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Phylogenies

A phylogeny is a reconstruction of the
evolutionary history of a collection of
organisms.

It usually takes the form of a tree.

• Modern organisms are placed at the leaves.
• Edges denote evolutionary relationships.
• “Species” correspond to edge-disjoint paths.
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The Tree of Life
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Phylogenetic Data

• All kinds of data have been used:
behavioral, morphological, metabolic, etc.

• Predominant choice is molecular data.
• Two main kinds of molecular data:

• sequence data
(DNA sequence on genes)

• gene-order data
(gene sequence on chromosomes)

• Data elements that can assume new
values (according to the model)
independently of others are called
characters.
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Sequence Data

Typically the DNA sequence of a few genes.
Characters are individual positions in the string and can
assume four states.
Evolves through point mutations, insertions (incl.
duplications), and deletions.

• Find homologous genes across all organisms.
• Align gene sequences for the entire set (to identify

gaps – insertions and deletions – and point
mutations).

• Decide whether to use a single gene for each analysis
or to combine the data.

• Lengths limited by size of genes
(typically several hundred base pairs)
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Sequence Data: Illustration

AGGCAT TAGCCCA TAGACTT AGCGCTTAGCACAATGAACTT

AGCACTTTAGCCCT

TGGACTT

AAGACTT

AAGGCCT

AGGGCAT
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Sequence Data: Attributes

• Advantages:
• Large amounts of data available.
• Accepted models of sequence evolution.
• Models and objective functions provide a

reasonable computational framework.

• Problems:
• Sequencing errors (down to ∼1%).
• Fast evolution restricts use to a few million years.
• Gene evolution need not be identical to organism

evolution.
• Multiple alignments are not well solved.
• Reconstruction methods do not scale well

(in terms of accuracy and running time).
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Gene-Order Data

The ordered sequence of genes on one or
more chromosomes.
Entire gene-order is a single character, which can assume
a huge number of states.
Evolves through inversions, insertions (incl. duplications),
and deletions; also transpositions (in mitochondria) and
translocations (between chromosomes).

• Identify homologous genes, including duplications.
• Refine rearrangement model for collection of

organisms (e.g., handle bacterial operons or
eukaryotic exons explicitly).
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Gene-Order: Guillardia Chloroplast
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Gene-Order Data: Rearrangements
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Gene-Order Data: Inversion-Only
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Gene-Order Data: Attributes

• Advantages:
• Low error rate (depends on recognizing

homologies).
• No gene tree/species tree problem.
• Rare evolutionary events and unlikely to cause

“silent" changes—so can go back hundreds of
millions years.

• Problems:
• Mathematics much more complex than for

sequence data.
• Models of evolution not well characterized.
• Very limited data (mostly organelles).
• Possibly insufficient discrimination among recently

evolved organisms.
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Existing Gene-Order Data
• Mitochondria for plants and animals (∼200):

• single circular chromosome with ∼40 genes
• mostly transpositions and insertions/deletions

• Chloroplasts for plants and animals (∼100):
• single circular chromosome with ∼150 genes
• mostly inversions and insertions/deletions
• includes a single large inverted repeat

• Bacterial genomes (∼50):
• from a few hundred to several thousand genes
• complex evolution, many lateral transfers

• Also 9 nuclear genomes and ∼100 phages.
• Nuclear genomes can be very large and far more

complex than organellar or bacterial genomes.
• Phages are viruses, with very simple genomes, but

complex evolutionary events.
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Gene-Order Data vs. Sequence Data

Sequence Gene-Order

evolution fast slow
errors significant negligible

data type a few genes whole genome
data quantity abundant sparse

models good primitive
computation easy hard
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Phylogenetic Reconstruction

Three categories of methods:
• Distance-based methods, such as neighbor-joining.
• Parsimony-based methods (such as implemented in

PAUP*, Phylip, Mega, TNT, etc.)
• Likelihood-based methods (including Bayesian

methods, such as implemented in PAUP*, Phylip,
FastDNAML, MrBayes, GAML, etc.)

In addition:

• Meta-methods (quartet-based methods, disk-covering
method) decompose the data into smaller subsets,
construct trees on those subsets, and use the
resulting trees to build a tree for the entire dataset.
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Evolutionary Distances

• True evolutionary distance:
the actual number of permitted evolutionary events
that took place to transform one datum into the other.

• Edit distance:
the minimum number of permitted evolutionary events
that can transform one datum into the other.

• Expected true evolutionary distance:
obtained from the edit distance by correcting for the
known (model or experiments) statistical relationship
between true and edit distances.
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Distance-BasedMethods

• Use edit or expected true evolutionary distances.
• Usually run in low polynomial time.
• Reconstruct only topologies:

no ancestral data.
• Prototype is Neighbor-Joining; BioNJ and Weighbor

are two improvements.
• NJ is optimal on additive distances (where the

distance along a path in the true tree equals the
pairwise distance in the matrix).

• NJ is statistically consistent (produces the true tree
with probability 1 as the sequence length goes to
infinity).
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Parsimony-BasedMethods

• Aim to minimize total number of character changes
(which can be weighted to reflect statistical evidence).

• Assume that characters are independent .
• Reconstruct ancestral data.
• Are known not to be statistically consistent with

sequence data (but examples are fairly contrived).
• Finding most parsimonious tree is computational very

expensive (NP-hard).
• Optimal solutions limited to sizes around 30; heuristic

solutions appear fairly good to sizes of 500.
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Likelihood-BasedMethods

• Are based on a specific model of evolution and must
estimate all model parameters.

• Produce likelihood estimate (prior or posterior
conditional) for each tree.

• Are statistically consistent.
• Reconstruct only topologies.
• Are prone to numerical problems:

likelihood of typical tree on 20 items is around 10-21;
on 50 items, around 10-75; . . .

• Are presumably NP-hard; even scoring one tree is
very expensive.

• Optimal solutions limited to sizes below 10; heuristic
solutions appear fairly good to sizes of 100.
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Meta-Methods

General Principle:
decompose the dataset into smaller, overlapping subsets,
reconstruct trees for the subsets (by some base method),
and combine the results into a tree for the entire dataset.

• Quartet-based methods: use all possible smallest
subsets (a quartet is a set of 4 genomes); include Q*,
Tree-Puzzle, Quartet-Cleaning.
Slow and inherently inaccurate regardless of base
method—consistently surpassed by NJ.

• Disk-covering method (DCM): set up a graph from the
distance matrix, find cliques in the graph, use cliques
for decomposition.
High-powered machinery succeeds very well,
especially when tree is imbalanced.
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Computingwith Gene-Order Data

• Distances

• Evolutionary models and distance
corrections

• Reconstructing ancestral genomes

• The median problem
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Distances for Gene-Order Data

• Breakpoint [Sankoff et al., 1998]:
Distance counting the number of altered adjacencies
for identical gene content; linear time.

• INV [Bader, Moret, Yan, 2001]:
Edit distance (inversions) for identical gene content;
linear time.

• INV-DEL [El-Mabrouk, 2000]:
Edit distance (inversions and insertions/deletions, but
no duplications); doable in linear time [Liu, Moret, 2003].

• ALL [Marron, Swenson, Moret, 2003]:
Estimated edit distance (inversions,
insertions/deletions, duplications).

• CLUSTER [Bergeron, Stoye, 2003]:
Estimate based on number and lengths of conserved
gene clusters (no duplications).
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Breakpoint Distance

The number of adjacencies present in one
genome, but not the other.

G2=(1  2 −5 −4 −3  6  7  8)

G1=(1  2  3  4  5  6  7  8)
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Inversion Distance

Given two signed gene orders of equal
content, compute the inversion-only edit
distance.

• The problem is NP-hard for unsigned permutations.
• Finding the shortest sequence of inversions can be

done in polynomial time (Hannenhalli and
Pevzner—very difficult result).

• Running time improved by Berman and Hannenhalli,
then by Kaplan, Shamir and Tarjan: O(dn), where d is
the distance and n the number of genes.

• Theory simplified (with new algorithm, faster in
practice) by Bergeron.

• Distance computation reduced to linear time by
Bader, Moret, and Yan.
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Inversion Distance

Algorithm is based on the breakpoint graph.
Assume one permutation is identity; each green edge is a
single gene.
Solid red edges denote existing adjacencies and dashed
red edges denote desired adjacencies.
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Gene-Order Distances in General

The signed gene orders may include
duplications and need not have identical
gene content.

• Extension to translocations (transpositions between
chromosomes) by Hannenhalli and Pevzner.
Implemented by Tesler as GRIMM.

• Extension to inversions and deletions (no duplications
allowed) by El-Mabrouk. Linear-time distance
computation by Liu and Moret.

• Heuristic for duplications by Sankoff (exemplars).
• Heuristic for unequal gene content by Bourque.
• Bounded approximation by Marron, Swenson, and

Moret.
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EvolutionaryModels for Gene Order

• Strong biological evidence for inversions
in chloroplasts.

• Strong computational evidence for
transpositions in mitochondria.

• Computational evidence (Sankoff,
El-Mabrouk) for short inversions in
bacterial genomes (preserve gene
clusters).

• Hard radiation plus repair mechanisms
could create more complex
rearrangements.

• Respective probabilities unknown.
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Distance Corrections for Gene Order

• Assume a distribution of events and compute
relationship between number of events and edit
distance.

• Wang and Warnow gave an exact derivation for
correcting the breakpoint distance into an expected
number of inversions (IEBP).

• Moret, Tang, Wang, and Warnow gave an empirical
derivation for correcting the inversion edit distance
into an expected number of inversions (EDE).

• EDE correction substantially improves the
performance of both distance-based and
parsimony-based reconstruction methods.
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EDE Distance Correction
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Reconstructing Ancestral Genomes

Goal: Reconstruct a signed gene order at
each internal node in the tree to minimize
sum of edge distances.
Problem is NP-hard even for just three leaves and
simplest of distances (breakpoint, plain inversion)!
This is the median problem for signed genomes: given
three genomes, produce a new genome that will minimize
the sum of the distances from it to the other three.

– p. 34/71



Median Problem for Breakpoints

Sankoff showed to to convert this problem to the
Travelling Salesperson Problem when all three have
identical gene content.

cost = 2

cost = 1

cost = 0

cost = − max

4
+

1

+ −

−
2

+

−
3

+−
edges not shown have cost = 3

+2 −3 −4 −1
+1 +2 −3 −4
+1 −2 +4 +3

corresponding to genome
an optimal solution

+1 +2 −3 −4

The cost of an edge A −B is the number of genomes that do NOT have the adjacency A B

Adjacency A B becomes an edge from A to −B
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Median Problem for Inversions

No simple formulation in terms of a standard
optimization problem.

• Exact solutions given by Siepel and Moret and by
Caprara for identical gene content; work well for
distances to median of 0–15 inversions.

• Various heuristics proposed by Bourque and Pevzner
and others.

• Siepel and Moret showed that the inversion median is
preferable to the breakpoint median (fewer ties).
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Median with Deletions/Duplications

Tang and Moret showed it can be solved
exactly for small numbers of deletions and
duplications.
• Assume no change is reversed and that changes are

independent and of low probability.
• Gene content of median can then be determined by

preferring one event (e.g., one insertion) over two
concurrent events (e.g., two deletions).

• Knowing gene content, all combinations of
duplications or insertion locations can be
examined—choice grows exponentially, but is
manageable for organellar genomes.

• Accuracy is very good (less than 5% error).
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Gene Content of Median

Assumptions:
Probability of a deletion is ε (very small).
Probability of no change is ∼1.

Example:

p = 
2ε p = ε

{1,2,3,4}

{1,2,4} {1,2,4}

εε
{1,2,3,4}

{1,2,3,4}

{1,2,4} {1,2,4}

{1,2,4}
ε1

11
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Reconstruction from Gene-Order Data

• Distance methods
• NJ and Weighbor with corrected distances
• Combining with a DCM booster

• Parsimony-based methods
• Encoding approaches: MPBE, MPME
• Direct approaches: BPAnalysis, GRAPPA, MGR,

DCM-GRAPPA

• Likelihood-based methods
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DistanceMethods

Neighbor-joining and Weighbor using BP, INV,
IEBP, and EDE distances.

Moret, Wang, and Warnow showed that
NJ-EDE or Weighbor-EDE are clearly better
than other combinations:
• Low error rates up to a few hundred genomes.
• Robust against various models of genome

rearrangements.
• Suffer when the tree diameter is large (some large

pairwise distances).

Improved by using DCM boosting.
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The DCMBoosting Approach

A family of divide-and-conquer methods
(Warnow and colleagues).
1. Compute the distance matrix.
2. Threshold the distance matrix (eliminate entries

above threshold).
3. Create corresponding graph and triangulate it.
4. Find maximum cliques (polynomial time in

triangulated graphs).
5. Create disks (data subsets) with prescribed overlap.
6. Invoke phylogenetic base method on each disk.
7. Assemble final tree from disk trees through

consensus and refinement.
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DCMMethods

Two varieties so far (3rd in development):

• DCM-1: Each clique is a disk, so disk diameter
minimized.

• DCM-2: Compute graph separator; separator plus
graph component is a disk, so all disks share same
subset.
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DCM-BoostedMethods

• DCM-1-NJ (with an MP last step) beats NJ and
greedy MP on sequence data and is robust against
size, rate, and other model variations
(Moret/Nakhleh/Roshan/Wang/Warnow).

• DCM-3-MP does better than PAUP* MP or ratchet MP
on large real datasets (new results, Warnow lab).

• DCM-1-GRAPPA scales gracefully from the limit of 15
genomes for GRAPPA to at least 1,000 genomes
(Tang and Moret).
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EncodingMethods: MPBE

Idea: encode the signed permutation into a
sequence, then use sequence methods.
MPBE: Maximum Parsimony on Breakpoint Encodings
(Cosner, Jansen, Moret, Raubeson, Wang, Warnow, and Wyman)

• New characters will be all gene adjacencies present in
the data.

• If m such adjacencies are present, then produce
strings of m binary characters:
index the adjacencies arbitrarily and,
for each genome, code presence or absence
of that adjacency with a 1 or 0.

• Use an MP method to reconstruct a tree.

Slower than NJ-EDE or Weighbor-EDE, cannot describe
new adjacencies, not all binary strings are valid codes.
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EncodingMethods: MPME

Idea: preserve more information than MBPE.
MPME: Maximum Parsimony on Multistate Encodings
(Wang, Jansen, Moret, Raubeson, and Warnow)

• New characters correspond to possible signed genes,
so 2n characters; each character represents a signed
gene and so can assume one of 2n states.

• Site i in the sequence takes the value of the gene
immediately following gene i in the genome
(order is reversed for negative signs).

(1,-4,-3,-2) –> (-4,3,4,-1,2,1,-2,-3)

Clearly better than MPBE, but slower and number of
character states quickly exceeds limits
of popular MP software.
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Direct Approaches: BPAnalysis

(due to Sankoff and Blanchette)

Initially label all internal nodes with gene
orders
Repeat

For each internal node v, with
neighbors A, B, and C, do

Solve the MPB on A, B, C to yield
label m
If relabelling v with m improves the
tree score, then do it

until no internal node can be relabelled
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The Number of Trees on N Genomes

• 3 genomes: 1 tree

• 4 genomes: 3 trees

• 5 genomes: 15 trees
• 13 genomes: 13.5 billion trees
• n genomes: (2n-5)!! trees

(2n-5)!! = (2n-5)*(2n-7)*...*5*3
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GRAPPA

Genome Rearrangements Analysis under

Parsimony & other Phylogenetic Algorithms

• Began as a reimplementation of BPAnalysis.
• Current version runs up to one billion times faster than
BPAnalysis, thanks to algorithmic engineering.
(Fast code, better bounding, caching results, ordering
computations, etc.)

• Limit: every added taxon multiplies the running time
by twice the number of taxa.
So 13 taxa take 20 mins, 15 taxa two weeks, 16 taxa
a year, 20 taxa over 2 million years, and . . .
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Algorithm Engineering:Why?

• Research Tools: run many experiments to
test hypotheses and for discovery

• Production Tools: obviously, save on
resources

• Make It Possible: a million-fold speedup
allows one to solve in a week what would
otherwise have been infeasible (requiring
millennia)
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Algorithm Engineering:What?

• good asymptotic performance
• low proportionality constants
• fast running times on important real-world

datasets
• robust performance across a variety of

data
• robust performance across a variety of

platforms
• scalability to faster platforms and larger

datasets
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Algorithm Engineering: How?

• Optimize low-level data structures (multiple parallel
arrays, maintenance vs. recomputation)

• Optimize low-level algorithmic details (e.g., upper and
lower bounds)

• Optimize low-level coding (hand-unrolling loops,
keeping local variables in registers)

• Reduce memory footprint (the entire code might fit in
cache)

• Maximize locality of reference (the memory hierarchy
can cause differentials of 100:1)

• Repeatedly rebalance execution profile (eliminate
bottlenecks)
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MGR

Multichromosomal Genome Rearrangement
(Bourque and Pevzner)

• Uses the median approach, but does not solve it
exactly.

• Can handle multiple chromosomes (translocations)
using Hannenhalli-Pevzner’s results.

• Scaling unknown—published results to date limited to
small datasets.

• Accuracy second only to GRAPPA.
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DCM-GRAPPA

Our extension to GRAPPA to scale it to large
datasets (Tang and Moret).

• Scales gracefully to at least 1,000
genomes (less than 2 days of
computation).

• Retains accuracy of GRAPPA: error rates
on 1,000-genome datasets are
consistently below 3%.

• Uses the DCM-1 approach—may do even
better with forthcoming DCM-3.
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DCM-GRAPPA: Details

• Compute pairwise distances

• Check all possible threshold values

• For each threshold value
• Discard values above threshold
• Create graph from reduced distance matrix
• Triangulate the graph
• Find maximum cliques (disks) in the graph
• Run GRAPPA (or recursive DCM-GRAPPA) on the

disks

• Merge the resulting trees
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Likelihood Approaches

• Only one to date: an MCMC method
(Larget, Kadane, and Simon)

• Relies on two distinct moves
through tree space.

• Essentially untested
(just two small datasets used in report).

• Promising results,
but unknown running time.

• Code not available.
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Testing Algorithms

How to choose test sets?
• Biological datasets test performance where it matters,

but can be used only for ranking, are too few to permit
quantitative evaluations, and are often hard ot obtain.
Good for anecdotal reports and “reality checks."

• Simulated datasets enable absolute evaluations of
solution quality and can be generated in arbitrarily
large numbers.
Only way to obtain valid characterizations.
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Experimental Algorithmics

How to test algorithms empirically to obtain
reliable characterization of performance.

Can use experience in physical sciences, but
must adapt to specific circumstances of
computer-based experimentation:
• Algorithm analysis uses asymptotic

characterizations—cannot be inferred from finite data.
• Easy to alter experiments and re-run whole

series—leads to drift and biases.

• Controlling variables is just as hard in computational
experiments as in the natural sciences—even
reproducibility is a challenge.
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Experimental Algorithmics: Caveat

At the First Workshop on Algorithms in
Bioinformatics, Alberto Caprara remarked

• a theoretician solves interesting problems with no
practical use whatsoever

whereas

• an experimental algorithmist solves problems of
significant practical use, but only tests algorithms on
randomly generated instances

The types of instances generated in an
experimental study make the difference
between useful research and wasting a lot of
(students’ and CPUs’) cycles.
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Phylogenetic Considerations

• Tree shape plays a very large role.
Challenge: the shape of the true trees is unknown; moreover,
the shape depends on the selection of genomes—e.g., a single
genus vs. a sampling of an entire kingdom.

• The evolutionary model is important.
Challenge: devise an evolutionary model with few parameters
that is easily manipulated analytically and computationally and
that produces realistic data. (It would also be pleasant if it made
biological sense. . . )

• Test a large range of parameters and use many runs
for each setting to estimate variance.
Challenge: even the simplest of models induces a huge

parameter space—sampling it requires smoothness guarantees,

but NP-hard search spaces lack smoothness.
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Typical Simulation Setup

DISTANCE MATRIX
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Tree Topologies: Popular Models

• Birth-Death: start with root branch; in any ∆t interval,
there is probability p of speciation along any of the
current branches.
Biologically motivated; trees are well balanced—too
well balanced compared to published phylogenies.
All distance-based methods do very well on BD trees;
DCM decompositions are poor, but not needed.

• Uniform Random: all tree topologies equally likely.
No biological process; trees are fairly imbalanced—
too imbalanced compared to published phylogenies.

NJ does very poorly on uniform trees; DCM-NJ
significantly better.
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Tree Topologies: NewModels

• Aldous’ β-Splitting: parameter can be set to produce
anything from a ladder (caterpillar), through uniform,
birth-death, to perfect balance.
No biological process; single parameter cannot
localize structure.
Recommended setting (β = −1) matches balance of
published phylogenies, but algorithmic behavior does
not match biological datasets.

• Heard’s Multi-Parameter: variable evolutionary rates,
inheritable speciation traits, punctuated and gradual
evolution.
Strong biological motivation; too many parameters?

Subtle differences cause large changes in
performance of distance- and parsimony-based
methods.
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Generating Genome Rearrangements

Questions:

• What rearrangement events? are they
weighted?

• Are there forbidden regions (e.g., no
inversion across a centromere)? preferred
regions or endpoints (hotspots)?

• Relative cost of insertions, duplications,
and deletions?

• How to test for robustness?
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The Parameter Space

Clearly too large for good sampling:
• tree topologies
• evolutionary models
• evolutionary rates
• tree sizes
• genome sizes

• multiple chromosomes

Need to focus testing on appropriate
subspace.
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Some Experimental Results

• Distance-Based Methods (with and
without correction)

• GRAPPA

• DCM-GRAPPA
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Results: DistanceMethods

inversion/transposition/inverted transposition: 1:1:1 ratio
120 genes per genome, 10-20-40-80-160 genomes
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Results: GRAPPA

Biological dataset: 11 plants cpDNA genomes, 37 genes
Note: inverted repeat not used here

Cyanophora

Cyanidium

Porphyra

Guillardia

Odontella

Marchantia

Tobacco

Mesostigma

Nephroselmis

Chlorella

Left: expected tree (placement of Euglena unknown)
Right: GRAPPA tree

– p. 67/71



Results: DCM-GRAPPA

inversion-only evolution, expected edge length 4
100 genes per genome, 20-40-80-160-320-640 genomes
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Shown is total number of edges in error (log/log scale)
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Some Open Problems

• Tree models
• Evolutionary models
• Extensions of Hannenhalli-Pevzner theory to handle

• transpositions and inversions
• length-dependent rearrangements
• position-dependent rearrangements

• duplications

• Good combinatorial formulation of the median
problem for inversions and for more general cases.

• Tighter bounds on tree scores.

• Extensions to phylogenetic networks (!)
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Conclusions

• Gene-order data carries very good phylogenetic
information—much better than sequence data!

• Current algorithmic approaches scale to significant
sizes (1,000 for DCM-GRAPPA)—comparable to the
best achievable with sequence data and with better
results.

• Current approaches remain unable to handle unequal
gene content with duplications, but major progress
has been made over the last 5 years.

• Data availability is increasing rapidly for organellar
genomes, slowly for nuclear genomes, and remains
very limited compared to sequence data.
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compbio.unm.edu

Laboratory for
High-Performance Algorithm Engineering

and Computational Molecular Biology

Includes all publications by our lab, GRAPPA source files,
email addresses, and links to our main collaborators.
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