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Evolution operates on whole genomes through mutationsctieige the order and strandedness
of genes within the genomes. Thus analyses of gene-ordarpdesent new opportunities for
discoveries about deep evolutionary events, provided shfficiently accurate methods can be
developed to reconstruct evolutionary trees. In this pagegpresent two new methods of character
coding for parsimony-based analysis of genomic rearraegésn one called MPBE-2, and a new
parsimony-based method which we call MPME (based on an émgad Bryant), both variants
of the MPBE method. We then conduct computer simulationsotopare this class of methods
to distance-based methods (NJ under various distance reeas@ur empirical results show that
two of our new methods return highly accurate estimatesefrile tree, outperforming the other
methods significantly, especially when close to saturation

1 Introduction
1.1 Gene Orders as a Source of Phylogenetic Data

While DNA sequences have greatly improved our understgafievolutionary rela-
tionships, they have also left open many crucial phylogemgtestions. The research
community has thus sought other sources of phylogeneti@kitpoking for charac-
ters that evolve slowly or have a large number of statesgssnch characters gen-
erally have a higher signal-to-noise ratio than DNA segesn®©ne source of such
characters is the category of “rare genomic chanfieRare genomic changes are
defined as large-scale mutational events in genomes; amanyg possibilities are
genomic rearrangementwhich include both gene duplicatichand changes in gene
order’. The relative rarity of genomic rearrangements makes tbleagacters very
attractive as sources of phylogenetic data. Although itdesesn suggested that there
are not enough genomic rearrangements to provide suffiniembers of characters
for resolving phylogenetic relationships in most groupg.(&hloroplast genoméy
increased genome sequencing efforts are uncovering mamygeeome rearrange-
ments for use in phylogeny reconstruction. For exampleggeder comparisons for
two ascomycete fungal nuclear genonfeéa¢charomyces cervisiandCandida albi-
cang estimated that there have been approximately) single-gene inversions since
the divergence of these spedies



1.2 Genome rearrangement evolution

Some organisms have a single chromosome or contain singlerosome organelles
(such as mitochondrfa’ or chloroplasté*), whose evolution is largely independent
of the evolution of the nuclear genome for these organisntel@/genome sequenc-
ing projects are providing us with information about theeidg and orientation of
the genes, enabling us to represent the chromosome by aingr{limear or circular)
of signed genes (where the sign of the gene indicates itatatien). Evolutionary
processes on the chromosome can thus be seen as transboswdisigned orderings
of genes. With a number assigned to the same gene in each geagenome can
be represented bysigned permutationf {1, ..., n}—a permutation in which each
number is given a sign; if the genome is circular, so is thenpiation.

An inversionlifts a contiguous subpiece of the permutation, reversesrider
and the orientation of every gene within it, then puts theltewy piece back in the
same location; for it to happen requires two concurrenths@athe DNA. Atrans-
positionlifts a contiguous subpiece of the permutation and puts ékhanchanged
between two contiguous permutation elements not in theisabpit requires three
DNA breaks. Aninverted transpositioiis a transposition that also reverses the order
of the subpiece and the orientation of every gene within it.

The Generalized Nadeau-Taylor (GNModeP:° describes the process respon-
sible for the change in gene order along the edges of a givglogény. The model
includes the three types of rearrangement events justidedcwithin each type, all
events have equal probability (e.g., any inversion is aaylilas any other), but the
model includes two parameters to indicate the probalslitieeach type of eventy
and g are the probabilities that an event is a transposition omngearted transposi-
tion, respectively—and thud—a—03) is the probability that an event is an inversion.
Each edge of the tree has an associated paramatemwhich is the expected value
of a Poisson distribution for the number of events taking@lalong this edge. The
process that this model describes, when given a rootedybireser with an ancestral
gene order at the root, as well as the values of the varioasmpeters, produces a set
of signed gene orders at the leaves of the model tree.

1.3 Approaches for Reconstructing Phylogenies from Gedeata

We now describe two basic classes of methods for reconstgughylogenies from
whole genomes. In the first classditance-based methqdge use a method such as
the Neighbor Joining Methdd in conjunction with an estimator of evolutionary dis-
tances, to infer an edge-weighted tree whose matrix oftledéaf distances approx-
imates the estimated distance matrix. Thus, the estimafienolutionary distances
is an important component of distance-based estimatiohygibgenies.

The true evolutionary distancét.e.d) between two leaves in the true tree is
simply the length (in terms of actual numbers of rearranges)ef the unique sim-



ple path between these two leaves in the tree. Theory hadisktd that if we can
estimate all t.e.d.s sufficiently accurately, we can retaosthe tre€l” using even
very simple methods-'2. Estimates of pairwise distances that are close to theg.e.d
will in general be more useful for evolutionary tree recomstion than edit distances,
because edit distances usuallyderestimaté.e.d.s, by an amount that can be very
significant as the number of rearrangements incréédsés

The other basic approach we examine are called “maximunmnpang” type ap-
proaches, since they are similar to the maximum parsimootylem for biomolecular
sequences. Given a sktof allowed rearrangement events, thegthof a treel” with
all nodes labeled by genomes is defined as the sum of the stiihdes with respect
to R over all edges iff". Theparsimony scoref T" with respect taR is the minimum
length over all possible labelings of the internal nodese Maximum Parsimony on
Rearranged Genomegsoblem asks for the tree topolo@ythat has minimum parsi-
mony score with respect tB. The problem is difficult even wheR is very restricted:
the time complexity is unknown (but believed to be NP-hartigwR is the set of all
transpositions and is NP-hard wharis the set of all inversions.

Sankoffet al.!> proposed a different optimization problem for phylogenyome-
struction from gene-order data: seek the tree with the miminmumber of break-
points rather than that with the minimum number of evolutignevents. The result-
ing tree is called théreakpoint phylogenywWhen the breakpoint distance is linearly
correlated with the t.e.d., minimizing the number of bre@kps also minimizes the
total number of evolutionary events; Blanchedt@l.® observed such a relationship in
a group of metazoan mitochondrial genomes. Computing teakpoint phylogeny
is NP-hard for just three genom¥s a special case known as tMedian Problem
for Breakpoints (MPB)Blanchetteet al. reduced the MPB to the travelling salesman
problem and developed the software silBf¢Anal ysi s to approximate the break-
point phylogeny; this approach was subsequently refinedandmously accelerated
by Moretet al. with the GRAPPA software suité”. However, these approaches fail
on large datasets—a 16-taxon problem gives rise to seveaalrilion trees!

Our experiments have shown that selecting trees with snalial edge length
(under any of these measures) leads to more accurate regiiusts 1.

1.4 Our Contribution

This paper provides the first thorough empirical study of idylogenetic reconstruc-
tion methods for gene-order data, using both distanceeksasg parsimony-based ap-
proaches. It also introduces two new analysis methods b@aseticodings of gene
orders as sequences of state characters. In Section 2 wéeddke various methods
tested in our experiments; in Section 3 we discuss the axgeeaital setup; and in Sec-
tion 4 we present our results, in terms of efficiency and obtogical accuracy. We
find that the NJ method, used with our t.e.d. estim&bE, and the MPME method,
are both highly accurate, outperforming all of the otherhods in this study.



2 Phylogenetic Methods Under Study

The methods used in our experiments can be grouped ufistance-based meth-
ods which use various distance estimators to rectrvgr evolutionary distanceand
parsimony-based methadshich convert the gene-order data into character codings
and use conventional parsimony algorithms to reconsthacphylogeny.

2.1 Distance-Based Methods

Our basic distances are the breakpoBR) and the inversionl (NV) distances. The
first measures the number of adjacencies that are disruptexving from one or-
dering into the other, while the second measures the minimumber of inversions
required to transform one ordering to the other. Both aremdable in linear time
(the second through the method of Baeérl.?’). Using these distances, we have
three t.e.d. estimators, all of which can be computed indoder polynomial time.

Thea- | EBP (Approximately Inverting the Expected BreakPoint dis&moethod
9 approximates, with known error bound, the expected breakplistance obtained
after k random events in the GNT model, for any setting of the pararset and
(3. Consequently, given two genomes, we can estimate thealet®nary distance
(t.e.d.) between them by selecting the number of events likest to have created
the observed breakpoint distance. Simulatfosisow that the method is robust even
under wrong assumptions about model parameters.

The e- | EBP (Exactly Inverting...) method' improves the accuracy -
| EBP by providing an exact calculation of the expected breakpdistance, at the
cost of increased running time. In our simulatidhse- | EBP produces more accu-
rate trees thaa- | EBP when used with NJ.

The EDE (Empirically Derived Estimator) methdé!? estimates the t.e.d. by in-
verting the expected inversion distance. We derived thimagir through a nonlinear
regression on simulation data. The evolutionary model éngimulations uses only
inversions, but NJ usingDE distances shows high accuracy in simulatfdns even
when transpositions and inverted transpositions are ptese

2.2 Parsimony-Based Methods

All methods discussed in this section are based on charawterdings generated
from the signed permutation. These character matricesharegubjected to parsi-
mony searches—for which good implementations have long beailable.

The Maximum Parsimony on Binary Encodings (MPBEJ}? has running time
exponential in the number of genomes, but runs very fastaotfme. In MPBE, each
gene ordering is translated into a binary sequence, whelesite from the binary se-
guence corresponds to a pair of genes. (The ordering oftéisiimmaterial in this
encoding.) For the paily;, g;), the sequence hadlat the corresponding sitegf is
immediately followed byy; in the gene ordering and(aotherwise (note thaj; and
g; can be negative and that, singg, g;) and(-g;,-g;) denote the same adjacency, w



need only one site for both). There a(@e) pairs, wheren is the number of genes in
each genome, but we drop the sites where every sequenceshsntie value.

Ouir first new encodingIPBE-2 is a subset of an MPBE encoding designed to
eliminate any character denoting the ancestral conditioamiflentity permutation in
our simulations). For example, if the adjaceriey is scored as one character for
MPBE, but we can safely assume it is also the state of the comanoestor of the
taxa, then we will not include this character in the MPBE-2ating. That is, we at-
temptin MBE-2 to be true to the cladistic goal of using onlgsd derived mutations
to support sister-group relationships. This also has timseguence of reducing de-
pendencies among characters, although it cannot fullyiedita these dependencies.

Our second new encoding builds on this observation by dpirjcan ordered
multistate encoding that avoids multiple encodings foheaasition. This new en-
coding, which we calMaximum Parsimony on Multistate EncodindPME). is
inspired by a proposal of Bryant$, itself based on an earlier characterization ap-
proach of Sankoff and Blanchette. Lebe the number of genes in each genome; then
each gene order is translated into a sequence of lengtlror everyi, 1 < ¢ < n,
site s takes the value of the gene immediately following géred siten + i takes
the value of the gene immediately following gerneFor example, the circular gene
ordering(1,-4,-3,-2) corresponds to the MPME sequence(ef, 3,4,-1,2,1,-2,-3).
Each site can take up fgn — 1) different values; the unbounded number of states per
characters is a drawback in practical implementationsglwvbsually assume that this
number is bounded by a small constant. For example, the bisuBflin PAUP* 4.0
25; even after remapping the set of successor values into @cotige set of symbols,
the number of symbols often exceeds the PAUP bound for lampaiems.

3 Design of the Experiments

The goal of our experiments is to compare the tradeoffs (timeccuracy) offered
by NJ with those offered by the parsimony-based methods;weupresent results for
both running time and accuracy.

3.1 Quantifying Accuracy

Given an inferred tree, we assesst@pological accuracypy computing thenormal-
ized false negative (FN) ratsith respect to thérue tree The true tree may not be
the model tree itself: the evolutionary process may causeshaages on some edges
of the model tree, in which case we define the true tree to beethdt ofcontracting
those edges in the model tree.

For every tree there is a natural association between edgseeand the bipar-
tition on the leaf set induced by deletiagrom the tree. Lefl’ be the true tree and
let 7' be the inferred tree. An edge @fis missingin 7" if T’ does not contain an
edge defining the same bipartition; such an edge is therdcafidse negativéFN).
We normalize these values by dividing the number of falseatiegs by the number



of internal edges in the true tree, thus producing a valuedst 0 and 1 (which we
express in terms of percentages).

3.2 The Experiments

For each setting of the parameters (number of leaves, nuailgEmes, probability
of each type of rearrangement, and edge lengths), we geréains In each run,
we generate a model tree, and a set of genomes at the leavaltoas f First, we
generate a random leaf-labeled tree (from the uniformiligion on topologies);
the leaf-labeled tree and the parameter settings thus defimedel tree in the GNT
model. We run the GNT simulator on the model tree and prodset af genomes at
the leaves. The numbers of genes in each genome are 37 (typgenes in animal
mitochondrial genomé&3 and 120 (typical of genes in plant chloroplast genofies

Our GNT simulato?-'® takes as input a rooted leaf-labeled tree and the associated
parameters (edge lengths and the relative probabilitiésvefsions, transpositions,
and inverted transpositions). On each edge, it appliesormangarrangement events
to the genome at the ancestral node according to the modebwién parameters
and3. We uset gen (from D. Huson) to generate random trees. These trees have
topologies drawn from the uniform distribution, and edgegkhs drawn from the
discrete uniform distribution on intervals, b], where we specify: andb. Table 1
summarizes the settings. We then compute NJ trees on ealh fifé distance ma-
trices BP, | NV, a- | EBP, e- | EBP, andEDE) and the most parsimonious trees from
the heuristic search using the three encodings (MPBE, MPBifvd MPME). When
the parsimony search returns more than one tree, we use fbatyraule consensus
(generally not a fully resolved tree) for comparison to theettree. We use PAUP*
4.0b8% for NJ, to compute the false negative rate between two traed,for the
parsimony search using the three encodings. The upper Boutige running time is
240 mins., the heuristic search uses Tree-Bisection-Recoiongd BR) operations to
generate new trees, at any time we holdiliees having the lowest parsimony score,
and we use the NJ trees with our five distances as the startieg). tAll experiments
were conducted on Pentium-class machines.

Table 1: Settings For The Empirical Study.

Parameter Valuex(for 120 genes only)

# genes 37,120

# leaves 40, 80*, and160*

expected # events/edge uniform within 3], [1, 5], [1, 10], [3, 5]*, [3, 10]*, and[5, 10]*
11

probability settings{e, 3)  (0,0), (1,0), (0,1), (3,3, (0, ), (3,0), (3, 3)
datasets per setting 60



4 Results of the Experiments

As mentioned, MPME will exceed 32 states per character figelproblems. The
problem worsens with increasing rate of evolution; for raith 120 genes, 160 taxa,
and edge lengths ifb, 10], PAUP alwaysrejects the MPME data matrix. We ig-
nore all MPME datasets rejected by PAUP—thereby introdyiein unknown, but
undoubtedly favorable bias in our accuracy results for MRiEarge problems.

Figure 1 shows histograms of the running times of the pansystzased meth-
ods for two sizes of problems; on smaller problems (40 tatka) parsimony search
ran quickly (20 mins.), but larger numbers of taxa causedpsimgreases in running
times—to the point where MPME generally reached the timét.litm comparison,
the NJ-based methods ran faster—typically in 8 minutes €8 (éhis time includes
calculation of pairwise distances, which can be computatly expensive for the
| EBP methods), with no variation among runs using a particulamegor.
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Figure 1: PAUP running times for the three parsimony-basethaus. The vertical bars right of 240 mins.
represent the runs that exceeded the parsimony searclafichivere cut off.

Due to space limitations, we present in Figures 2, 3, and $ ardample of
our results. We show three different problem sizes, whiclcarethink of as small,
medium, and large. For 37 genes, both distance- and pargitrased methods (ex-
cept MPME) yield FN of at least 10%—the low number of genesiced the amount
of phylogenetic information. For 120 genes, trees produmegarsimony-based
methods and NJ using- | EBP, e- | EBP, and EDE have FN at most 20% (10%
for higher rate and 40 taxa), and outperform NJ(INV) and N®)(By a large margin
when the amount of evolution is high. While MPME usually piods the most accu-
rate trees among the parsimony-based methods, it is coablgislower than MPBE;
indeed, we expect its performance on larger datasets islitinied—had we given it
more time to run, it would have surpassed the other MP-basgtads easily. With
37 genes, increasing the rate of evolution improves theracgwf MPME, but wors-



ens that of MPBE and MPBE-2, whereas all three methods ingpiroaccuracy for
larger evolutionary rates with 120 genes.

NJ(EDE) is clearly the most accurate distance-based me#mathis difference
is most noticeable as the dataset gets close to saturatisthefmore, it is also one
of the fastest (calculating bot+ | EBP ande- | EBP distances is more expensive).
Also, NJ(EDE) is competitive with both MPBE and MPBE2, altighh mostly not as
accurate as MPME (except for the inversion only scenarid, euen then only for
datasets which are far from saturated). Of all the methodstudgied, MPME is the
most accurate: it behaves well at all rates and is much tedttégh rates. Our results
suggest that using an encoding that attempts to capture detads about the gene
order (like MPME) preserves useful phylogenetic informathat a parsimony-based
search (with sufficient time) can put to good use. The cho&teéen the best two
methods (NJ(EDE) and MPME) may thus be dictated by running tiather than ac-
curacy concerns: while NJ(EDE) is very fast and thus alwagble, MPME will be
too computationally expensive to use for some datasets.

5 Conclusion

We have introduced two new encoding methods for gene-orater @hd compared
them to a previous encoding method (MPBE) and to NJ analyassdbon various
estimates of the true evolutionary distan&®E, a- | EBP, ande- | EBP). MPME
and NJ(EDE) are clearly the best two choices in our studyrméig much more ac-
curate trees than the other methods. Furthermore, MPMEstiahoays outperforms
NJ(EDE). However, while the advantage gained by MPME isifigant, MPME is
also the slowest of the methods we studied. An importanttioe for future research
is thus to develop new heuristics that are as accurate as Mp&lEasy to implement
for practical use.
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Figure 2: Topological accuracy of phylogenetic methods mblems with 37 genes and 40 taxa. The
z-axis is normalized by the number of genes, the highest simerdistance two gene orders can have.
Our plots result from binning the values into range of evohary distances (maximum pairwise inversion
distance in the dataset) and plotting the average valueafdr kin. See Section 1.2 for the definition of the

model weightq «, 3).
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Figure 3: Topological accuracy of phylogenetic methods mblems with 120 genes and 40 taxa. See
Section 1.2 for the definition of the model weiglits, 3).
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Figure 4: Topological accuracy of phylogenetic methods @blems with 120 genes and 160 taxa. See
Section 1.2 for the definition of the model weiglits, 3).



