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Abstract

The breakpoint phylogeny is an optimization problem
proposed by Blanchetteet al. for reconstructing evolutionary
trees from gene order data. These same authors also
developed and implementedBPAnalysis [3], a heuristic
method (based upon solving many instances of the travelling
salesman problem) for estimating the breakpoint phylogeny.
We present a new heuristic for this purpose; although not
polynomial-time, our heuristic is much faster in practice
thanBPAnalysis. We present and discuss the results of
experimentation on synthetic datasets and on the flowering
plant family Campanulaceae with three methods: our new
method, BPAnalysis, and the neighbor-joining method
[25] using several distance estimation techniques. Our
preliminary results indicate that, on datasets with slow
evolutionary rates and large numbers of genes in comparison
with the number of taxa (genomes), all methods recover
quite accurate reconstructions of the true evolutionary history
(althoughBPAnalysis is too slow to be practical), but that
on datasets where the rate of evolution is high relative to the
number of genes, the accuracy of all three methods is poor.

Introduction
The genomes of some organisms have a single chromo-
some or contain single-chromosome organelles (such as
mitochondria or chloroplasts) whose evolution is largely
independent of the evolution of the nuclear genome for
these organisms. Many single-chromosome organisms and
organelles have circular chromosomes. Given a particular
strand from a single chromosome, whether linear or circular,
we can infer the ordering of the genes, along with direc-
tionality of the genes, thus representing each chromosome
by an ordering (linear or circular) of signed genes. Note
that picking the complementary strand produces a different
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ordering, in which the genes appear in the reverse direction
and reverse order. The evolutionary process that operates
on the chromosome can thus be seen as a transformation of
signed orderings of genes.

The first heuristic for reconstructing phylogenetic trees
from gene order data was introduced by Blanchetteet al. in
[3]. It sought to reconstruct thebreakpoint phylogeny and
was applied to a variety of datasets [4, 29].

A different technique for reconstructing phylogenies from
gene order data was introduced by Cosner in [7]. We have
modified her technique so that it requires less biological
input. Our approach can also be described as a heuristic for
the breakpoint phylogeny, although it is quite different in
its technique fromBPAnalysis. We call our approach
Maximum Parsimony on Binary Encodings (MPBE). The
MPBE method first encodes a set of genomes as binary
sequences and then constructs maximum-parsimony trees
for these sequences.

We describe MPBE and compare it with two other
methods (BPAnalysis, the heuristic designed and imple-
mented by Blanchetteet al. [3], and the polynomial-time,
distance-based method neighbor-joining [25]) on both
real and synthetic data. We find that, when the rates of
evolution are sufficiently low, all methods recover very good
estimates of the evolutionary tree (althoughBPAnalysis
is much slower than MPBE). However, when the rates of
evolution are high, all methods recover poor estimates of
the evolutionary tree.

Definitions
We assume a fixed set of genes	
 � � 

 � � � � � 
� �. Each
genome is then an ordering (circular or linear) of some
multi-subset of these genes, each gene given with an
orientation that is either positive (
 �) or negative (�
�). The
multi-subset formulation allows for deletions or duplications
of a gene. A linear genome is then simply a permutation
on this multi-subset, while a circular genome can be
represented in the same way under the implicit assumption
that the permutation closes back on itself. For example, the
circular genome on gene set� � 	
 � � 

 � � � � � 
 � � given by

 � � 

 � �
� � 
� � 
� � 

 has one duplication of the gene

, has
a deletion of the gene
� , and has a reversal of the gene
� .
That same circular genome could be represented by several
different linear orderings, each given by rotating the linear



ordering above. Furthermore, the ordering
 � � 

 � � � � � 
� ,
whether linear or circular, is considered equivalent to that
obtained by considering the complementary strand, i.e., to
the ordering�
� � �
��� � � � � � �
 �.

In tracing the evolutionary history of a collection of
single-chromosome genomes, we use inversions, transpo-
sitions and transversions (inverted transpositions), because
these events only rearrange gene orders. A more complex
set of structural changes has been considered, e.g., in [7].

Let
�

be the genome with signed ordering (linear or cir-
cular)
 � � 

 � � � � � 
� . An inversion between indices� and� ,
for � � � , produces the genome with linear ordering


 � � 

 � � � � � 
 ��� � �
� � �
� �� � � � � � �
 � � 
� � � � � � � � 
�
If we have� � �, we can still apply an inversion to a circular
(but not linear) genome by simply rotating the circular or-
dering until the two indices are in the proper relationship—
recall that we consider all rotations of the complete circular
ordering of a circular genome as equivalent.

A transposition on the (linear or circular) ordering
�

acts on three indices,� � � � �, with � � � and� �	 
� � � �, and
operates by picking up the interval
 � � 
 �� � � � � � � 
� and
inserting it immediately after
 � . Thus the genome

�
above

(with the additional assumption of� 
 � ) is replaced by

 � � � � � � 
 ��� � 
� � � � � � � � 
 � � 
 � � 
 �� � � � � � � 
� � 
 �� � � � � � � 
�
Once again, if we have� 
 �, we can still apply the transpo-
sition to a circular (but not linear) genome by first rotatingit
to establish the desired index relationship.

An edit sequence describes how one genome evolves into
another through a sequence of these evolutionary events.
For example, let

�
be a genome and let� � �� 
 � � � � �� � be

a sequence of evolutionary events operating on
�

; then
� � �� 
 � � � � �� � �� �

defines another genome
� �

. When each
operation is associated with a cost, then theminimum edit
distance between two genomes

�
and

� �
is defined to be

the minimum cost of any edit sequence transforming
�

into� �
. As long as the cost of each operation is finite, any two

genomes have finite edit distance.
The inversion distance between two genomes is the

minimum number of inversions needed to transform one
genome into another. The inversion distance between two
signed genomes is computable in polynomial time for
signed genomes [14, 17]; this algorithm is available in
software (signed dist), which we modified for use in
our experiments to compute only distances (and thus run
very much faster). We letI refer to the inversion distance.
The transposition distance between two genomes is the
minimum number of transpositions needed to transform
one genome into the other. Computing the transposition
distance is of unknown computational complexity.

When inversions, transpositions, and transversions are al-
lowed, nothing is known about the computational complex-
ity or approximability of computing edit distances; however,
heuristics have been developed that can estimate the mini-
mum edit distance for weighted sums of inversions, transpo-
sitions, and transversions. One such heuristic,derange2
[2], is available in software; both we and Sankoffet al. [28]
have used it for tree estimation purposes. We will refer to
the distances computed byderange2 asITT distances.

Another distance between genomes that is not directly an
evolutionary metric is thebreakpoint distance. Given two
genomes

�
and

� �
on the same set of genes, a breakpoint

in
�

is defined as an ordered pair of genes�
 � � 
� � such
that 
 � and 
� appear consecutively in that order in

�
, but

neither�
 � � 
� � nor ��
� � �
 � � appear consecutively in that
order in

� �
. For instance, if

� � 
� � 

 � �
� � �
� and� � � 
� � 

 � 
� � 
� , then there are exactly two breakpoints
in

�
: �

 � �
� �, and ��
� � 
 � �; the pair ��
� � �
� � is not

a breakpoint in
� �

since �
� � 
� � appear consecutively and
in that order in

� �
. Thebreakpoint distance is the number

of breakpoints in
�

relative to
� �

(or vice-versa, since the
measure is symmetric).

An evolutionary tree (or phylogeny) for a set � of
genomes is a binary tree with�� � leaves, each leaf labelled
by a distinct element of� . A putative evolutionary tree is
“correct” as long as this leaf-labelled topology is identical to
the true evolutionary tree. The true phylogeny is unknown
for real data. Synthetic data can be created with simulations
using a given model tree; for such data, the “true” tree is the
model tree and is thus known. Studies using such synthetic
data are standard in the phylogenetics literature because
they enable one to test the reliability of different methods.
We now describe two approaches currently in favor for
genome phylogeny reconstruction.

Maximum parsimony: Assume that we are given a tree in
which each node is labelled by a genome. We define the cost
of the tree to be the sum of the costs of its edges, where the
cost of an edge is one of the edit distances between the two
genomes that label the endpoints of the edge. Finding the
tree of minimum cost for a given set of genomes and a given
definition of the edit distance is the problem ofMaximum
Parsimony for Rearranged Genomes (MPRG); the optimal
trees are called the maximum-parsimony trees. (The MPRG
problem is related to the more usual maximum-parsimony
problem for biomolecular sequences, defined later.)

Distance-based methods: Distance-based methods for
tree reconstruction operate by first computing all pairwise
distances between the taxa in the dataset, thus computing a
representation of the input data as a distance matrix�. In the
context of genome evolution, this calculation of distancesis
done by computing breakpoint (BP) distances, or minimum
edit (e.g. I or ITT) distances. Given the distance matrix�,
the method computes an edge-weighted tree whose leaf-
to-leaf distances closely fit the distance matrix. The most
frequently used distance-based methods are polynomial-
time methods such as neighbor-joining [25]. These methods
do not explicitly seek to optimize any criterion, but can
have good performance in empirical studies. In particular,
neighbor-joining has shown excellent performance in stud-
ies based upon simulating biomolecular sequence evolution
and is probably the most popular distance-based method.

Previous Phylogenetic Methods
Distance-Based Methods
There has been little use of distance-based methods for re-
constructing phylogenies from gene order data. Blanchette



et al. [4] recently evaluated two of the most popular
polynomial-time distance-based methods for phylogenetic
reconstruction, neighbor-joining and Fitch-Margoliash
[11], for the problem of reconstructing the phylogeny of
metazoans. They calculated a breakpoint distance matrix
for inferring the metazoan phylogeny from mitochondrial
gene order data. They found the trees obtained by these
methods unacceptable because they violated assumptions
about metazoan evolutionary history. Later, they examined
a different dataset and found the result to be acceptable with
respect to evolutionary assumptions about that dataset [27].

Computational Complexity of MPRG
MPRG seems to be the optimization criterion of choice;
indeed, most approaches to reconstructing phylogenetic
trees from gene order data have explicitly sought to find the
maximum-parsimony tree with respect to some definition of
genomic distances (inversion distances or a weighted sum of
inversions, transpositions, and transversions). However, all
these problems are NP-hard or of unknown computational
complexity. Even the fundamental problem of computing
optimal labels (genomes) for the internal nodes is very
difficult: when only inversions are allowed, it is NP-hard,
even for the case where there are only three leaves [6].

Breakpoint Phylogeny
Blanchetteet al. [4] recently proposed a new optimization
problem for phylogeny reconstruction on gene order data.
In this problem, the tree sought is that with the minimum
number of breakpoints rather than that with the minimum
number of evolutionary events. It has long been known
that the breakpoint distance is at most twice the inversion
distance for any two genomes [14]. For some datasets,
however, there can be a close-to-linear relationship between
the breakpoint distance and either the inversion distance or
the weighted sum of inversions and transpositions. When a
linear relationship exists, the tree with the minimum number
of breakpoints is also the tree with the minimum number of
evolutionary events. Consequently, when a close-to-linear
relationship exists, the tree with the minimum number
of breakpoints may be close to optimal with respect to
the number of evolutionary events. Blanchetteet al. [4]
observed such a close-to-linear relationship in a group of
metazoan genomes (we computed the correlation coefficient
between the two measures for their set and obtained a very
high value of 0.9815) and went on to develop a heuristic for
finding the breakpoint phylogeny.

Computing the breakpoint phylogeny is NP-hard for the
case of just three linear signed genomes [23], a special
case known as theMedian Problem for Breakpoints (MPB).
Blanchetteet al. showed that the MPB reduces to the trav-
elling salesman problem (TSP) [26] and designed special
heuristics for the resulting instances of TSP. Their overall
heuristic for the breakpoint phylogeny considers each tree
topology in turn. For each tree, it fills in internal nodes by
computing medians of triplets of genomes iteratively (until
no change occurs) using the TSP reduction, then scores the
resulting tree. The best tree is returned at the end of the pro-
cedure. This heuristic is computationally intensive on sev-

eral levels. First, the number of unrooted binary trees on�
leaves is exponential in� (specifically it is��� ��� ����� �� �
� � � � ��, so that the outer loop is exponential in the number of
genomes. Secondly, the inner loop itself is computationally
intensive, since computing the median of three genomes is
NP-hard [23] and because the technique used by Blanchette
et al. involves solving many instances of TSP in a reduction
where the number of cities equals the number of genes in the
input. Finally, the number of instances of TSP can be quite
large, since the procedure iterates until no further change
of labelling occurs within the tree. Thus the computational
complexity of the entire algorithm is exponential ineach of
the number of genomes and the number of genes.

The accuracy ofBPAnalysis for the breakpoint phy-
logeny problem depends upon the accuracy of its component
heuristics. While it evaluates every tree, the labelling given
to each tree is only locally optimal: although it solves TSP
exactly at each node, it labels nodes with an iterative method
that can easily be trapped at a local optimum. In our exper-
iments, we have found thatBPAnalysis often needed to
be run on several different random starting points in order to
score a given tree accurately. This is typical of hill-climbing
heuristics, but will affect the running time proportionally.

Our New Method: Maximum Parsimony on
Binary Encodings of Genomes (MPBE)

In this section we describe a new approach to reconstructing
phylogenies from gene order data. This new method is
derived from an earlier method developed by Cosner in [7].
Like Cosner’s technique, our method encodes the genome
data as binary sequences and seeks a maximum-parsimony
tree for these sequences, although our encoding is very
simple and uses no biological assumptions. However, our
method has a second phase, in which we select, from the
maximum-parsimony trees we find, the trees that have
minimum length with respect to some evolutionary metric
(such as the inversion distance or theITT distance). We
now describe the two phases of the MPBE approach.
Phase I: solving maximum parsimony on binary encod-
ings of genomes We begin by defining the binary encod-
ing. We note all ordered pairs of signed genes�
 � � 
� � that
appear consecutively in at least one of the genomes. Each
such pair defines a position in the sequences (the choice of
index is arbitrary). If�
 � � 
� � or ��
� � �
 � � appear consec-
utively in a genome, then that genome has a� in the position
for this ordered pair, and otherwise it has a�. These “charac-
ters” can also be weighted. (In this study, we did not weight
any characters; however, in the study reported in [7], char-
acter weighting was used, along with other characters such
as gene segment insertions and deletions, duplications of in-
verted repeats, etc. Thus, the method can be extended to
allow for evolutionary events more complex than gene order
changes.)

Let � �	� be the Hamming distance between the
sequences labelling the endpoints of the edge	—the
Hamming distance between two sequences is the number
of positions in which they differ. We define theBinary
Sequence Maximum Parsimony (BSMP) problem as follows:



the input consists of a set� of binary sequences, each of
length� ; the output is a tree� with leaves labelled by�
and internal nodes labelled by additional binary sequences
of length� in such a way as to minimize�� �	� as	 ranges
over the edges of the tree. The trees with the minimum
score are called maximum-parsimony trees.

Our first phase then operates as follows. First, each
genome is replaced by a binary sequence. The BSMP prob-
lem is then solved exactly or approximately, depending upon
the dataset size. BSMP is NP-hard [12], but fast heuristics
exist that are widely available in standard phylogeny soft-
ware packages, such asPAUP* [30]. Although no study has
been published on the accuracy of these heuristics on large
datasets, it is generally believed that these heuristics usually
work well on datasets of size up to about 40 genomes. More-
over, exact solutions on datasets of up to about 20 genomes
can be obtained through branch-and-bound techniques in
reasonable amounts of time; consequently, BSMP has been
solved exactly in some cases.
Phase II: screening the maximum-parsimony trees
Once the maximum-parsimony trees are obtained, the
internal nodes are then re-labelled by circular signed gene
orders (recall that the labelling of internal nodes obtained
in the first phase of MPBE is with binary sequences, not
with circular signed genomes). The relabelling is obtained
by giving the maximum-parsimony tree as a constraint to
BPAnalysis, thus producing a labelling of each internal
node with circular signed gene orders which (hopefully)
minimizes the breakpoint distance of the tree. The labelling
also allows us to score each tree for theI or ITT distance.
The tree that minimizes the total cost is then returned.
Running time of MPBE The computational complexity
of MPBE, while less than that ofBPAnalysis, remains
high. The maximum-parsimony evaluation of a single tree
in the search space takes polynomial time (the precise time
is � ��� �, where� is the number of genomes and� is the
number of genes in each genome). Thus, the first phase is
exponential in the number of genomes, but polynomial in the
number of gene segments. However, we have the option of
doing hill-climbing through tree space (rather than exhaus-
tive search) and thus can reduce the computational effort by
comparison to the exhaustive search strategy ofBPAnaly-
sis. In the second phase, we give the maximum-parsimony
trees toBPAnalysis as constraint trees. Thus we also call
BPAnalysis, (which is exponential in both the number of
genomes and the number of gene segments), but only on a
(typically small) subset of the possible trees. Finally, we
compute the cost of each node-labelled tree with respect toI
or ITT distances. ComputingITT distances is fast, although
derange2 can be inexact. Computing inversion distances
with the originalsigned dist is fairly slow because the
program also returns inversions, but fast when it is modified
to compute only distances. Overall, Phase II is more com-
putationally expensive than Phase I.
MPBE as a Heuristic for the Breakpoint Phylogeny
Suppose � is the breakpoint phylogeny for the set� � �� 
 � � � � �� � of genomes. Each node in� is labelled
by a circular ordering of signed genes and the number of

breakpoints in the tree is minimized. If each node in the tree
is replaced by its binary encoding, the parsimony length
of the tree is exactly twice the number of breakpoints in
the tree. Thus, seeking a tree with the minimum number
of breakpoints is exactly the same as seeking a tree (based
upon binary encodings) with the minimum parsimony
length,provided that each binary sequence can be realized
by a circular ordering of signed genes.

This last point is significant, because not all binary
sequences are derivable from signed circular orderings on
genomes! In other words, it is possible for the MPBE
tree (that is, the tree with minimal parsimony length for
the binary sequence encodings of the genomes) to have
internal nodes whose binary sequence encodings cannot
be realized by circular orderings of signed genes. If the
sequences in the internal nodes of an MPBE correspond to
signed circular orderings, then the tree will be a breakpoint
phylogeny. If they do not, then the MPBE trees and the
breakpoint phylogenies may be disjoint.

Consider rephrasing the breakpoint phylogeny problem
as follows. We say that a binary sequence is a “circu-
lar genome sequence” if it is the binary encoding of a
circular genome under a given representation method.
The breakpoint phylogeny problem is to find the tree of
minimum parsimony length, with leaves labelled by the
binary encodings of the circular genomes and internal nodes
labelled by “circular genome sequences.” Since MPBE
does not restrict the labels of internal nodes to circular
genome sequences, it searches through a larger space for
the the labels of internal nodes and thus may assign labels
to nodes that are not circular genome sequences. When this
happens, MPBE will fail to find feasible solutions to the
breakpoint phylogeny problem.

MPBE is thus a heuristic for breakpoint phylogeny, but
it produces labellings of the internal nodes that are binary
sequences; as we discussed, these may not correspond
to circular orderings of signed gene segments. Therefore
we must relabel the internal nodes by circular genome
sequences (usingBPAnalysis or other such techniques)
so that the breakpoint distance of the trees can be computed.
This is why we have included Phase II in our method.

Since each of the problems we solve (maximum parsi-
mony on binary sequences, the median problem for break-
points, and theITT) is either known or conjectured to be NP-
hard, the accuracy of the heuristics will determine whether
we find globally optimal or only locally optimal solutions.

Chloroplast Data Analysis
Chloroplast DNA is generally highly conserved in nu-
cleotide sequence, gene order and content, and genome
size [22]. The genomes contain approximately 120 genes
involved in photosynthesis, transcription, translation,and
replication. Major changes in gene order, such as inversions,
gene or intron losses, and loss of one copy of the inverted
repeat, are rare. These genes are very useful as phylogenetic
markers because they are easily polarized and exhibit
very little homoplasy when properly characterized [9]. In
groups in which more than one gene order change has been
detected, the order of events is usually readily determined



(e.g., [15, 18]). Chloroplast DNA gene order changes have
been useful in phylogenetic reconstruction in many plant
groups (see [9]). These changes have considerable potential
to resolve phylogenetic relationships and provide valuable
insights into the mechanisms of cpDNA evolution.

The Campanulaceae cpDNA Dataset We have used the
chloroplast genomes of the flowering plant family Campan-
ulaceae for a test case of our technique. In earlier work [7],
Cosner obtained detailed restriction site and gene maps for
18 genera of the Campanulaceae and the outgroup tobacco.
(An “outgroup” is a taxon selected so that any two other
members of the set are more closely related than either is to
the outgroup; the use of outgroups in phylogenetic analysis
allows us to root the tree). She then used a variant of the
MPBE analysis described above to obtain a phylogenetic
analysis of these genera. We analyzed the same dataset,
but, in order to apply the MPBE method, had to remove
two incompletely mapped genera from the dataset. We also
removed the repeated regions, causing certain pairs of gen-
era (which differ only in terms of insertions and deletions
of gene segments or expansions and contractions of the
inverted repeat) to become indistinguishable, reducing our
dataset to 13 genera from the original 19.

Data Analysis We used gene maps to encode each of the
13 genera as a circular ordering of signed gene segments.
The result is shown in Figure 1.

We used these 13 circular orderings as input toBPAnal-
ysis. The program spent over 43 hours of computation
time without completing. We also encoded these orderings
with our binary encoding technique and conducted an anal-
ysis of the resulting binary sequences under maximum par-
simony using the branch-and-bound procedure ofPAUP*.
(These sequences are available on our web page [32], but
can also be calculated directly from the gene order data;
the parameters used in the parsimony analysis withPAUP*
are also available there.) We obtained four maximum-
parsimony trees from this dataset. We inferred circular
orderings of signed gene segments for each internal node by
giving each binary tree as a constraint tree toBPAnalysis.
This produces a tree in which each node (internal and leaf)
is represented by circular signed orderings on genes, po-
tentially minimizing the number of breakpoints in the tree.
(An actual minimization is not guaranteed, becauseBP-
Analysis uses hill-climbing on each fixed-tree and thus
may find only a local minimum.) We then scored each tree
for the number of breakpoints. Interestingly, the labelling
of internal nodes obtained byBPAnalysis produced the
same number of breakpoints on all four trees, namely 89.

We note that the best breakpoint score obtained in 43
hours of computation byBPAnalysis from the original
orderings was 96—much larger than the breakpoint score
obtained by our parsimony analysis of binary sequences.

We then scored each tree (using the labels assigned
by BPAnalysis) for the I distance using our modified
signed dist and for theITT distance usingderange2
with relative weights of

� �� for transpositions and transver-
sionsvs. � for inversions. Using this weighting scheme,
the first tree has a total of 40 inversions and 12 transpo-

Trachelium
(1–15)(76–56)(53–49)(37–40)(35–26)(44–41)(45–48)
(�36)(25–16)(90–84)(77–83)(91–96)(55–54)(105–97)

Campanula
(1–15)(76–49)(39–37)(40)(35–26)(44–41)(45–48)
(�36)(25–16)(90–84)(77–83)(91–96)(55–54)(105–97)

Adenophora
(1–15)(76–49)(39–37)(29–35)(40)(26–27)(44–41)(45–48)
(�36)(25–16)(90–84)(77–83)(91–96)(55–54)(105–97)

Symphyandra
(1–15)(76–56)(39–37)(49–53)(40)(35–26)(44–41)(45–48)
(�36)(25–16)(90–84)(77–83)(91–96)(55–54)(105–97)

Legousia
(1–15)(76–56)(27–26)(44–41)(45–48)(36–35)(25–16)
(90–84)(77–83)(91–96)(5–8)(55–53)(105–98)(28–34)
(40–37)(49–52)(�97)

Asyneuma
(1–15)(76–57)(27–26)(44–41)(45–48)(36–35)(25–16)(89–84)
(77–83)(90–96)(105–98)(28–34)(40–37)(49–52)(�97)

Triodanus
(1–15)(76–56)(27–26)(44–41)(45–48)(36–35)(25–16)
(89–84)(77–83)(90–96)(55–53)(105–98)(28–34)(40–37)
(49–52)(�97)

Wahlenbergia
(1–11)(60–49)(37–40)(35–28)(12–15)(76–61)(27–26)
(44–41)(45–48)(�36)(54)(25–16)(90–84)(77–83)(91–96)
(�55)(105–97)

Merciera
(1–10)(49–53)(28–35)(40–37)(60–56)(11–15)(76–61)
(27–26)(44–41)(45–48)(�36)(54)(25–16)(90–85)(77–84)
(91–96)(�55)(105–97)

Codonopsis
(1–8)(36–18)(15–9)(40)(56–60)(37–39)(44–41)(45–53)
(16–17)(54–55) (61–76)(96–77)(105–97)

Cyananthus
(1–8)(29)(36–26)(40)(56–60)(37–39)(25–9)(44–48)
(55–49)(61–96)(105–97)

Platycodon
(1)(8)(2–5)(29–36)(56–50)(28–26)(9)(49–45)(41–44)
(37–40)(16–25)(10–15)(57–59)(6–7)(60–96)(105–97)

Tobacco
(1–105)

Figure 1: 12 genera of Campanulaceae and the outgroup To-
bacco, as circular orderings of signed gene segments. We
represent each circular ordering as a linear ordering, begin-
ning at gene segment 1. In order to conserve space (and
make the rearrangements easier to observe), we have repre-
sented each ordering in a compact representation by noting
the maximal intervals of consecutive gene segments with the
same orientation. Thus the sequence 1, 2,�4, �3, 5, 6,
7, 10, 8, 9 would be represented as (1–2)(4–3)(5–7)(10)(8–
9). Tobacco has the “unrearranged” ordering 1, 2,� � � , 105,
which we represent as (1–105).

sitions/transversions; the second has 48 inversions and 18
transpositions/transversions; the third has 40 inversions
and 12 transpositions/transversions; and the fourth has
67 inversions and 43 transpositions/transversions. Thus,
the first and third trees are superior (under this analysis)
to the second and fourth. We then evaluated the first and
third trees with respect to the inversion distance, given the
labelling on internal nodes obtained byBPAnalysis:
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Figure 2: The reconstructed phylogeny of 12 genera
of Campanulaceae and the outgroup tobacco based upon
an MPBE analysis of 185 binary characters. Above
each edge are given the number of inversions and trans-
positions/transversions, the number of inversions in an
inversion-only scenario, and the number of breakpoints.

the first tree has a total number of 68 inversions, while the
third has 67. Both trees have zero-length edges (i.e., the
endpoints of some edges have the same gene orderings).
When these edges are contracted, the two trees are identical.
The contracted tree is shown in Figure 2. Interestingly,
that tree is also a contraction of each of the trees obtained
by the Cosner analysis [7] on the original 19 genera,
and then restricted to the subset of 13 genera. Thus our
restricted subset of characters is compatible with the more
biologically rich analysis performed by Cosner, in which
insertions, deletions, duplications, contractions/expansions
of the inverted repeat, etc., were also used.

We computed neighbor-joining trees (usingPhylip
[10]) on three different distance matrices: theI matrix
computed using our modifiedsigned dist, the ITT
matrix computed withderange2 with relative weights
of 1, 2.1, and 2.1, and the breakpoint matrix computed
usingBPAnalysis. We show thederange2 distance
matrix in Table 1; the other distance matrices are on our
web page [32].

The three neighbor-joining trees have identical topolo-
gies, differing only in their edge-weights, while the MPBE
trees differ from the NJ trees by at most 2 edges; see Table 2.
The similarity between all reconstructed trees indicates a
high level of confidence in the the accuracy of the common
features of the phylogenetic reconstructions (see our web
page for the strict consensus tree).

The conditions under which these genomes evolved (low
rates of evolution and a large number of gene segments) are
probably responsible for this high level of similarity, which
is observable at various levels. For instance, the breakpoint

Table 1: TheITT distance matrix for the Campanulaceae
dataset, computed usingderange2 and a

� �� weight ratio

Tra Cam Ade Sym Leg Asy Tri Wah Mer Cod Cya Pla Tob

Tra 0.0 1.0 4.0 1.0 8.3 10.4 8.3 4.1 8.1 15.2 14.1 19.2 10.0

Cam 1.0 0.0 3.0 2.0 9.3 11.4 9.3 5.1 9.2 15.1 15.2 20.2 11.2

Ade 4.0 3.0 0.0 5.1 12.1 14.3 12.1 8.1 11.2 16.2 15.2 20.2 13.1

Sym 1.0 2.0 5.1 0.0 9.2 11.4 9.3 5.1 9.1 14.2 13.3 20.2 11.1

Leg 8.3 9.3 12.1 9.2 0.0 8.4 4.1 12.2 14.3 18.1 16.1 23.2 14.2

Asy 10.4 11.4 14.3 11.4 8.4 0.0 4.2 12.4 16.2 18.2 16.2 21.1 12.2

Tri 8.3 9.3 12.1 9.3 4.1 4.2 0.0 12.2 14.4 18.2 15.2 21.2 12.2

Wah 4.1 5.1 8.1 5.1 12.2 12.4 12.2 0.0 6.0 18.1 16.2 23.1 14.2

Mer 8.1 9.2 11.2 9.1 14.3 16.2 14.4 6.0 0.0 17.2 16.3 24.1 16.1

Cod 15.2 15.1 16.2 14.2 18.1 18.2 18.2 18.1 17.2 0.0 8.3 18.2 10.2

Cya 14.1 15.2 15.2 13.3 16.1 16.2 15.2 16.2 16.3 8.3 0.0 16.3 10.2

Pla 19.2 20.2 20.2 20.2 23.2 21.1 21.2 23.1 24.1 18.2 16.3 0.0 13.3

Tob 10.0 11.2 13.1 11.1 14.2 12.2 12.2 14.2 16.1 10.2 10.2 13.3 0.0

Table 2: The number of missing edges (i.e. false negatives)
out of 10 possible, for various reconstruction methods on the
Campanulaceae data of Figure 1. MPBE1 through MPBE4
are the four most parsimonious trees by the first phase of the
MPBE method. NJ refers to the tree obtained by neighbor-
joining on the three distance matrices (these were identical).

NJ MPBE1 MPBE2 MPBE3 MPBE4

NJ 0 1 2 1 2

MPBE1 1 0 1 1 2

MPBE2 2 1 0 2 1

MPBE3 1 1 2 0 1

MPBE4 2 2 1 1 0

distance and theITT distance (using relative costs of 1, 2.1,
and 2.1) are very closely related, as illustrated in Figure 3.
(The high correlation coefficient� indicates that the two
distances stand in a nearly linear relationship to each other.)
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Figure 3: Comparison of distance calculations on the Cam-
panulaceae dataset



These observations suggest that this dataset forms an easy
case for phylogeny reconstruction. We therefore began an
experimental investigation into the performance of methods
for phylogenetic reconstruction from gene order data to
determine whether all methods continue to perform well
under a larger range of model conditions and whether
there are model conditions under which some methods
consistently outperform others.

Our Experimental Investigation
We developed a simple simulator that, given a model
tree and parameters, mimics the evolutionary history of a
genome and produces a set of genomes. Using both actual
and synthetic model trees, we then reconstruct the putative
phylogeny using the various methods proposed to date
as well as our new method (only through Phase I). These
putative phylogenies are then compared to the model tree.

We computedBP distances ourselves,I distances using
our modifiedsigned dist, andITT distances usingde-
range2. Since we generate the synthetic data ourselves,
we can observe the actual process that happens during the
simulation. In particular, we can note when no evolutionary
event (inversion, transposition, or transversion) takes place
on an edge, enabling us to derive a better estimate of the
quality of a reconstruction, since no reconstruction method
can recover an edge (other than by guessing) when no
evolutionary event happens on it.

Terminology
Let � be a tree leaf-labelled by the set� . Given an edge	
in � , the deletion of the edge from� produces a bipartition�� of

�
into two sets. The set

� �� � � 	�� � 	 	 � �� ��
uniquely defines the tree� ; this characterization is called
the character encoding of � . Given a collection of trees
� � � � 
 � � � � � � � , each leaf-labelled by� , we define thestrict
consensus of the trees to be that unique tree� �� defined by� �� �� � � � �� � � � � �� � � � ��� � � ��� � � This is the maxi-
mally resolved tree which is a common contraction of each
tree� �. Character encodings are used to compare trees and
to evaluate the performance of a phylogenetic reconstruction
method. Let� be the “true” tree and let� �

be the estimate
of � . Then thefalse negatives of � �

with respect to� are
those edges	 that obey�� 	 � �� � � � �� � �

, i.e., edges in
the true tree that the method fails to infer. Thefalse pos-
itives of � �

with respect to� are those edges	 that obey�� 	 � �� � � � � �� �
, i.e., edges in the inferred tree that do

not exist in the true tree and should not have been inferred.
Note that every trivial bipartition (induced by the edge inci-
dent to a leaf) exists in every tree. Consequently, false pos-
itives and false negatives are calculated only with respect
to the internal edges of the tree. These are sometimes ex-
pressed as a percentage of the number of internal edges.

Experimental Setup
The simulator: The Nadeau-Taylor [20] is the standard
model of genome evolution; it assumes that only inversions
occur during the evolutionary history of a set of genomes,
that all inversions are equally likely, and that the number of

inversions on each edge obeys a Poisson distribution. We de-
signed a simulator to enable us to generate gene orders under
the Nadeau-Taylor model, as well as under more complex
models in which transpositions and transversions also occur.
The input to the simulator is the topology of a rooted tree�
(which determines the number of genomes), the number� of
genes in the genomes, the expected number�� of inversions
on each edge	, and a constant

�
denoting the relative cost of

inversions to transpositions and transversions. The number
of each of these events is a random variable obeying a Pois-
son distribution. Thus, we generate a random leaf-labelled
tree, randomly assign lengths (chosen uniformly from var-
ious ranges) to each edge to represent the expected number
of inversions per edge, and feed the result to the simulator.

The simulator generates signed circular orderings of
the genes as follows. The root is assigned the identity
gene ordering
 � � 

 � � � � � 
 � . When traversing an edge
	 with expected number of inversions��, three random
numbers are generated. The first determines the actual
number of inversions on that edge; the second the actual
number of transpositions; and the third the actual number of
transversions. Once the number of each event is determined,
the order of these events is randomly selected. This process
produces a set of circular signed gene orders for each
genome at the leaves of the model tree. The simulator
also produces other information for use in performance
studies: the gene orders computed at each internal and leaf
node, the actual number of inversions, transpositions, and
transversions that occurred during that run of the simulator
on each edge, and the “true distance matrix”	 between
every pair of leaves in the tree. (Given the actual number of
inversions, transpositions, and transversions that occuron
each leaf-to-leaf path, the distance between the two leavesis
the number of inversions plus the weighted cost of the trans-
positions and transversions.) Note that this matrix defines
the model tree, with each edge weighted according to the
weighted cost of the events on that edge. As long as every
edge has at least one event, standard distance methods (such
as neighbor-joining [25]), when applied to the matrix	 are
guaranteed to recover the true tree topology (see [31]).

Phylogenetic methods: For each dataset generated by the
simulator, we computed theBPdistance and at least one of
theI or ITT distances. We computed neighbor-joining trees
(as implemented inPhylip [10]) on these distance matri-
ces. We denote the neighbor-joining trees for the different
distance matrices by NJ(BP), NJ(ITT), and NJ(I). The
MPBE heuristic is only computed through Phase I, so that
we return the strict consensus of all maximum-parsimony
trees we compute and do not perform any additional
screening.

We wrote software to obtain binary sequence represen-
tations of the signed circular gene orderings. We solved
maximum parsimony exactly on datasets of up to 20 taxa
using the branch-and-bound program ofPAUP* and heuris-
tically for larger datasets; naturally, when we use a heuristic
to “solve” maximum parsimony, we are not guaranteed to
find globally optimal solutions, only locally optimal ones.
We used the TBR (tree-bisection-reconnection) branch-



swapping heuristic ofPAUP*, with 100 initial starting points
(trees obtained by optimizing the sequential placement of
taxa, randomly ordered, into the tree). We kept up to 10,000
trees in memory and included auto-increment in the analysis.
As these searches often returned hundreds or thousands of
local optima, we computed the strict consensus and major-
ity consensus trees of the local optima. In the following, we
denote these trees by MPBE, “maximum-parsimony tree(s)
for the binary encoding of the genome data.”

We labelled internal nodes of each tree with circular
orderings of signed genes usingBPAnalysis, and scored
the resultant node labelled trees under breakpoint distances
(ourselves),I distances (usingsigned dist) and ITT
distances (usingderange2).

We were unable to runBPAnalysis to completion
on our datasets because of its computational complexity;
however, we did useBPAnalysis in a restricted search,
by providing it with the strict consensus of the trees we
obtained using our other techniques as a “constraint” tree.
This way of usingBPAnalysis makes it evaluate all bi-
nary trees that resolve the constraint tree. Since all treeswe
found using other methods will be in the set of refinements
of the constraint tree, this strategy enablesBPAnalysis to
evaluate these trees and to find other, potentially better, trees.

Experiment 1: Neighbor-Joining on Synthetic Data
The first round of experiments focussed on the performance
of neighbor-joining under a variety of model conditions. We
generated three random model trees.�� had 20 genomes
and 20 genes, with high rates of change (3 to 10 inversions
per edge on average),�� had 20 genomes and 20 genes, but
low rates of change (1 to 3 inversions per edge on average),
and�� had 20 genomes and 105 genes, with low rates of
change (1 to 3 inversions per edge on average). In each
of the 50 runs of this experiment, we ran our simulator on
each random tree with relative costs of 1, 2.1, and 2.1 for
inversions, transpositions, and transversions. This simula-
tion generated gene orders for the 20 genomes at the leaves.
Each run thus gives rise to three matrices:	 , BP, andITT
(true distances, breakpoint distances, andITT distances).
The matrix 	 is determined during the simulation, the
matrix BP can be calculated exactly in linear time, but the
matrix ITT is estimated usingderange2, perhaps with
significant errors. We constructed the neighbor-joining trees
on theBP and ITT matrices, thus producing trees NJ(BP)
and NJ(ITT) (see our earlier discussion). These were then
compared with the model tree, scoring the comparison in
terms of false negatives (since all trees are binary, false
positive and false negative rates are identical). Note that, on
trees with low rates of evolution (�� and�� ), slightly more
than 3 edges per tree have no changes; in these cases, a false
negative rate of around 3 would indicate complete success,
so that all false negative rates should be scaled down
accordingly. (3 edges represents��� of the interior edges
of �� and �� ; thus false error rates should be decreased
by about��� to make up for the zero-length edges and the
expected accuracy of a guessed resolution of an unresolved
tree.) The results are summarized in Table 3.

In Figures 4, 5, and 6, we compare the distancesBP

Table 3: Average false negatives of the neighbor-joining
trees from the matricesBP and ITT. Values in parentheses
are the percentages over the 17 nontrivial bipartitions in each
model tree.

Avg. Number (Avg. %) of False Negatives
model tree NJ(BP) vs. model NJ(ITT) vs. model

�� 14.84 (87.29%) 15.34 (90.24%)
�� 8.22 (48.35%) 7.70 (45.29%)
�� 2.24 (13.18%) 1.90 (11.18%)

and ITT to the true distances, on trees�� � �� � and �� ,
respectively. We also give the correlation coefficient
between the two measurements in each figure—a statistical
measure of the degree to which the two distances are
linearly related. Note how closely correlated the breakpoint
and ITT distances are in the second and third cases (and,
to a lesser extent, in the first case), indicating a linear or
nearly linear relationship. In contrast, the true distance
shows no particular correlation to the other two distances
in the first two trees. In tree�� , all three distances are
closely correlated, reflecting the relative lack of evolution
and overall simplicity of that tree.

Neighbor-joining does quite well on the third tree�� ,
but poorly on�� and very poorly on�� . Furthermore, its
performance does not appear to depend upon the choice of
edit distance, but it does correlate well with the accuracy
of the edit distance calculation (BP or ITT) with respect to
the true distance	 . This accuracy in turn seems to depend
upon the rate of evolution relative to the number of genes in
the genomes.

Experiment 2—All Methods on Synthetic Data

In this experiment, we simulated only inversion events and
so used the Nadeau-Taylor model of evolution. We varied
the number of genomes, the number of genes, and rates
of evolution. We computedBP distances,ITT distances,
and I distances and then calculated neighbor-joining trees
NJ(BP), NJ(ITT) (and sometimes NJ(I)) for these distance
matrices. We computed the strict consensus of the trees
obtained during Phase I of the MPBE method; in some cases
we also computed trees usingBPAnalysis with the strict
consensus of various recovered trees given as a constraint
tree (see the discussion above). We compared each tree
to the model tree and computed false negatives and false
positives. Our results are summarized in Table 4. As the
model trees and neighbor-joining trees are always binary,
we only report false negative rates for neighbor-joining
trees. On the other hand, we report both false negatives and
false positives for the MPBE strict consensus trees.

These results indicate that the various methods (neighbor-
joining on BP andITT distances and maximum parsimony
on binary encodings of gene order data) have the same qual-
itative performance on all model conditions we examined.
That is, we cannot as yet identify a model condition under
which one method will outperform the others. However,
one other trend is clear: all methods do well when the rate



0 5 10 15 20
0

50

100

150

200

250

Breakpoint distances

T
ru

e 
di

st
an

ce
s

rho=0.2095

(a) breakpoint vs. true distances

0 5 10 15 20 25
0

50

100

150

200

250

Derange2 distances

T
ru

e 
di

st
an

ce
s

rho=0.1582

(b) ITT vs. true distances

0 5 10 15 20
0

5

10

15

20

Breakpoint distances

D
er

an
ge

2 
di

st
an

ce
s

rho=0.7033

(c) breakpoint vs. ITT distances

Figure 4: Comparison of distances on model tree�� .
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Figure 5: Comparison of distances on model tree�� .
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Figure 6: Comparison of distances on model tree�� .

Table 4: The false negative rates (in %) with respect to the true
tree of various reconstruction methods for various model trees
and rates of evolution.

Genomes Genes Inv./Edge� NJ(BP)
�
NJ(ITT)

�
NJ(I)

�
MPBE

�

10 105 9–11 0 0 0 0 / 0
25 105 1–5 9.09 4.55 9.09/ 4.55

�

25 105 4–6 0 0 0 / 0
25 105 1–10 9.09 0 4.55/ 4.55
40 105 1–5 13.51 10.81 10.81/ 2.70

� ��

40 105 1–10 16.22 0 2.70/ 2.70
�

25 37 1–5 22.73 9.09 4.55 27.27/ 9.09
�

25 37 1–10 9.09 13.64 13.64 31.82/13.63
�

40 37 1–5 37.84 10.81 18.92 35.14/ 2.70
� ��

40 37 1–10 32.43 32.43 32.43 48.65/24.32
� ��

20 20 3–10 49.41 60.00 60.00 65.88/20.00
�

60 20 3–5 66.66 68.42 75.43/57.89
� ��

� the expected number of inversions per edge�
neighbor-joining on the breakpoint distance matrix�
neighbor-joining on theITT distance matrix computed byde-
range2�
neighbor-joining on the inversion distance matrix computed by
signed dist�
maximum parsimony on the binary encoding of the genomes; in-
cludes both false negative and false positive rates�
the strict consensus of all maximum-parsimony trees�
dataset too large for branch-and-bound parsimony, heuristic used
instead

of change on an edge is low relative to the number of genes,
while their performance decreases as this rate increases.
What is surprising is that the rate at which their performance
decreases appears to be the same.

We then examined the performance ofBPAnalysis
with respect to solving the breakpoint phylogeny problem.
We were also interested in determining whether the model
tree is one of the breakpoint phylogenies (and hence deter-
mine whether solving the breakpoint phylogeny is a good
approach to reconstructing trees from gene order data).
However, our results forBPAnalysis are limited, because
of the extreme slowness of the program; we found that the
trees obtained byBPAnalysis were almost always the
same trees found by using Phase I of the MPBE method,
provided that we letBPAnalysis run long enough.
Therefore,BPAnalysis seems to be doing a reasonably
effective job at solving the breakpoint phylogeny problem.

It seems that the breakpoint phylogeny may not always
be a good estimate of the model tree. In our experiments,
the breakpoint phylogeny is a good estimate of the model
tree only when the rates of evolution on each edge are
low relative to the number of genes. In these cases, the
model tree is one of the breakpoint phylogenies or is close
to optimal. In other cases, the breakpoint score of the
model tree is significantly larger than the breakpoint scores
found by either MPBE orBPAnalysis. This discrepancy
suggests that, for model conditions in which the rates of
evolution are high, breakpoint phylogenies are unlikely to
be accurate estimates of the true evolutionary tree.



Software Issues
Running time is always important in comparing phyloge-
netic methods. While neighbor-joining runs in polynomial
time, neither MPBE norBPAnalysis does.

We timed each method on the Campanulaceae dataset,
using a Sun E5500 with 2GB of memory running Solaris
2.7. The first phase of MPBE took 0.15 seconds to complete
on the Campanulaceae dataset (finding the four maximum-
parsimony trees withPAUP* took 0.15 seconds on a
Macintosh G4). The second phase took somewhat longer.
Labelling the internal nodes withBPAnalysis took 0.38
seconds for each tree. Computing inversion distances on
each edge using our modifiedsigned dist took 0.02
seconds and computingITT distances on each edge using
derange2 took 0.01 seconds. The second phase of MPBE
thus took about 4.5 seconds in all. Hence the complete
MPBE analysis ran in under 5 seconds.

We also attempted to timeBPAnalysis on the real
dataset, but it did not complete its search, so we had to
estimate the amount of time it took per tree and extrapolate.
Our experiments suggest thatBPAnalysis evaluates 120
trees a minute; at this rate, since the number of trees on 13
leaves is 13,749,310,575,BPAnalysis would take well
over 200 years to complete its search of tree space for our
problem. Blanchetteet al. did complete their analysis of
the metazoan dataset, which has 11 genomes on a set of 37
genes. This is a much easier problem, as there are far fewer
trees to examine (only 2,027,025) and as scoring each tree
involves solving a smaller number of TSP instances on a
much smaller number of cities (37 rather than 105). Overall,
it is clear that datasets of sizes such as ours are currently too
large to be fully analyzed byBPAnalysis.

In view of these observations, our new method stands
as a good compromise between speed and accuracy.
Neighbor-joining is faster (guaranteed polynomial-time),
but returns only one tree and thus tells us little about the
space of near-optimal trees, whileBPAnalysis is quite
slow. Furthermore, our results confirm that our new method
returns results as good as any of the other methods and does
so within very reasonable times, even on datasets on which
BPAnalysis cannot run to completion.

Conclusions
Our initial study on real and synthetic data containing
a single chromosome suggests that, for some conditions
(when the rate of inversions per edge is low relative to
the number of genes), many of the proposed methods for
reconstructing small phylogenetic trees from gene order
datacan recover highly accurate tree topologies. Further,
under model conditions with low evolutionary rates, the
breakpoint phylogeny seems to be a good candidate for the
true evolutionary tree. Consequently, under these condi-
tions, methods that seek the breakpoint phylogeny offer
real promise. However, the methods can be distinguished
in terms of the computational effort involved, in which
respect the MPBE method is a significant improvement over
BPAnalysis for at least some moderate to large datasets.

Our results suggest that all of the methods we evaluated

have unacceptable levels of errors on trees in which the
inversion rate on the edges is high relative to the number of
genes. Thus, new methods need to be developed for these
types of genome evolution problems and current approaches
to phylogenetic analyses based upon gene orderings should
be restricted to cases with low rates of evolution. These
findings apply to neighbor-joining based upon various ways
of calculating genome distances, maximum-parsimony
analyses of binary sequences derived from genome data,
and breakpoint phylogenies. Indeed, it may be that any
approach for solving the breakpoint phylogeny will perform
poorly in the presence of high evolutionary rates relative
to the number of genes. In such cases, approaches that
explicitly seek to minimize the total number of evolutionary
events may be required, but no such method currently exists.

Future Work and Recommendations

Faster methods are needed for solving the breakpoint
phylogeny problem, as well as to score trees with re-
spect to evolutionary distances (ITT and I). Since MPBE
depends uponBPAnalysis in order to label internal
nodes with circular genomes, and uponderange2 and
signed dist to score these trees forITT andI distances,
a first step should be to speed upBPAnalysis and
signed dist, and improve the accuracy ofBPAnaly-
sis andderange2 (since these find local optima but not
necessarily global optima). More effective implementations
of the basic concept inBPAnalysis, such as hill-climbing
or branch-and-bound through the tree space and abandoning
strict optimality in solving the TSP instances in favor of
a fast and reliable heuristic (such heuristics abound in the
TSP literature), could make the method run fast enough to
be applicable to datasets comparable to ours.

We note that in our studies the polynomial-time method of
neighbor-joining has performed as well as MPBE in terms
of topological accuracy, bringing into question whether
the more computationally intensive approaches deserve
consideration. One clear advantage of both MPBE and
BPAnalysis is that they tell us more about the space of
optimal and near-optimal trees than neighbor-joining does
and hence help us identify alternative hypotheses. The task
remains to identify regions of the parameter space in which
MPBE or BPAnalysis outperform neighbor-joining in
topological accuracy. We conjecture that such regions do
exist (as other studies based upon biomolecular sequence
evolution show [24, 16]).

Given the rapid increase in the availability of complete
genome sequences, the current limitation in reconstructing
phylogenies from gene order data for datasets containing
many genomes or genes is of major concern. Until improved
methods are developed, we recommend that phylogenetic
analyses of gene order data seek to obtain the breakpoint
phylogenies and that these breakpoint phylogenies then be
scored underITT distances, for some appropriate weighting
of the events. We also recommend that MPBE be used, until
BPAnalysis can be made competitively fast.
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