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Abstract

We give improved lower bounds on the link length of spanning paths in a
d-dimensional grid of size n. Kranakis et al. conjectured that the optimal link
length is (1 + 27)n%!, but gave lower bounds not substantially larger than

n?~1; we give a lower bound of (1 + 55)n?"! for all d > 2.

1 Introduction

Let G¢ be the d-dimensional grid of size n, i.e., the set of points in R? with integer
coordinates in the range 1 to n inclusive. We consider paths that contain all points
of the grid and consist entirely of line segments parallel to one of the coordinate axes.
These segments are called links; the length of a link is defined to be the number of
grid points contained in the link. The link length of a path P, denoted s(P), is the
number of links that make up P, or one plus the number of turns in the path. The
link length of the d-dimensional grid of size n, denoted s(G%), is the minimum s(P)
over all such paths P. Kranakis et al. [1] gave lower bounds on the link length of these
grids and also gave a procedure to construct spanning paths with nearly minimal (or
perhaps truly minimal) number of links. We give substantial improvements on their
lower bounds.

We proceed in two steps: first we prove a crucial lemma that relates the link
length of a grid to the maximal length of a fraction of the links; then we use this
lemma to derive our bounds by proving a second crucial lemma about the relationship
between successively larger subgrids of the given grid.

2 The Three-Dimensional Case

We begin with the three-dimensional case. Trivially we have s(G2) > n?, since there
are n® points and each segment can cover at most n points. Kranakis et al. derived
the lower bound

(1.0232)n2 < s(G3)
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and gave an algorithm to construct a spanning path with a link length of %nZ +n—1,
so that we can write

3
(1.0232)n% < s(G3) < §n2 +n—1

Thus the problem is to improve the lower bound by raising the constant ¢ that can
be placed in front of the n2. We obtain below a value of %.

We begin with the crucial lemma on the relationship between link lengths and
number of links.

Lemma 1. Suppose that a spanning path P of G2 has r pairwise-disjoint sets of
links Si,...,S, such that, for each i, S; contains at least a;n? links and each such
link has length at most 8;n. Then we have

s(P)>(1+ iai(l — Bi))n?

=1

Proof: For each i, the links in set S; can cover at most a;3;n® points, so the 3 a;n?
links in these sets cover a total of 3 a;3n® points. The remaining (1 — 3 a;5;)n®
points need at least (1 — Y ;3;)n? links, for a total of (1 — 3 ;B + 3 a;)n? =
(1+3 a;(1 — B;))n? links.

Q.E.D.

Suppose that n is odd—the proof for even values of n is similar. Consider a
sequence of "T_l cubes with sides 3,5,7,...,n nested one inside the next, centered
within G3. Let @Q; be the set of points in the ith cube; for instance, Q; is the set of
points of the 3 x 3 x 3 cube centered within G2. Note that, on any spanning path
of G3, any link that intersects Q; (i.e., that covers at least one point of @;) must be
followed immediately by a link of length at most ”T“ + 4; this second link is aligned
with a different axis of the grid and its length cannot exceed the side of the subcube
plus the distance from the subcube to the edge of the grid.

Our next crucial lemma establishes a relationship between successively nested
subgrids and disjoint subsets of links.

Lemma 2. In any spanning path there must exist disjoint sets of links S;, for 1 <
1 < "Tfl, such that S; contains at least 8¢ links, each of which intersects (Q;.

Proof: We prove this claim by induction. For 7 = 1, the claim is trivially true: a
minimum of 9 links is required to cover the 3 x 3 x 3 cube. Suppose then that we
have such sets for 7 = 1,...,k — 1; these sets contain Zf;ol 8i = 4k? — 4k links, which
together cover at most (4k% — 4k)(2k + 1) points of Q. But Qj, contains (2k + 1)3
points, so that Q) still has

(2k +1)% — (4k® — 4K)(2k +1) = (2k + 1)(8k + 1)



points not covered by any of the links in U’f_lSi. Since no single link can cover more
than 2k 4+ 1 points of (), there must be at least 8% other links that intersect Qg;

these 8k links can be taken to form Sj.
Q.E.D.

Now each link in S; must be followed by an orthogonal link of length not exceeding
”TH + 4; moreover, if two sets of links are disjoint, then the sets of their successors
must also be disjoint. Thus we can apply Lemma 1 with o; = % and §; = %—}— % + %,
yielding the constant

(n-1)/2 . .
8 (/1 1 1 7 1
> Y S ) =20
czl+ =~ n? (2 n 2n> 6 O(n)

We have proved the following theorem.

Theorem 1. Vn, s(G3) > %nQ

3 The d-Dimensional Case

Our approach easily generalizes to d dimensions. As before we can decompose G&

(where n is again assumed to be odd) into a nested sequence of hypercubes of sides

3,5,7,...,n. Again let @); be the set of points in the ith hypercube. As before, a link

intersecting (); must be immediately followed by a link of length not exceeding % + .
We begin by generalizing Lemma 2.

Lemma 3. In any spanning path there must exist ”T_l disjoint sets of links Sy, ..., Sz-1
2
such that S; contains (2i + 1)4~! — (2i — 1)?~! links, each of which intersects Q;.

Proof: The claim is trivial for ¢ = 1: the hypercube of 3¢ points needs a minimum
of 3971 links to cover all of its points. Suppose then that we have such sets for
1 =1,...,k — 1. These sets contain

kf((m‘ +1) -2 -1) ) =2k -1)%1 -1

links, which together cover at most (2k + 1)((2k — 1)¢~! — 1) points of Q. But Q
has (2k + 1)% points, so that the links in U¥1S; leave uncovered at least

(2 + 1) = (2K + 1)(26 = ) = 1) = (2 + (@ + 1) = k= 1) 1)

points of Q. Since no link may cover more than (2k + 1) points of Qy, it follows that
there must be at least (2k + 1)4~! — (2k — 1)?~! other links that intersect Qy; these

links can be taken to form Sj.
Q.E.D.



As before we may apply Lemma 1 (which readily generalizes to d dimensions) with
; = %%IT and G; = % + % + % Disregarding terms of lower order, we have |S;| =
(d —1)2¢71342 and thus can write (for n going to infinity)

—1)2¢-14d-2 1 1 1
TS S -y R A
=1

nd-1 2 n 2n
We have proved the generalization of Theorem 1.
Theorem 2. Vn, Vd > 2, s(G%) > (14 3)n® ! — O(n®?)

Kranakis et al. had given the asymptotic lower bound

s(G9) 1 ~1
> Z _ - -
a1 _1+2(1 eXP(d(d—l)))
and given an algorithm that, asymptotically for any € < 1, produces a spanning path
obeying

s(GY 1
,rgd—nl) 1+ W + exp(—(d — 3)6)

which implies that there exists some positive constant k with

INA

s(G7)

nd—1

k+logd
<l+——c
=t 5a—3)

They also conjectured that the asymptotically optimal value is 1 + ﬁ. Our lower
bound takes us halfway to this conjectured value.

4 Conclusion

We have given much improved lower bounds on the link length of spanning paths
for d-dimensional grids. None of our results require that the spanning path avoid
self-intersections, nor do we require that the path stay inside the grid. In the case
of G4, it is not clear that these assumptions would matter: the paths constructed by
the procedure given by Kranakis et al. are the shortest known and do not intersect
themselves nor venture outside the grid. The same assumptions clearly do matter
if we seek spanning paths for arbitrary sets of points; our current work is aimed at
developing methods to compute lower bounds on the link length of spanning paths
for rectilinear polyhedral grids.
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