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Reconstructing Trees: Data

• All kinds of data have been used:
behavioral, morphological, metabolic, etc.

• Preferred choice today is molecular data.
• Two main kinds of molecular data:

• sequence data
(DNA sequence on genes)

• gene content and order data
(gene list or sequence on chromosomes)

• Data elements that can assume new
values (according to the model)
independently of others are called
characters.
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Sequence Data

Typically the DNA sequence of a few genes.
Characters are individual positions in the string and can
assume four states.
Evolves through point mutations, plus insertions
(incl. duplications), and deletions.

• Find homologous genes across all organisms.
• Align gene sequences for the entire set (to identify

gaps – insertions and deletions – and point
mutations).

• Decide whether to use a single gene for each analysis
or to combine the data.

• Lengths limited by size of genes
(typically several hundred base pairs)
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Sequence Data: Attributes

• Advantages:
• Large amounts of data available.
• Accepted models of sequence evolution.
• Models and objective functions provide a

reasonable computational framework.

• Problems:
• Sequencing errors (down to ∼1%).
• Fast evolution restricts use to a few million years.
• Gene evolution need not be identical to organism

evolution.
• Multiple alignments are not well solved.
• Reconstruction methods do not scale well

(in terms of accuracy and running time).
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Gene Content and Order Data

The list (or ordered sequence) of genes on
one or more chromosomes.
Entire gene order is one character (huge number of
states).
Content evolves through insertions (incl. duplications),
deletions, and translocations (between chromosomes).
Order also evolves through inversions and transpositions.

• Identify homologous genes, including duplications.
• Refine model for collection of organisms (e.g., handle

bacterial operons or eukaryotic exons explicitly).
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Gene Content and Order: Attributes

• Advantages:
• Low error rate (recognize homologies).
• No gene tree/species tree problem.
• Rare evolutionary events and unlikely to cause

“silent” changes—so can go back hundreds of
millions years.

• Synteny (on same chromosome) and adjacency
are powerful tools to distinguish orthologs from
paralogs and to identify horizontal gene transfers.

• Problems:
• Mathematics much more complex than for

sequence data.
• Models of evolution not well characterized.
• Limited data (mostly organelles).
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Reconstructing Trees: Methods

Three categories of methods:
• Distance-based methods, such as neighbor-joining.
• Parsimony-based methods (such as implemented in

PAUP*, Phylip, Mega, TNT, etc.)
• Likelihood-based methods (including Bayesian

methods, such as implemented in PAUP*, Phylip,
FastDNAML, MrBayes, GAML, etc.)

In addition:

• Meta-methods (quartet-based methods, disk-covering
method) decompose the data into smaller subsets,
construct trees on those subsets, and use the
resulting trees to build a tree for the entire dataset.
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Distance-BasedMethods

• Use edit or expected true evolutionary distances.
• Usually run in low polynomial time.
• Reconstruct only topologies:

no ancestral data.
• Prototype is Neighbor-Joining; BioNJ and Weighbor

are two improvements.
• NJ is optimal on additive distances (where the

distance along a path in the true tree equals the
pairwise distance in the matrix).

• NJ is statistically consistent (produces the true tree
with probability 1 as the sequence length goes to
infinity).
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Parsimony-BasedMethods

• Aim to minimize total number of character changes
(which can be weighted to reflect statistical evidence).

• Assume that characters are independent .
• Reconstruct ancestral data.
• Are known not to be statistically consistent with

sequence data (but examples are fairly contrived).
• Finding most parsimonious tree is computational very

expensive (NP-hard).
• Optimal solutions limited to sizes around 30; heuristic

solutions appear fairly good to sizes of 500.
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Likelihood-BasedMethods

• Are based on a specific model of evolution and must
estimate all model parameters.

• Produce likelihood estimate (prior or posterior
conditional) for each tree.

• Are statistically consistent.
• Reconstruct only topologies (Bayesian methods may

reconstruct ancestral data).
• Are prone to numerical problems:

likelihood of typical tree on 20 items is around 10-21;
on 50 items, around 10-75; . . .

• Even scoring one tree is very expensive.
• Optimal solutions limited to sizes below 10; heuristic

solutions appear fairly good to sizes of 100.
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Reconstructing Trees: Evaluation

The standard metric used in comparing two
trees is the Robinson-Foulds metric, based
on comparing the leaf bipartitions (splits)
induced by internal edges:

U: {A, B},{C, D, E}

V: {A, B, C},{D, E}

(correct) U’: {A, B},{C, D, E}

Difference in V and V’ 50% error 

(incorrect) V’: {A, B, E},{D, C}

A

B

U V

C D

E B

A E D

C

V’U’

TRUE TREE INFERRED TREE
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Reconstructing Trees: Conclusion

• Reconstruction methods based on sequence data
(the current standard) can do well up to a few hundred
taxa when using good data (many genes and with
good ortholog identification).

• Gene-content and gene-order data are crucial in the
identification of orthologs and horizontal transfers.

• Gene-order data can be used for tree reconstruction
when studying older events—the methods are
relatively new.

• Scaling up to larger datasets may be possible through
metamethods such as disk-covering methods.
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Reconstructing Networks

The main tasks are:

• Eliminate noisy signals

• Detect reticulation events

• Build a network

• Assess the quality of a reconstruction
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Noisy Signals

• Data errors, biased sampling, differential
selection pressures, etc.

• Gene tree / species tree problem

• Other confounding data (e.g., many genes
acquired through horizontal transfer)

• Poor phylogenetic tree reconstruction
(for methods based on trees—the vast
majority)
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Gene Tree / Species Tree

• Depending on the data used (DNA
sequences, syntenies, gene orders),
reconciliation of gene trees within a single
species tree is possible.

• Reconciliation must be done early to avoid
later errors, but it usually requires fairly
good phylogenetic trees—a chicken and
egg problem!
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Confounding Data

Horizontal gene transfer and retrogression

• Legitimate reticulation events, but can
lead tree reconstruction astray.

• Before attempting reconstruction, can
identify and eliminate genes acquired
through HGT or retrogression using an
intrinsic method
(based on GC content, codon usage
statistics, gene content or order data).
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Poor Phylogenetic Trees

• Due to confounding data? Gene
tree/species tree, horizontal transfer?

• All precautions taken? Due to poor choice
of reconstruction method?

• No method works? Insufficient data or too
many errors? Can a reconstruction
method not based on trees work?
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Build the Network

Three main approaches:

Add to a Tree:
Infer a tree, then add extra edges to
optimize some criterion

Combine Trees:
Infer a collection of optimal trees, then
reconcile the trees into a network

Compute Splits:
Precompute incompatibilities in the
dataset and introduce network edges to
account for them
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Add to a Tree: Description

• Reconstruct a tree T

• Add non-tree edges to T until stopping
rule is triggered

• Stopping rule is some optimization
criterion (e.g., minimize weighted sum of
evolutionary events)

Requires good reconstruction of the first tree!

Non-tree edges are typically chosen on the basis of
incongruence between segments of sequences.
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Add to a Tree: Rationale

• If data are “tree-like”, no extra edges will
be needed.
(Parsimony again: do not add
unnecessary edges.)

• If data imply a network, various segments
of the sequences will require nontree
edges.

• Candidate nontree edges are selected to
optimize some tree-style criterion.
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Add to a Tree: Methods

• Statistical parsimony (Templeton et al.)
• Reticulogram (Makarenkov and Legendre)

• Horizontal Gene Transfer (Hallett and
Lagergren)
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Add to a Tree: Codes

• TCS
• statistical parsimony method
• written by Clement et al. in Java

• T-REX
• Reticulogram method
• written by Makarenkov, binaries for

Windows and Mac
• Horizontal Transfer Code

• Hallett & Lagergren method
• written by Addario-Berry et al. in Java
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Combine Trees: Description

• Compute best trees (e.g., in terms of
parsimony scores) for various segments
of the sequences and combine all into a
network; or

• Compute all minimum spanning trees for
the data and combine them into an
minimum spanning network.

Confounding events (gene/species tree) must be
removed!
Less sensitive than “Add to a Tree” to the quality of
reconstructed trees, but a single error in one tree can still
force the introduction of a reticulation event.
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Combine Trees: Rationale

• Different segments of the sequences
evolved down different trees.

• The trees are reliable, so conflicts
between the trees represent reticulation
events.

• The different trees can be combined into a
network.
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Combine Trees: Methods

• Netting (Fitch)

• Median Networks (Bandelt et al.)
• Median-Joining networks (Bandelt et al.

and Foulds et al.)
• Molecular-variance parsimony

(Excoffier and Smouse)
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Combine Trees: Codes

• NETWORK
• Median-Joining and Reduced Median

methods
• written by Röhl et al., binaries for

Windows

• ARLEQUIN
• Molecular-variance parsimony
• written by Schneider et al. in Java
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Compute Splits: Description

• Compute a distance matrix.

• Find all possible splits.

• Construct a network that contains all
splits.

Requires an accurate estimate of pairwise distances.
Does not normally return a network, but a superset that
contains all plausible networks.
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Compute Splits: Rationale

• When the distance computation is
accurate, the method returns the set of
true splits.

• With reticulation events, the set of splits
of the network equals the set of splits of
all trees inside the network.

Any deviation from optimal conditions means that the
method returns too many splits.
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Compute Splits: Methods

• splits decomposition (Bandelt and Dress)

• neighbornet (Bryant and Moulton)
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Compute Splits: Codes

• SplitsTree
• splits decomposition
• written by D. Huson, binaries for Mac

and Unix
• SpectroNet

• analysis and visualization of data based
on splits

• written by M. Hendy et al. in C++
(source)

• NeighborNet
• neighbornet
• written by D. Bryant for Unix (source)
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NeighborNet Example: Model Tree
The model “network” is a tree of 10 taxa, generated by
r8s with 2000-nucleotide sequences under the
GTR+Gamma model with invariant sites.

t6

t2

t3
t8

t1

t10

t9

t5

t7
t4
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NeighborNet Example: Output
The output of NeighborNet is a complex network giving
many choices of reticulations, in spite of the fact that the
model network was just a tree.

t10

t2

t6

t3

t8

t7

t5

t9

t4

t1
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Other Methods

• STATGEOM
• statistical geometry
• written by K. Nieselt-Struwe, source and

Sun binaries
• GEOMETRY

• statistical geometry
• written by Kuznetsov and Morozov,

binaries for DOS
• PYRAMIDS

• the Pyramids method
• written by J.C. Aude et al., binaries for

Windows and Unix
– p. 35



Evaluating Reconstructions

• Generate a model phylogeny, evolving
simulated molecular data along the paths
and creating reticulation events according
to a predefined model.

• Infer a phylogeny using the method under
test.

• Compare the inferred phylogeny to the
model phylogeny.
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Generating aModel Phylogeny

• What data must be used?
Sequence data is always required.

• How to evolve the data?
DNA models, models for genome rearrangement,
mixing genes or DNA sequences in hybridization.

• Does topology depend on the data?
Do reticulation events depend on the characteristics
and history of the putative “parents”?

• How are pure speciation events chosen?
What is the model for creation of tree topologies?

• How are rates of evolution determined?
Random, inherited, models of external pressures, etc.
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Topological Accuracy

We developed two measures of the
topological error between two networks:

• Tree-based: use splits as for trees.

• Network-based: generalize bipartitions
(Robinson-Foulds) to tripartitions.
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Tree Splits: Concept

• A network N induces a set T (N) of trees

• Each tree T defines a set C(T ) of splits

• Define the splits of a network as

C(N) = ∪T∈T (N)C(T )

• Define
• FP (N,N ′) = |C(N ′) − C(N)| false positives

• FN(N,N ′) = |C(N) − C(N ′)| false negatives
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Tree Splits: Example

U V W X Y U V W X Y U V W X Y

V,W
U,V,W

U,V
X,WU,V,W

U,V
X,W

V,W
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Tripartitions: Illustration

Edge e defines a bipartition of the set of taxa.

U V W Z R T

e

A(e) C(e)
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Tripartitions: Illustration

Edge e defines a tripartition of the set of taxa.

U V W X Y Z R T

e

A(e) B(e) C(e)
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Tripartitions: Definitions

For a network edge e, define

• A(e): taxa reachable from root only by
using e

• B(e): taxa reachable from root both by
using e and by not using e

• C(e): taxa unreachable from root by
using e

Define e1 ≡ e2 to mean
A(e1) = A(e2) and B(e1) = B(e2) and C(e1) = C(e2)
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Tripartitions: An Error Measure

Given a model network N and an inferred
network N ′, we define

• FP (N,N ′) = |{e′ ∈ N ′ :6 ∃e ∈ N, s.t. e ≡ e′}|

• FN(N,N ′) = |{e ∈ N : 6 ∃e′ ∈ N ′, s.t. e ≡ e′}|

This is exactly the definition of the
Robinson-Foulds metric—we simply
generalized the notion of equivalence of
edges through the tripartitions.
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WayneMaddison's Observation

Two gene trees that are related by one reticulation event
are 1-SPR distant.

U V W X Y

U V W X Y U V W X Y

1−SPR distant

Combine

SPR (Subtree Prune and Regraft) is a local change
operator for trees: disconnect a subtree and reattach it
somewhere else in the tree.
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Maddison's Algorithm

• Construct gene trees T1 and T2

• Compute drSPR(T1, T2), the number of SPR
operations needed to transform T1 into T2.
• If drSPR(T1, T2) = 0, return a tree.
• If drSPR(T1, T2) = 1, return a network .
• Otherwise, return nothing.

– p. 45



Maddison's Algorithm: Challenges

• Computational:
• How to compute the SPR distance

between two trees efficiently.

• Systematic:
• How to infer the two gene trees with no

topological error.
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Computational Challenge: Approach

We generalized Maddison’s algorithm to
obtain a new network reconstruction
algorithm.

• It runs fast (in polynomial-time).
• It works for any fixed number of

reticulations.
• It works for a class of constrained network

topologies (galled trees).

– p. 47



Systematic Challenge: Approach

How to infer the gene trees with no
topological error?

• The problem is positive errors
—unresolved edges (polytomies) are
acceptable in the input.

• We use the consensus of sets of “good”
gene trees.

• Experimental studies show significant
improvements over using the “best”
gene tree.
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Experimental Results
Simplest case: tree vs. network with one hybridization.
Our method (SpNet), NeighborNet (NNet), Neighbor-Joining (NJ).
20 taxa, birth-death generation with 0.1 scaling and 2.0 deviation
Hybrid is a leaf with parents selected at random, using bias toward
short tree distances.
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Experimental Results (cont'd)

A more detailed look at relative error
again using splits-based FP and FN.
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Conclusions

• Reconstructing networks is necessary
when hybridization took place.

• Data preparation is crucial.
• We gave metrics with which to compare

networks and thus evaluate
reconstructions.

• We wrote network generators that produce
good simulations, enabling us to test the
accuracy of reconstruction algorithms.

• We proposed a reconstruction algorithm
that works well for small numbers of
reticulations and for special networks.
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