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Evolution operates on whole genomes through mutations thatchange the order and strandedness
of genes within the genomes. Thus analyses of gene-order data present new opportunities for
discoveries about deep evolutionary events, provided thatsufficiently accurate methods can be
developed to reconstruct evolutionary trees. In this paperwe present two new methods of character
coding for parsimony-based analysis of genomic rearrangements: one called MPBE-2, and a new
parsimony-based method which we call MPME (based on an encoding of Bryant), both variants
of the MPBE method. We then conduct computer simulations to compare this class of methods
to distance-based methods (NJ under various distance measures). Our empirical results show that
two of our new methods return highly accurate estimates of the true tree, outperforming the other
methods significantly, especially when close to saturation.

1 Introduction

1.1 Gene Orders as a Source of Phylogenetic Data

While DNA sequences have greatly improved our understanding of evolutionary rela-
tionships, they have also left open many crucial phylogenetic questions. The research
community has thus sought other sources of phylogenetic signal, looking for charac-
ters that evolve slowly or have a large number of states, since such characters gen-
erally have a higher signal-to-noise ratio than DNA sequences. One source of such
characters is the category of “rare genomic changes”1. Rare genomic changes are
defined as large-scale mutational events in genomes; among many possibilities are
genomic rearrangements, which include both gene duplications2 and changes in gene
order3. The relative rarity of genomic rearrangements makes thesecharacters very
attractive as sources of phylogenetic data. Although it hasbeen suggested that there
are not enough genomic rearrangements to provide sufficientnumbers of characters
for resolving phylogenetic relationships in most groups (e.g., chloroplast genomes4),
increased genome sequencing efforts are uncovering many new genome rearrange-
ments for use in phylogeny reconstruction. For example, gene-order comparisons for
two ascomycete fungal nuclear genomes (Saccharomyces cervisiaeandCandida albi-
cans) estimated that there have been approximately1100 single-gene inversions since
the divergence of these species5.



1.2 Genome rearrangement evolution

Some organisms have a single chromosome or contain single-chromosome organelles
(such as mitochondria6,7 or chloroplasts3,4), whose evolution is largely independent
of the evolution of the nuclear genome for these organisms. Whole-genome sequenc-
ing projects are providing us with information about the ordering and orientation of
the genes, enabling us to represent the chromosome by an ordering (linear or circular)
of signed genes (where the sign of the gene indicates its orientation). Evolutionary
processes on the chromosome can thus be seen as transformations of signed orderings
of genes. With a number assigned to the same gene in each genome, a genome can
be represented by asigned permutationof {1, . . . , n}—a permutation in which each
number is given a sign; if the genome is circular, so is the permutation.

An inversion lifts a contiguous subpiece of the permutation, reverses its order
and the orientation of every gene within it, then puts the resulting piece back in the
same location; for it to happen requires two concurrent breaks in the DNA. Atrans-
position lifts a contiguous subpiece of the permutation and puts it back unchanged
between two contiguous permutation elements not in the subpiece; it requires three
DNA breaks. Aninverted transpositionis a transposition that also reverses the order
of the subpiece and the orientation of every gene within it.

TheGeneralized Nadeau-Taylor (GNT)model8,9 describes the process respon-
sible for the change in gene order along the edges of a given phylogeny. The model
includes the three types of rearrangement events just described; within each type, all
events have equal probability (e.g., any inversion is as likely as any other), but the
model includes two parameters to indicate the probabilities of each type of event:α
andβ are the probabilities that an event is a transposition or an inverted transposi-
tion, respectively—and thus(1–α–β) is the probability that an event is an inversion.
Each edgee of the tree has an associated parameterλe, which is the expected value
of a Poisson distribution for the number of events taking place along this edge. The
process that this model describes, when given a rooted binary tree with an ancestral
gene order at the root, as well as the values of the various parameters, produces a set
of signed gene orders at the leaves of the model tree.

1.3 Approaches for Reconstructing Phylogenies from Gene Order Data

We now describe two basic classes of methods for reconstructing phylogenies from
whole genomes. In the first class ofdistance-based methods, we use a method such as
the Neighbor Joining Method10 in conjunction with an estimator of evolutionary dis-
tances, to infer an edge-weighted tree whose matrix of leaf-to-leaf distances approx-
imates the estimated distance matrix. Thus, the estimationof evolutionary distances
is an important component of distance-based estimation of phylogenies.

The true evolutionary distance(t.e.d.) between two leaves in the true tree is
simply the length (in terms of actual numbers of rearrangements) of the unique sim-



ple path between these two leaves in the tree. Theory has established that if we can
estimate all t.e.d.s sufficiently accurately, we can reconstruct the treeT using even
very simple methods11,12. Estimates of pairwise distances that are close to the t.e.d.s
will in general be more useful for evolutionary tree reconstruction than edit distances,
because edit distances usuallyunderestimatet.e.d.s, by an amount that can be very
significant as the number of rearrangements increases13,14.

The other basic approach we examine are called “maximum parsimony” type ap-
proaches, since they are similar to the maximum parsimony problem for biomolecular
sequences. Given a setR of allowed rearrangement events, thelengthof a treeT with
all nodes labeled by genomes is defined as the sum of the edit distances with respect
to R over all edges inT . Theparsimony scoreof T with respect toR is the minimum
length over all possible labelings of the internal nodes. The Maximum Parsimony on
Rearranged Genomesproblem asks for the tree topologyT that has minimum parsi-
mony score with respect toR. The problem is difficult even whenR is very restricted:
the time complexity is unknown (but believed to be NP-hard) whenR is the set of all
transpositions and is NP-hard whenR is the set of all inversions.

Sankoffet al.15 proposed a different optimization problem for phylogeny recon-
struction from gene-order data: seek the tree with the minimum number of break-
points rather than that with the minimum number of evolutionary events. The result-
ing tree is called thebreakpoint phylogeny. When the breakpoint distance is linearly
correlated with the t.e.d., minimizing the number of breakpoints also minimizes the
total number of evolutionary events; Blanchetteet al.6 observed such a relationship in
a group of metazoan mitochondrial genomes. Computing the breakpoint phylogeny
is NP-hard for just three genomes16, a special case known as theMedian Problem
for Breakpoints (MPB). Blanchetteet al. reduced the MPB to the travelling salesman
problem and developed the software suiteBPAnalysis to approximate the break-
point phylogeny; this approach was subsequently refined andenormously accelerated
by Moretet al. with theGRAPPA software suite17. However, these approaches fail
on large datasets—a 16-taxon problem gives rise to several quadrillion trees!

Our experiments have shown that selecting trees with smaller total edge length
(under any of these measures) leads to more accurate reconstructions18,19.

1.4 Our Contribution
This paper provides the first thorough empirical study of fast phylogenetic reconstruc-
tion methods for gene-order data, using both distance-based and parsimony-based ap-
proaches. It also introduces two new analysis methods basedon encodings of gene
orders as sequences of state characters. In Section 2 we describe the various methods
tested in our experiments; in Section 3 we discuss the experimental setup; and in Sec-
tion 4 we present our results, in terms of efficiency and of topological accuracy. We
find that the NJ method, used with our t.e.d. estimatorEDE, and the MPME method,
are both highly accurate, outperforming all of the other methods in this study.



2 Phylogenetic Methods Under Study

The methods used in our experiments can be grouped underdistance-based meth-
ods, which use various distance estimators to recovertrue evolutionary distances, and
parsimony-based methods, which convert the gene-order data into character codings
and use conventional parsimony algorithms to reconstruct the phylogeny.

2.1 Distance-Based Methods

Our basic distances are the breakpoint (BP) and the inversion (INV) distances. The
first measures the number of adjacencies that are disrupted in moving from one or-
dering into the other, while the second measures the minimumnumber of inversions
required to transform one ordering to the other. Both are computable in linear time
(the second through the method of Baderet al.20). Using these distances, we have
three t.e.d. estimators, all of which can be computed in low-order polynomial time.

Thea-IEBP (Approximately Inverting the Expected BreakPoint distance) method
9 approximates, with known error bound, the expected breakpoint distance obtained
after k random events in the GNT model, for any setting of the parametersα and
β. Consequently, given two genomes, we can estimate the true evolutionary distance
(t.e.d.) between them by selecting the number of events mostlikely to have created
the observed breakpoint distance. Simulations9 show that the method is robust even
under wrong assumptions about model parameters.

The e-IEBP (Exactly Inverting. . . ) method21 improves the accuracy ofa-
IEBP by providing an exact calculation of the expected breakpoint distance, at the
cost of increased running time. In our simulations21, e-IEBP produces more accu-
rate trees thana-IEBP when used with NJ.

TheEDE (Empirically Derived Estimator) method18,19 estimates the t.e.d. by in-
verting the expected inversion distance. We derived the estimator through a nonlinear
regression on simulation data. The evolutionary model in the simulations uses only
inversions, but NJ usingEDE distances shows high accuracy in simulations21,18 even
when transpositions and inverted transpositions are present.

2.2 Parsimony-Based Methods

All methods discussed in this section are based on character-encodings generated
from the signed permutation. These character matrices are then subjected to parsi-
mony searches—for which good implementations have long been available.

TheMaximum Parsimony on Binary Encodings (MPBE)22,23 has running time
exponential in the number of genomes, but runs very fast in practice. In MPBE, each
gene ordering is translated into a binary sequence, where each site from the binary se-
quence corresponds to a pair of genes. (The ordering of the sites is immaterial in this
encoding.) For the pair(gi, gj), the sequence has a1 at the corresponding site ifgi is
immediately followed bygj in the gene ordering and a0 otherwise (note thatgi and
gj can be negative and that, since(gi, gj) and(-gj ,-gi) denote the same adjacency, w



need only one site for both). There are
(

n

2

)

pairs, wheren is the number of genes in
each genome, but we drop the sites where every sequence has the same value.

Our first new encoding,MPBE-2, is a subset of an MPBE encoding designed to
eliminate any character denoting the ancestral condition (the identity permutation in
our simulations). For example, if the adjacency1–2 is scored as one character for
MPBE, but we can safely assume it is also the state of the common ancestor of the
taxa, then we will not include this character in the MPBE-2 encoding. That is, we at-
tempt in MBE-2 to be true to the cladistic goal of using only shared derived mutations
to support sister-group relationships. This also has the consequence of reducing de-
pendencies among characters, although it cannot fully eliminate these dependencies.

Our second new encoding builds on this observation by developing an ordered
multistate encoding that avoids multiple encodings for each position. This new en-
coding, which we callMaximum Parsimony on Multistate Encodings(MPME). is
inspired by a proposal of Bryant’s24, itself based on an earlier characterization ap-
proach of Sankoff and Blanchette. Letn be the number of genes in each genome; then
each gene order is translated into a sequence of length2n. For everyi, 1 ≤ i ≤ n,
site i takes the value of the gene immediately following genei and siten + i takes
the value of the gene immediately following gene -i. For example, the circular gene
ordering(1,-4,-3,-2) corresponds to the MPME sequence of(-4, 3, 4,-1, 2, 1,-2,-3).
Each site can take up to2(n−1) different values; the unbounded number of states per
characters is a drawback in practical implementations, which usually assume that this
number is bounded by a small constant. For example, the boundis 32 in PAUP* 4.0
25; even after remapping the set of successor values into a consecutive set of symbols,
the number of symbols often exceeds the PAUP bound for largerproblems.

3 Design of the Experiments

The goal of our experiments is to compare the tradeoffs (timevs. accuracy) offered
by NJ with those offered by the parsimony-based methods; thus we present results for
both running time and accuracy.

3.1 Quantifying Accuracy
Given an inferred tree, we assess itstopological accuracyby computing thenormal-
ized false negative (FN) ratewith respect to thetrue tree. The true tree may not be
the model tree itself: the evolutionary process may cause nochanges on some edges
of the model tree, in which case we define the true tree to be theresult ofcontracting
those edges in the model tree.

For every tree there is a natural association between every edgee and the bipar-
tition on the leaf set induced by deletinge from the tree. LetT be the true tree and
let T ′ be the inferred tree. An edge ofT is missingin T ′ if T ′ does not contain an
edge defining the same bipartition; such an edge is then called a false negative(FN).
We normalize these values by dividing the number of false negatives by the number



of internal edges in the true tree, thus producing a value between 0 and 1 (which we
express in terms of percentages).

3.2 The Experiments

For each setting of the parameters (number of leaves, numberof genes, probability
of each type of rearrangement, and edge lengths), we generate 60runs. In each run,
we generate a model tree, and a set of genomes at the leaves as follows. First, we
generate a random leaf-labeled tree (from the uniform distribution on topologies);
the leaf-labeled tree and the parameter settings thus definea model tree in the GNT
model. We run the GNT simulator on the model tree and produce aset of genomes at
the leaves. The numbers of genes in each genome are 37 (typical of genes in animal
mitochondrial genomes6) and 120 (typical of genes in plant chloroplast genomes23).

Our GNT simulator9,18 takes as input a rooted leaf-labeled tree and the associated
parameters (edge lengths and the relative probabilities ofinversions, transpositions,
and inverted transpositions). On each edge, it applies random rearrangement events
to the genome at the ancestral node according to the model with given parametersα
andβ. We usetgen (from D. Huson) to generate random trees. These trees have
topologies drawn from the uniform distribution, and edge lengths drawn from the
discrete uniform distribution on intervals[a, b], where we specifya andb. Table 1
summarizes the settings. We then compute NJ trees on each of the five distance ma-
trices (BP, INV, a-IEBP, e-IEBP, andEDE) and the most parsimonious trees from
the heuristic search using the three encodings (MPBE, MPBE-2, and MPME). When
the parsimony search returns more than one tree, we use the majority-rule consensus
(generally not a fully resolved tree) for comparison to the true tree. We use PAUP*
4.0b825 for NJ, to compute the false negative rate between two trees,and for the
parsimony search using the three encodings. The upper boundfor the running time is
240 mins., the heuristic search uses Tree-Bisection-Reconnection (TBR) operations to
generate new trees, at any time we hold the5 trees having the lowest parsimony score,
and we use the NJ trees with our five distances as the starting trees. All experiments
were conducted on Pentium-class machines.

Table 1: Settings For The Empirical Study.

Parameter Value (∗ for 120 genes only)
# genes 37, 120
# leaves 40, 80∗, and160∗

expected # events/edge uniform within[1, 3], [1, 5], [1, 10], [3, 5]∗, [3, 10]∗, and[5, 10]∗

probability settings:(α, β) (0, 0), (1, 0), (0, 1), ( 1

2
, 1

2
), (0, 1

2
), ( 1

2
, 0), ( 1

3
, 1

3
)

datasets per setting 60



4 Results of the Experiments

As mentioned, MPME will exceed 32 states per character for large problems. The
problem worsens with increasing rate of evolution; for runswith 120 genes, 160 taxa,
and edge lengths in[5, 10], PAUP alwaysrejects the MPME data matrix. We ig-
nore all MPME datasets rejected by PAUP—thereby introducing an unknown, but
undoubtedly favorable bias in our accuracy results for MPMEon large problems.

Figure 1 shows histograms of the running times of the parsimony-based meth-
ods for two sizes of problems; on smaller problems (40 taxa),the parsimony search
ran quickly (20 mins.), but larger numbers of taxa caused sharp increases in running
times—to the point where MPME generally reached the time limit. In comparison,
the NJ-based methods ran faster—typically in 8 minutes or less (this time includes
calculation of pairwise distances, which can be computationally expensive for the
IEBP methods), with no variation among runs using a particular estimator.
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Figure 1: PAUP running times for the three parsimony-based methods. The vertical bars right of 240 mins.
represent the runs that exceeded the parsimony search limitand were cut off.

Due to space limitations, we present in Figures 2, 3, and 4 only a sample of
our results. We show three different problem sizes, which wecan think of as small,
medium, and large. For 37 genes, both distance- and parsimony-based methods (ex-
cept MPME) yield FN of at least 10%—the low number of genes reduces the amount
of phylogenetic information. For 120 genes, trees producedby parsimony-based
methods and NJ usinga-IEBP, e-IEBP, andEDE have FN at most 20% (10%
for higher rate and 40 taxa), and outperform NJ(INV) and NJ(BP) by a large margin
when the amount of evolution is high. While MPME usually produces the most accu-
rate trees among the parsimony-based methods, it is considerably slower than MPBE;
indeed, we expect its performance on larger datasets is time-limited—had we given it
more time to run, it would have surpassed the other MP-based methods easily. With
37 genes, increasing the rate of evolution improves the accuracy of MPME, but wors-



ens that of MPBE and MPBE-2, whereas all three methods improve in accuracy for
larger evolutionary rates with 120 genes.

NJ(EDE) is clearly the most accurate distance-based method, and this difference
is most noticeable as the dataset gets close to saturation. Furthermore, it is also one
of the fastest (calculating botha-IEBP ande-IEBP distances is more expensive).
Also, NJ(EDE) is competitive with both MPBE and MPBE2, although mostly not as
accurate as MPME (except for the inversion only scenario, and even then only for
datasets which are far from saturated). Of all the methods westudied, MPME is the
most accurate: it behaves well at all rates and is much betterat high rates. Our results
suggest that using an encoding that attempts to capture moredetails about the gene
order (like MPME) preserves useful phylogenetic information that a parsimony-based
search (with sufficient time) can put to good use. The choice between the best two
methods (NJ(EDE) and MPME) may thus be dictated by running time rather than ac-
curacy concerns: while NJ(EDE) is very fast and thus always usable, MPME will be
too computationally expensive to use for some datasets.

5 Conclusion

We have introduced two new encoding methods for gene-order data and compared
them to a previous encoding method (MPBE) and to NJ analyses based on various
estimates of the true evolutionary distance (EDE, a-IEBP, ande-IEBP). MPME
and NJ(EDE) are clearly the best two choices in our study, returning much more ac-
curate trees than the other methods. Furthermore, MPME almost always outperforms
NJ(EDE). However, while the advantage gained by MPME is significant, MPME is
also the slowest of the methods we studied. An important direction for future research
is thus to develop new heuristics that are as accurate as MPME, yet easy to implement
for practical use.
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Figure 2: Topological accuracy of phylogenetic methods on problems with 37 genes and 40 taxa. The
x-axis is normalized by the number of genes, the highest inversion distance two gene orders can have.
Our plots result from binning the values into range of evolutionary distances (maximum pairwise inversion
distance in the dataset) and plotting the average value for each bin. See Section 1.2 for the definition of the

model weights(α, β).
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Figure 3: Topological accuracy of phylogenetic methods on problems with 120 genes and 40 taxa. See
Section 1.2 for the definition of the model weights(α, β).
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Figure 4: Topological accuracy of phylogenetic methods on problems with 120 genes and 160 taxa. See
Section 1.2 for the definition of the model weights(α, β).


