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Abstract

We present the results of a large-scale experimental
study of quartet-based methods (quartet cleaning and
puzzling) for phylogeny reconstruction. Qur experi-
ments include a broad range of problem sizes and evolu-
tionary rates, and were carefully designed to yield sta-
tistically robust results despite the size of the sample
space. We measure outcomes in terms of numbers of
edges of the true tree correctly inferred by each method
(true positives). Our results indicate that these quartet-
based methods are much less accurate than the simple
and efficient method of neighbor-joining, particularly for
data composed of short- to medium-length sequences.
We support our experimental findings by theoretical re-
sults that strongly suggest that quartet-cleaning meth-
ods are unlikely to yield accurate trees with less than
exponentially long sequences. We conclude that a pro-
posed reconstruction method should first be compared
to the neighbor-joining method and further studied only
if it offers a demonstrable practical advantage.

1 Introduction.

Reconstructing the evolutionary history of a group
of taxa is a major research thrust in computational
biology. The evolutionary process not only determines
relationships among taxa, but also allows prediction
of structural, physiological, and biochemical properties
[5, 25]. Research on tree reconstruction has focused on
reconstructing an evolutionary tree (phylogeny) under
various optimization criteria. However, almost all
optimization problems of interest to biologists are NP-
hard (see [9] for a review), so that most biologists use
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heuristic methods or surrogate optimization criteria.

A popular family of phylogenetic heuristics is based
on quartets. A quartet is an unrooted binary tree for
a quadruple of taxa. For most optimization problems,
it is possible to determine the optimal tree on a set
of four leaves by analyzing all three possible trees.
Quartet-based methods compute a quartet under an
optimization criterion for each set of four taxa and
combine the quartets into a tree on the full set of
taxa. Because there are @(n4) quartets, many quartet-
based methods run in (n®) time, which is currently
impractical for a hundred or more taxa.

How accurate are quartet-based methods at recon-
structing phylogenetic trees? In biological applications,
the true, historical tree is almost never known, which
makes assessing the quality of phylogenetic reconstruc-
tion methods problematic (but see the study by Hillis
et al. [8]). As a consequence, the method of choice for
evaluating heuristics has been simulation [7]. In such a
simulation, an ancestral biomolecular (DNA, RNA, or
amino-acid) sequence is evolved along a “model” tree,
producing a synthetic set of biomolecular sequences
at the leaves. Phylogenetic reconstruction methods
are then assessed based upon how accurately they
reconstruct the model tree (the “true” tree). Biologists
typically evaluate performance according to the topo-
logical accuracy of the reconstructed unrooted tree. The
emphasis on topology is due to the biological interpreta-
tion of tree topology as the order of past speciation (or
gene duplication) events, that is, relationships among
species, genes, or other taxa. Topological accuracy is
typically measured by the percentage of edges of the
true tree found in the reconstructed tree (true positives).

Among distance-based methods (methods that
transform input sequences into a distance matrix and
then construct the tree from that distance matrix),
none is more widely used by biologists than the
neighbor-joining (NJ) method [22]. Not only is it quite
fast (O(n?) for n taxa [24]), but experimental work has
also shown that the trees NJ constructs are reasonably
accurate, as long as the rate of evolution is neither too
low nor too high. However, there is no comparative
study of NJ and quartet-based methods.



We present the results of a detailed, large-scale
experimental study of quartet-based methods and
NJ under the Jukes-Cantor model of evolution [14].
Our results indicate that NJ always outperforms the
quartet-based methods we examined, in terms of both
accuracy and speed. We conclude that NJ, already the
most popular distance-based method, should be used as
a minimum standard in the assessment of phylogenetic
methods: a proposed method should be compared with
NJ and shown to provide a demonstrable advantage over
it before that method is studied in depth. Finally, we
present new theory about convergence rates of quartet-
based methods which helps explain our observations.

2 Terminology and Review

2.1 The Jukes-Cantor model. The Jukes-Cantor
model [14] is the simplest Markov model of biomolecu-
lar sequence evolution. In that model, a DNA sequence
(a string over {4, C,T,G}) at the root evolves down a
tree. The sites (i.e., the positions within the sequences)
evolve independently and identically and the number
of changes of each site on edge e is a Poisson random
variable with expectation A..

2.2 Measures of accuracy. Let T be the true tree,
and let T' be an estimation of T, with both T and T"
leaf-labelled by a set S of taxa. For each edge e € E(T),
we define the bipartition 7, induced on S by the deletion
of the edge e from T. The set C(T') = {n. : e € E(T)}
is called the “character encoding of T.” Methods for
reconstructing trees are evaluated according to the
degree of topological accuracy obtained, by comparing
the sets C(T") and C(T"). The true positives are the
edges e € E(T) obeying n, € C(T)NC(T").

2.3 Statistical performance issues. Under the
Jukes-Cantor model, a method M is statistically
consistent if, for every model tree (T, {A.}) and every
€ > 0, there is a sequence length k (which depends on
M, T, A, and ) such that M recovers the true tree
with probability at least 1 — e, when the method is
given sequences generated on T of length at least k.
The sequence length required by a method is a sig-
nificant aspect of its performance, because real data are
of limited length (typically bounded by a few hundred
to a few thousand nucleotides). Computational require-
ments are also important, but it may be possible to wait
longer or use more powerful machines, whereas it is not
possible to get longer sequences than exist in nature.
Consequently, experimental and analytical studies have
attempted to bound the sequence lengths required by
different phylogenetic methods. The rate at which a
method converges to 100% accuracy as a function of
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the sequence length is called the convergence rate.

2.4 Neighbor-joining. Neighbor-Joining (NJ)
was formally described in 1987 [22] and has been a
mainstay of phylogeny reconstruction among biologists
ever since. NJ is an O(n®) algorithm that proceeds
by repeatedly pairing two subtrees (at first, a pair of
leaves; thereafter entire subtrees), replacing that pair
in further computations with a single artificial taxon
representing the subtree, thereby eventually returning
a binary (fully resolved) tree. NJ is statistically
consistent for the Jukes-Cantor model of evolution.

2.5 Quartet-based methods. A gquartet is an
unrooted binary tree on four taxa. A quartet thus
induces a unique bipartition of the four taxa and can be
denoted by that bipartition. If the taxa are {a,b,c,d},
we can use {ab|cd} to denote the quartet that pairs a
with b and ¢ with d (see Figure 1). A quartet {ab|cd}
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Figure 1: The three possible quartets on four taxa
{a,b,c,d} and their bipartition encodings.

agrees with a tree T if all four of its taxa are leaves
of T' and the path from a to b in T does not intersect
the path from ¢ to d in T'. Equivalently, {ab|cd} agrees
with a tree if the subtree induced in T by the four taxa
is the quartet itself. The quartet {ab|cd} is an error
with respect to the tree T if it does not agree with T
If Q(T) denotes the set of all quartets that agree with
T, then T is uniquely characterized by Q(T) and can
be reconstructed from T in polynomial time [6].

Quartet-based methods operate in two phases. In
the first phase they construct a set () of quartets on
the different sets of four taxa. One popular approach
is to use the computationally intensive, but statisti-
cally sophisticated method of “maximum likelihood
estimation” (ML). In the second phase, they combine
these quartets into a tree on the entire set of taxa. In
practice, the input data are not of sufficient quality
to ensure that all quartets are accurately inferred, so
that quartet methods have to find ways of handling
incorrect quartets. Most optimization problems related
to tree reconstruction from quartets are NP-hard. An
example of this is the Maximum Quartet Compatibility
problem [13], which seeks a tree T for a given set @ of
quartets such that |Q(T") N Q| is maximized.

The methods studied in this paper have no perfor-
mance guarantees with respect to the Maximum Quartet



Compatibility problem, although each of them is statisti-
cally consistent under the Jukes-Cantor model of evolu-
tion. However, with the exception of Quartet Puzzling,
all quartet methods we examine do provide guarantees
about the edges of the true tree that they reconstruct.
These guarantees are expressed in terms of “quartet
errors around an edge,” a concept we now define.

Consider an edge e in the true tree T'; its removal
defines the bipartition A|B on the leaves of S. Consider
those sets of four leaves {a,a’,b,b'} with {a,a'} C A
and {b,b'} C B. A quartet t € () is said to be an “error
around e” if we have t = {abla'b'} or t = {ab'|a'b}.
Similarly, if 7' is a proposed tree, and @ is a set of
quartets, then ¢t € T" is an error around edge e € E(T")
if t = {abla'b'} or t = {ab'|a’b}, while e defines the
bipartition A|B.

Two of the methods we study, the @Q* method
(also known as the Buneman method) and the Quartet
Cleaning methods, can be described in terms of an
explicit bound on the number of quartet errors around
the edges they reconstruct. We begin with the Q*
method [3]. This method seeks the mazimally resolved
tree T' obeying Q(T') C Q. Therefore, there are no
quartet errors around any edge in the tree T'. This
tree always exists, since the star tree trivially satisfies
the constraint on any set of quartets. The Q* tree is
unique and can be constructed in polynomial time; by
design, however, the @* method is conservative and
generally produces very unresolved trees [11].

Quartet-Cleaning (QC) methods [2, 4, 13] have
explicit bounds on the number of quartet errors around
each reconstructed edge e. These error bounds have the
form m,/q_, where g, is the number of quartets around
edge e and m is a small constant. Thus, the @* method
is a cleaning method in which m = 0. The global clean-
ing method sets m = 1 and the local cleaning method
sets m = %; these methods are guaranteed to recover
every edge of the true tree for which @) contains a small
enough number of quartet errors. The hypercleaning
method allows m to be an arbitrary integer and thus has
the potential to recover more edges. However, its run-
ning time is very high—proportional to n” - m*™+2—so
that it is impractical for m larger than 5. We investi-
gated whether these error bounds are sufficiently large
to avoid the resolution problems encountered by the Q*
method and, in particular, whether the performance of
QC methods scales with increasing problem size.

The final quartet-based method we examined is the
best known and the most frequently used by biologists
[17, 21, 15]: the Quartet-Puzzling (QP) method [23].
This heuristic computes quartets using ML and then
uses a greedy strategy to construct a tree on which many
input quartets are in agreement. QP uses an arbitrary

ordering of taxa, constructs the optimal quartet on the
first four, then inserts each successive taxon in turn,
attaching the new leaf to an edge of the current tree so
as to optimize a quartet-based score. Because the input
ordering of taxa is pertinent, QP uses a large number
of random input orderings and computes the majority
consensus of all trees found. The majority consensus
is the tree that contains all bipartitions that appear
in more than half of the trees in the set and is a well-
known consensus method among biologists. Thus, QP
implicitly seeks to return a tree in which every edge is
“well-supported,” in the sense that each edge appears in
more than half the trees obtained during the algorithm
and thus has (presumably) many supporting quartets.

2.6 Previous experimental studies of quartet
methods. Berry et al. conducted experimental studies
of various QC methods [2, 4]. They evolved sequences
on model trees, compared the quartets inferred by
various methods with the quartets of the true tree,
and determined which edges of the model tree could
be reconstructed by their QC method. They varied
evolutionary rates and sequence lengths, but only ex-
amined trees with ten taxa. Their results showed that
QC methods, especially hypercleaning, outperform the
Q@+ method with respect to true positives. (Of course,
by design, the QC methods cannot fail to recover an
edge that is recovered by the @* method. So what is
noteworthy in the experiments is that the QC methods
did succeed in obtaining additional edges.) Because
the dataset sizes used in these experiments are quite
small (only 10 taxa), these results may not generalize to
larger numbers of taxa; indeed, the theoretical bounds
we derive on the convergence rate of QC methods
suggest that performance on larger n may be poor.
Finally, no comparison was made between QC methods
and NJ or other tree reconstruction methods.

3 Theoretical Bounds on the
Rates.

We begin with the known upper bounds on the con-
vergence rates of NJ and the Q* method. Surprisingly,
these are identical [1, 6], although experimental studies
strongly suggest that NJ obtains accurate reconstruc-
tions of trees from shorter sequences than @* through-
out the parameter space of Jukes-Cantor trees [11].

Convergence

THEOREM 3.1. Let f,g,e > 0 be arbitrary constants
with f < g. Denote by B(S) the tree reconstructed
on S by the Q* method and by NJ(S) the tree recon-
structed by NJ. There is a constant ¢ > 0 such that,
for all Jukes-Cantor trees (T,{A¢}) on n leaves with
0<f<A<g< oo forallee ET), and for a set S
of sequences generated randomly on T,



PriB(S) = NJ(S)=T] > 1—¢
if the sequence length exceeds clogn - eOlo-diam(T))
where diam(T) is the length of a longest path in T.

Because the diameter of an n-leaf tree can be as much
as n — 1 (and is typically Q(y/n) [6]), Theorem 3.1
shows that the @* and NJ methods will converge
from sequences that grow exponentially in n. While
Theorem 3.1 provides only an upper bound, earlier
experimental work shows that the Q* method performs
quite poorly when g and diam(T') are both large [12],
and that NJ is also affected, although less severely [11].

We now consider the convergence rate of the QC
methods. Because the error bound used in QC methods
is a multiple of /g., the ratio of permitted errors to the
number of quartets around an edge is m/,/g.. Because
we have g. = Q(n?) and because m is a small constant,
this ratio rapidly approaches 0 as the number of taxa
increases. For example, consider an edge in a 50 taxon
tree producing a 20 : 30 split. The number of quartets
around this edge is 82,650, so that the bound for local
cleaning is only 144; hypercleaning with m = 5 brings
this bound up to 1440. Thus, for 50 taxa, even hyper-
cleaning has an error tolerance on some edges that is less
than 2% of the total number of quartets for this edge.

The sensitivity of QC methods to errors suggests
that, for large n, QC methods will be close in per-
formance to the @* method. As noted earlier, the
convergence rate of the @Q* method is bounded from
above by a function that grows exponentially in n, so
that the @* method is impractical. If cleaning methods
tend to perform only as well as the Q* method for large
n, then they will not scale well.

Consider therefore a hypothetical cleaning method
we will call HypoClean. This method is guaranteed to
recover an edge e if the number of quartet errors around
e is at most one third of the quartets around the edge—
a much more generous bound than that used in local
cleaning. In the following theorem we establish a bound
on the sequence length that suffices for HypoClean to
be accurate on a random Jukes-Cantor tree.

We require the following lemma.

LEMMA 3.1. The median diameter of all (2n — 5)!! un-
rooted, leaf-labelled, binary trees on n leaves is O(y/n).

Proof. Penny and Steel [19] gave formulas for the
distribution of interleaf distances in such trees under
the assumption that all (2n — 5)!! such trees are equally
likely, obtaining

(D) =22/ (*7) = (/)
and

0?(D) =4n -6 — (D) — p*(D) = O((4 — ) - n)
Because any nondegenerate distribution must have its
median within [p — o, p + o], our conclusion follows.

THEOREM 3.2. Let f,g,e > 0 be arbitrary constants
with f < g and denote by HC(S) the tree reconstructed
on S by the HypoClean method. Then there is a
constant ¢ such that, for random Jukes-Cantor trees,
(T, {Ae}) with 0 < f < A < g < 00 for all e € E(T)
and for a set S of n sequences generated randomly on
T, we have Pr[HC(S) = T] > 1 — & whenever the
sequence length exceeds clogn - €99 V7).

Proof. Theorem 3.1 shows that quartets of low diame-
ter are more easily reconstructed from short sequences
than are those quartets of high diameter. Assume that
we can correctly reconstruct the “smallest-diameter”
half of the quartets with high probability—we simply
guess the remaining quartets. We will then correctly
reconstruct 2/3 of the quartets with high probability.
What sequence length is required for this? Solving the
smaller half of the quartets is no easier than solving the
median-diameter quartets. By Theorem 3.1, this latter
task is achieved with high probability when the sequence
length is at least O(clogn-eC@™AT))) where md(T) is
the median diameter of 7. By Lemma 3.1, this quantity
is ©(y/n). Therefore, the sequence length that suffices
to reconstruct the true tree with high probability using
the HypoClean method is O(clogn - €29 V™),

Thus all cleaning methods have the same upper bound
on their rate of convergence, indicating that these
methods may not scale well.

4 Experimental Design.

4.1 Overview. We used Jukes-Cantor model trees
with varying numbers of taxa and rates of evolution
to generate a large number of synthetic datasets
of varying lengths. For each dataset generated, we
computed the NJ and QP trees on the entire dataset
and two sets of quartets, one based upon ML, Qr,
and one based upon NJ, Qys. We then applied various
cleaning methods to each of the sets Qar and Qny-
We compared quartets of Qurr, of Qny, and of the
reconstructed trees, as well as the reconstructed trees
themselves, against the model tree for accuracy.

4.2 Model trees. We randomly generated model
tree topologies from the uniform distribution on binary
leaf-labelled trees. For each edge of each tree topology,
we generated a random number (from the uniform
distribution) between 1 and 1000 and used that number
as the “length” of the edge. We then scaled each such
“base” model tree by a multiplicative factor, ranging
from 10~7 to 10~3. This process produces Jukes-Cantor
trees with A, values ranging from a minimum of 10~7
to a maximum of 1. We generated random DNA
sequences for the root and used the program Seq-Gen



[20] to evolve these sequences down the tree under the
Jukes-Cantor model of evolution, thus producing sets
of sequences at the leaves, our synthetic datasets.

4.3 Statistical considerations. Because the
number of distinct unrooted, leaf-labelled trees on n
leaves is (2n — 5)!! and because our input space is
further expanded by the choice of evolutionary rates, it
is not possible to take a fair sample of the entire input
space. In order to obtain statistically robust results,
we followed the advice of McGeoch [16] and Moret [18]
and used a number of runs, each composed of a number
of trials (a trial is a single comparison), computed the
mean outcome for each run, and studied the mean and
standard deviation over the runs of these events. This
approach is preferable to using the same total number
of samples in a single run, because each of the runs
is an independent pseudorandom stream. With this
method, one can obtain estimates of the mean that
are closely clustered around the true value, even if the
pseudorandom generator is not perfect.

4.4 Parameter space. A critical parameter of
our study, one that has not been explored in most
prior studies, is the number of input taxa. Previous
experimental studies have often been limited to a
small number of taxa due to computational problems.
However, to resolve phylogenetic trees of interest to
biologists, algorithms must scale reasonably, both in
terms of topological accuracy and running time, to
problems of the size that biologists typically study
(20200 taxa), as well as those they would like to
address (a few hundred to several thousand taxa).

Because of dedicated use of two multiprocessor
clusters, we were able to run our test suite for 5, 10,
20, and 40 taxa (full quartet-based methods remain im-
practical, at least in terms of experimental studies, for
large numbers of taxa). Our tests included a selection
of eight expected evolutionary rates, from 5 x 1072 to
5 x 107! per tree edge. For each evolutionary rate and
problem size, we generated a total of 100 topologies,
grouped into 10 runs of 10 trials. All tests were
conducted for four sequence lengths: 500, 2,000, 8,000,
and 32,000 (we note that sequence lengths above 1,000
are considered long and those above 5,000 extremely
long; thus our study explores longer sequence lengths
than are usually encountered in practice). In all, our
study used 16,000 datasets and required many months
of computation on the two clusters.

4.5 Algorithms. We tested four different phylo-
genetic reconstruction methods: NJ, local quartet-
cleaning for quartets based on NJ, local quartet-cleaning

for quartets based on ML, and QP. The code for QP
is TREE-PUZZLE, available from their authors at
www.tree-puzzle.de. We modified the QP source
only by removing its interactive interface; all other
code is our own. For quartet-cleaning, our accuracy
measurements were made directly on an edge-by-edge
basis—the actual tree was not reconstructed; in con-
trast, QP and NJ actually reconstruct a tree. We
ran all four algorithms sequentially on a single set
of sequences for one trial, stored all data that was
generated, then proceeded to the next trial, so that each
of the algorithms was run on exactly the same data.

4.6 Measurements. QOur focus in this study is the
accuracy of solutions generated by the various tree
reconstruction methods. Because most methods are
time-consuming, the running time is briefly addressed;
our aim was not to fine-tune implementations, but
simply to obtain a rough idea of which methods can be
run in a reasonable amount of time on a conventional
machine for realistic datasets. We compare running
times as gathered on our platforms, all of which are
450MHz Pentium IIT machines running Linux.

To assess topological accuracy, we measured the
number of true positives (edges of the true tree that ap-
pear in the reconstructed tree). For cleaning methods,
we measured these values before and after cleaning.
For each run of 10 trials, we retained only the mean
values. Our results are composed of the means for each
set of 10 runs.

5 Experimental Results.

Space limitations preclude us from showing data on
variance. Suffice it to say that, except for runs on 5 taxa,
the standard deviation we observed remained consistent
at 1-2% of the mean; with 5 taxa, standard deviations
were larger, reaching 10-15% of the mean. In all of our
figures, QCNJ and QCML denote quartet-cleaning of
quartets derived by local NJ and by ML, respectively.

5.1 Estimating quartets. The technique used to
construct the set ) of quartets provided to quartet-
based methods can have a significant impact on the
performance of these methods. The phylogenetics
community has generally expected that ML would
produce more accurate quartets than NJ. We therefore
compared ML and NJ in terms of the quartet sets,
@ny and Qprp, that they computed. As a reference
point, we also examined how global NJ performed in
terms of the trees it induced on each fourtuple of leaves
from the NJ tree. Figure 2 shows the proportion of
true positives in each of the sets of quartets.

The relative performance of local NJ and local ML
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Figure 2: Percentages of quartets computed by local ML, local NJ and induced by global NJ that agree with the
model tree for various numbers of taxa and a sequence length of 500.

(NJ and ML applied to each quadruple of leaves to
estimate the quartets) is interesting. At the highest
rates of evolution (except for five-taxon trees) local NJ
slightly outperforms local ML, but this gap increases
with increasing numbers of taxa. At the second highest
rate of evolution they are indistinguishable up to 40
taxa. However, at the lowest rate of evolution, local
ML slightly outperforms local NJ, although the gap
decreases with increasing numbers of taxa. In general,
this suggests that quartets with large evolutionary
distances are more accurately inferred by NJ than by
ML. More generally, neither ML nor NJ dominates the
other in terms of accuracy; each has a range in which
it yields slightly better quartet estimations.

A comparison between these sets of quartets to
the quartets obtained by using global NJ (i.e., the
quartets induced by the NJ tree) is also interesting.
At the lowest rate of evolution (except for five-taxon
trees), local ML is superior to global NJ, and both
are superior to local NJ; however, the gap between the
three ways of computing quartet trees narrows with
increasing number of taxa. At the middle rate, the
methods are indistinguishable (up to 40 taxa), while at
the highest rate, global NJ is clearly superior, and the
gap between global NJ as a quartet method and the
two other quartet methods increases with increasing
numbers of taxa. Thus, for high rates of evolution (and
potentially for all large enough trees), the best quartet
estimator may simply be global NJ—i.e., compute the
NJ tree and use its quartets! (We note that this way of
defining quartet trees is not suited to quartet methods,
as they would then combine the quartet trees back into
the NJ tree, and nothing would be gained.)

In terms of the quality of the quartets obtained, the
best accuracy was obtained at the second highest rate
of evolution. At the lowest rate of evolution, only 1 in
2000 sites changes on average, so that, for a sequence
length of 500, roughly 25% of the edges have no changes
on them. Thus, although it may be possible to guess
an edge accurately, the best possible reconstruction at
the lowest rate will only yield about 75% of the edges—
approximately what the best performing method (local

NJ) obtains. At the higher rates of evolution we
examined, all methods increased in accuracy. At the
highest rate the accuracy starts to decrease with more
than 10 taxa. The decrease in accuracy with increasing
numbers of taxa at the highest rate of evolution is
predicted by theory (if only for information-theoretic
reasons); hence, even for the lower rates of evolution,
as the number of taxa increases, the accuracy of the
quartet estimations should decrease.

5.2 Two measures of accuracy: quartets and
edges. Although the standard measure of accuracy is
the number of true edges in the reconstructed tree, the
percentage of correctly inferred quartets has also been
used as a surrogate [4]. However, correlation between
correct quartets and edges of the true tree returned by
a method has not been shown. We address this issue by
examining the performance of QP and global NJ with
respect to both criteria. Figures 3 and 4 make it clear
that topological accuracy is a more demanding criterion
than quartet accuracy, and should therefore be used
to assess performance of phylogenetic reconstruction
methods. Both NJ and QP can return trees with only
20% of the edges correct from a set of quartets that is
80% correct. Worse yet, both methods, except when
the percentage of correct quartets is close to 100%, can
return fewer than 80% of the true tree edges (in the
case of QP, some such trees had only 60% of the true
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Figure 3: Percent of true tree edges recovered by global
NJ for various A, as a function of the percentage of
correct induced quartets for 40 taxa and two sequence
lengths
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Figure 4: Percent of true tree edges recovered by QP
for various A, as a function of the percentage of correct
induced quartets for 40 taxa and two sequence lengths

tree edges). Because failure to obtain at least 90 or
95% of the edges can be unacceptable to systematists,
quartet-based measures of accuracy are not acceptable
surrogates for true tree edges.

5.3 Sensitivity to input quality. Methods that
operate by estimating quartets and then combining
them into a single tree can be greatly affected by the
quality of the input quartets. Figure 5 shows how QC
methods respond to input quality. QC methods, as well
as the other quartet methods we study, require a larger
fraction of correct input quartets than the fraction of
true tree edges that they return.
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Figure 5: Percentage of correct input NJ quartets vs.
true tree edges for Q*NJ and QCNJ for sequence length
fixed at 2000, with each graph showing runs for all
numbers of taxa and all average edge lengths.

5.4 Scaling of methods with increasing num-
bers of taxa. Theory predicts that the accuracy of
methods will degrade as the number of taxa increases
while sequence length and average edge length (the
expected number of changes for a random site on each
edge) are held fixed. Space limitations force us to show
only a sample of our results. Figure 6 shows the topolog-
ical accuracy achieved by all six methods as a function
of the number of taxa for a sequence length of 500 and
for three different average edge lengths. Figure 7 shows
the same set of results for a sequence length of 2000.
All methods decrease in accuracy as the number of taxa
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increases, even though both NJ and QP show an initial
increase. QC provides a distinct improvement over the
@* method, whether the quartets are computed using
ML or local NJ. QCML and QCNJ are very close in per-
formance, although QCNJ slightly outperforms QCML;
similarly @*NJ slightly outperforms @Q*ML. Of the five
quartet methods, QP is the best throughout the range
of parameters studied, but NJ completely dominates it.

5.5 A comparison between Q* and QC. QC can
be seen as an improvement to the Q* method, because
@* does not permit errors around any reconstructed
edges, while QC reconstructs every edge around which
there is a bounded number of errors. In Figures 6 and 7
we showed performance for different rates of evolution
as the number of taxa varies, which gives evidence
that QC methods return additional true edges under
many conditions. In Figure 8 we explore the relative
improvement in edge recovery obtained on local NJ or
ML quartets by using a QC method instead of the Q*
method. Curiously, the improvement obtained in terms
of quartet accuracy is less satisfactory, never averaging
more than one percent. QC provides the most improve-
ment when almost all input quartets are correct; indeed,
this is what the theory about QC suggests. In partic-
ular, the most improvement occurs at a high rate of
evolution—not our highest rate, but our second highest
rate, when the error rate in input quartets is also lowest.

5.6 Rates of evolution and topological accu-
racy. Although sequence length and rate of evolution
have a strong effect on the absolute performance of
phylogenetic methods, the relative performance of NJ,
QP, and QCNJ is constant throughout our experiments:
NJ is the best followed by QP, and then by QCNJ. Fig-
ure 9 presents data for 40 taxa at three different rates
of evolution, for sequence lengths varying from 500 (a
typical length) up to 32,000 (a quite large length). Note
that all methods increase in accuracy with increasing
sequence length (as expected since all methods are
statistically consistent under the Jukes-Cantor model).

6 Discussion.

6.1 Quality of quartets. The technique used to
construct the set ) of input quartets provided to
quartet-based methods can have a significant impact on
the performance of these methods. The phylogenetics
community has generally expected that ML would
produce more accurate quartets than other methods.
However, in our studies, neither ML nor NJ dominates
the other as a quartet estimator; instead, ML outper-
forms NJ only for the lowest rates of evolution, whereas
NJ clearly outperforms ML for higher rates. Because
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our observations differ from the received wisdom in
the field, we offer the following possible explanation.
In earlier studies [10], the performance of ML and
NJ as quartet estimators was studied by explicitly
simulating evolution on four-taxon trees. Here, we have
simulated evolution on larger trees and then looked
at the quartets defined by these larger trees. Good
performance on quartets drawn from a large tree is not
the same as good performance on quartets drawn from
a much smaller sample space. While it is possible to
sample four-taxon model trees so as to produce the
same kind of quartets we gave as input to our methods,
the studies in [10] did not use such a sampling strategy.

6.2 Robustness of quartet methods to quartet
errors. How robust are quartet-based methods with
respect to errors in Q7 The @Q* method is the least
robust. QC methods provide some error tolerance,
sufficient to recover additional true edges even under
high rates of evolution and for moderate numbers of
taxa. However, both of these methods are inferior to
QP in terms of error tolerance, even though QP also
fails to get a good estimation of the true tree when @
has less than about 95% accuracy (for n = 40). Finally,
in our experiments, NJ was always at least as accurate
as QP and nearly always much better. Thus, the reason
quartet methods fail to recover good trees is not that
the input distance matrix is too noisy for any method
to recover a good estimate of the true tree.

6.3 Running times. NJ was clearly the fastest
method tested. QC and QP methods must compute
all ©(n') quartets and hence must take Q(n?) time.
ML-based methods also construct quartets through ex-
pensive estimation methods, the running time of which
increases sharply with increasing sequence length. Thus
QCML and QP were by far the slowest of the methods
tested, slow enough that running them on more than
a hundred taxa appears infeasible at present. With
default settings, QP takes more than 200 days of compu-
tation to analyze ten runs of ten trials each for a single
set of parameters on 80 taxa with a sequence length
of 500. In contrast, NJ dispatches the same analysis
in about 30 minutes. For this reason, we have omitted
any comparative results for the 80-taxon datasets. Our
future research will examine these larger datasets.

6.4 Comparison between methods. Our exper-
iments clearly establish a linear order of accuracy for
the methods we studied (except under very low rates
of evolution): NJ (applied globally) is the preferred
method, with QP as a close second, the QC methods
significantly behind QP, and the @Q* methods somewhat

behind the QC methods. The particular technique used
to infer quartets also has an influence on the quality of
the trees obtained by the quartet methods, with QCNJ
often better than QCML and Q*NJ often better than
Q*ML (at least for large enough trees with moderate
to high rates of evolution).

7 Conclusions and Open Questions.

Why does NJ outperform the quartet methods through-
out the parameter space we examined (except on some
five-taxon trees)? A possible explanation is that our
upper bounds on the convergence rates of cleaning
methods (and hence also of the @* method) are reason-
ably tight, whereas the performance of NJ clearly does
not match its current best upper bound. Indeed, the
sharp degradation in accuracy that we see in cleaning
methods with increasing numbers of taxa suggests that
our bounds are tight. In contrast, QP and NJ degrade
far more gracefully, and only when the rate of evolution
is close to saturation. Thus, the true convergence rates
of QP and NJ may not be quite as poor as that of the
cleaning methods.

If NJ and QP have true convergence rates that are
lower than the current upper bound, what is the reason?
The good performance of QP as a quartet method does
not seem to result from its use of ML-based quartets,
since by that reasoning QCML should demonstrate a
comparable improvement over QCNJ (which it does
not). Thus the reason for the better behavior of QP
must lie in the manner in which it combines quartets.
We suspect that the issue is partly that the Q* and
QC methods place too stringent a requirement on
the edges; by comparison the QP method places no
absolute restriction. Thus, we suspect that the ability
of NJ and QP to handle distance data that have
significant errors lies in the specific techniques each
uses to construct trees and the fact that neither places
excessively strict bounds on errors.

This in itself may help explain why QP outperforms
the other quartet methods we studied, but it does not
explain why NJ outperforms QP. Our conjecture is
that methods that operate by combining quartets do
not make use of all available information: we suggest
that quartet-based methods may be impeded by their
very structure, in having to decide the tree based on
quadruples of taxa, without reference to the other taxa.

These observations suggest that quartet methods, if
they are to be competitive with global NJ, cannot afford
to place absolute error bounds, but need to be flexible
in combining quartets into a single tree on the full set
of taxa. Because of the lack of correlation between
quartet accuracy and edge accuracy, seeking to realize
the maximum number of quartets may not produce the



best trees either. Therefore, to design a quartet method
with good performance (reaching or improving upon
NJ’s performance), seems to require both flexibility and
greater sophistication than the current quartet methods
utilize. Finally, quartet methods based on maximum
likelihood might outperform global NJ when the data
are generated in a model (other than the Jukes-Cantor
model) for which statistically consistent distance-
estimation techniques do not exist, yet for which
maximum likelihood remains statistically consistent. In
these conditions, QP in particular may outperform NJ.

We conclude with the following comments about
algorithm design and performance studies in phy-
logenetics.  From the perspective of experimental
performance studies and algorithm design, NJ should
be regarded as a universal lowest common denominator
in phylogeny reconstruction algorithms. Its speed
makes it easy to use under all circumstances; its topo-
logical accuracy makes it an acceptable starting point
for tree reconstruction in biological practice. We sug-
gest that a proposed method should be compared with
NJ and abandoned if it does not offer a demonstrable
advantage over NJ for substantial subproblem families.
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