −4 −1
+1 +2 −3 −4
+1 −2 +4 +3

corresponding to genome
an optimal solution

+1 +2 −3 −4

The cost of an edge A −B is the number of genomes that do NOT have the adjacency A B
Adjacency A B becomes an edge from A to −B
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Median Problem for Inversions

No simple formulation in terms of a standard
optimization problem.

• Exact solutions given by Siepel/Moret and by Caprara
for identical gene content; work well for distances to
median of 0–15 inversions.

• Various heuristics proposed by Bourque and Pevzner
and others.

• Extensions by Tang/Moret to handle distances up to
50-100 events.

• Inversion median shown preferable to breakpoint
median (Siepel/Moret, Tang/Moret).
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Medians with Unequal Gene Content

Tang/Moret/Cui/DePamphilis (2004): chloroplast data

organismal Tang/Moret GRAPPA

NJ (inv.) breakpoint GRAPPA
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Reconstruction from Gene-Order Data

• Distance methods
• NJ and Weighbor with corrected distances,

with or without DCM

• Parsimony-based methods
• Encoding approaches: MPBE, MPME
• Direct approaches: BPAnalysis, GRAPPA, MGR,

DCM-GRAPPA

• Likelihood-based methods
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Direct Approaches: BPAnalysis

(Sankoff and Blanchette)

Initially label all internal nodes with gene
orders
Repeat

For each internal node v, with
neighbors A, B, and C, do

Solve the MPB on A, B, C to yield
label m
If relabelling v with m improves the
tree score, then do it

until no internal node can be relabelled
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GRAPPA

Genome Rearrangements Analysis under

Parsimony & other Phylogenetic Algorithms

• Began as a reimplementation of .
• Current version runs up to one billion times faster than

, thanks to algorithmic engineering. (Fast
code, better bounding, caching results, ordering
computations, etc.)

• Limit: every added taxon multiplies the running time
by twice the number of taxa.
So 13 taxa take 20 mins, 15 taxa two weeks, 16 taxa
a year, 20 taxa over 2 million years, and . . .
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GRAPPA: Speed-Ups

In order of increasing benefits:
• very fast generation of candidate trees

• hand-tuned code
(unrolling loops, maintaining values in registers)

• parallelization

• minimizing memory usage and maximizing cache hits

• fast specialized TSP solver for breakpoint medians

• bounding trees to avoid scoring them
(using a tour of the leaves)

• examining trees in increasing order by bound values
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DCM-GRAPPA

Extension to GRAPPA to scale it
to large datasets (Tang and Moret 2003).

• Scales gracefully to over 1,000 genomes
(less than 2 days of computation).

• Retains accuracy of GRAPPA:
error rates on 1,000-genome datasets
are consistently below 3%.

• Uses DCM1 (early version),
so can surely be improved.
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Very Tight Bounds from LP

(Tang/Moret CPM’05)
Use selected triangle inequalities on a tree
as Linear Programming constraints
to compute a lower bound.
• With good selection, bound is very tight (≥ 99%).

• Avoids scoring trees with GRAPPA:
no median computation, so very fast.

• Allows GRAPPA to handle much larger genomes.
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Some Open Problems

• Tree models
• Evolutionary models
• Extensions of Hannenhalli-Pevzner theory to handle

• transpositions and inversions

• length-dependent rearrangements

• position-dependent rearrangements

• duplications

• Good combinatorial formulation of the median
problem for inversions and for more general cases.

• Tighter bounds on tree scores (our linear
programming approach may be solving that).

• Extensions to phylogenetic networks.
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Conclusions

• Disk-covering methods can extend the range of
existing methods by several orders of
magnitude—and we have just begun.

• Gene-order data carry a strong phylogenetic signal
and current algorithmic approaches scale to
significant sizes.

• Strong algorithmic design, good algorithm
engineering, and high-performance computing are all
crucial components of successful computational
biology research.
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Thank You!

Laboratory for
High-Performance Algorithm Engineering

and Computational Molecular Biology

compbio.unm.edu

CIPRES
Cyber Infrastructure

for Phylogenetic Research

www.phylo.org
– p. 60


	Acknowledgments
	Overview
	Phylogenies
	The Great Apes
	Phylogenies: Why?
	Example: Antivenins
	Example: Antivenins

	The Tree of Life
	Scale of The Tree of Life
	Phylogenetic Reconstruction
	Phylogenetic Distances
	Distance-Based Methods
	Parsimony-Based Methods
	Likelihood-Based Methods
	Meta-Methods
	Scaling Up: The Issues
	Scaling Up: The Requirements
	Scaling Up: Disk-Covering
	DCM Decompositions
	DCM1 and DCM2
	Improvement: DCM3
	Using DCM3: Recurse & Iterate
	Merging Trees in DCM
	Results with DCM1 and NJ
	Results with Rec-I-DCM3 and MP
	Results with Rec-I-DCM3 and MP

	Scaling Up: Current and Future
	Phylogenetic Data
	Sequence Data: Attributes
	Gene-Order Data
	Genome Rearrangements
	Gene-Order Data: Attributes
	Gene-Order Data vs. Sequence Data
	Distances for Gene-Order Data
	Breakpoint Distance
	Inversion Distance
	Gene-Order Distances in General
	Direct Estimate of Distance
	Direct Distance Estimate: Example
	Using the Swenson et al. Estimate
	Reconstructing Ancestral Genomes
	Median Problem for Breakpoints
	Median Problem for Inversions
	Medians with Unequal Gene Content
	Reconstruction from Gene-Order Data
	Direct Approaches: BPAnalysis
	GRAPPA
	GRAPPA

	GRAPPA: Speed-Ups
	DCM-GRAPPA
	Very Tight Bounds from LP
	Some Open Problems
	Conclusions
	Conclusions
	Conclusions

	Thank You!

