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Overview

• Gene-Order Data vs. Sequence Data
• Phylogenetic Reconstruction:

a fast review from a CS standpoint
• Computing with Gene-Order Data

• Reconstruction from Gene-Order Data

• Experimentation in Phylogeny
• Some Open Problems
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Cultural Disclaimer for Biologists

• Oddities: CS folks do not show photos, draw their
trees upside down, and misuse sensitive vocabulary.

• Literature: CS folks publish in conferences, rarely in
journals.
ISMB, RECOMB, WABI, CPM, CSB, PSB, BIBE, etc.

• Data are: strings of symbols (sequences), ordered
lists of symbols (gene orders for whole genomes), and
operations on those (evolutionary models).

• Methodology: algorithms will operate on a large
variety of instances, so must be tested through range
of parameters: hence tens of thousands of test sets.

• Corollary (to methodology): CS folks show plots,
rarely trees.
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Phylogenetic Data

• All kinds of data have been used:
behavioral, morphological, metabolic, etc.

• Current data of choice are molecular data.
• Two main kinds of molecular data:

• sequence data
(nucleotide/codon sequences from genes)

• gene-order data
(gene ordering on chromosomes)
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Sequence Data: Attributes

• Advantages:
• Large amounts of data.
• Familiar data, many tools.
• Accepted models of character evolution.

• Problems:
• Few character states, so high risk of homoplasy.
• Poor models of sequence evolution.
• Multiple alignments poorly solved.
• Gene evolution not always identical to organism

evolution; recombination problematic for lineage
sorting.
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Gene-Order Data

The ordered sequence of genes on one or
more chromosomes.
The entire gene order is a single character, which can
assume a huge number of states.

Evolves through inversions, insertions (incl. duplications),
and deletions; also transpositions (seen in mitochondria)
and translocations (between chromosomes).

• Need to identify genes and gene families.

• Need to refine model for specific organisms
to handle operons, exons, etc.
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Gene-Order Data: Attributes

• Advantages:
• Rare genomic events (sensu Rokas/Holland) and

huge state space, so very low risk of homoplasy.
• No need for alignments.
• No gene tree/species tree problem.

• Problems:
• Mathematics much more complex than for

sequence data.
• Models of evolution not well characterized.
• Very limited data (mostly organelles and bacteria).
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Gene-Order Data vs. Sequence Data

Sequence Gene-Order
evolution fast slow

data type a few genes whole genome

data amount abundant sparse

models good (sites)
primitive (seqs.)

primitive

computation easy hard
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Phylogenetic Reconstruction

Two categories of methods:
• Criterion-Based methods, such as Maximum

Parsimony (MP) and Maximum Likelihood (ML)
• Ad hoc, usually distance-based and using clustering

ideas, such as Neighbor-Joining

In addition:
• Meta-methods decompose the data into smaller

subsets, construct trees on those subsets, and use
the resulting trees to build a tree for the entire dataset
(quartets, disk-covering)
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Evolutionary Distances

• True evolutionary distance:
the actual number of evolutionary events that took
place to transform one datum into the other.

• Edit distance:
the minimum number of permitted evolutionary events
that can transform one datum into the other.

• Estimated evolutionary distance:
our best guess for the true evolutionary distance,
obtained heuristically or by “correcting” the edit
distance according to a model of evolution.
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Distance-BasedMethods

• Use edit or expected true evolutionary distances.

• Usually run in low polynomial time.

• Reconstruct only topologies: no ancestral data.

• Prototype is Neighbor-Joining; BioNJ and Weighbor
are two improvements for sequence data.

• NJ is optimal on additive distances
(pairwise distance in matrix equals distance along
corresponding path in tree).

• NJ is statistically consistent under the infinite sites
assumption.
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Parsimony-BasedMethods

• Aim to minimize total number of character changes
(which can be weighted to reflect statistical evidence).

• Assume that characters are independent .

• Reconstruct ancestral data.

• Are known not to be statistically consistent with
sequence data, but yield good results in most cases.

• Finding most parsimonious tree is NP-hard.

• Optimal solutions are limited to sizes around 30.
Heuristic solutions are fairly good to sizes of 500.
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Likelihood-BasedMethods

• Are based on a specific model of evolution and
usually estimate model parameters.

• Produce likelihood estimate (prior or posterior
conditional) for each tree.

• Are statistically consistent for most models.

• Are presumably NP-hard; even scoring one tree is
very expensive.

• Optimal solutions are limited to specific sets of 4 taxa.
Heuristics run to completion on at most 10 taxa,
but appear good to about 100 taxa (e.g., PhyML).
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Meta-Methods

Decompose dataset into smaller, overlapping subsets,
reconstruct trees for the subsets (with a base method),
and combine results into a tree for the entire dataset.

• Quartet-based methods: use all possible smallest
subsets (quartets); include Q* and Tree-Puzzle.
Slow and inherently inaccurate regardless of base
method—consistently surpassed by NJ.

• Disk-Covering methods (DCMs): decompose the
dataset into overlapping “disks" (tight subsets).
High-powered machinery succeeds, especially when
tree is imbalanced.
Enables scaling up sequence-based MP analyses to
tens of thousands of taxa.
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Computingwith Gene-Order Data

• Distances

• Evolutionary models and distance
corrections

• Reconstructing ancestral genomes
• The median problem
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Genome Rearrangements

Model based on three types of rearrangements:
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Distances for Gene-Order Data

• BP [Sankoff et al. 1998]:
Distance counting the number of altered adjacencies
(breakpoints) for identical gene content; linear time.

• INV [Bader/Moret/Yan 2001]:
Edit distance (inversions) for identical gene content;
linear time.

• EDE, IEBP [Moret et al. 2002, Wang/Warnow 2001]:
Distance corrections to estimate true evolutionary
distance; quadratic time.

• INV-DEL [El-Mabrouk 2000]:
Edit distance (inversions and insertions/deletions, but
no duplications); linear time [Liu/Moret 2003].

• ALL [Marron/Swenson/Moret 2003]:
Estimated evolutionary distance (inversions,
insertions/deletions, duplications).
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Breakpoint Distance

The number of adjacencies present in one
genome, but not the other.

G2=(1  2 −5 −4 −3  6  7  8)

G1=(1  2  3  4  5  6  7  8)
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Inversion Distance

Given two signed gene orders of equal
content, compute the inversion-only edit
distance.

• The problem is NP-hard for unsigned permutations.
• Finding the shortest sequence of inversions can be

done in polynomial time
(Hannenhalli/Pevzner—elaborate result).
Current best algorithm (Tannier and Sagot 2004) runs
in O(n

√
n log n) time for n genes.

• Computing the distance alone takes O(n) time
(Bader/Moret/Yan 2001).
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Breakpoint Graph

Algorithm is based on the breakpoint graph.
Assume one permutation is identity; each green edge is a
single gene.
Solid red edges denote existing adjacencies and dashed
red edges denote desired adjacencies.
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3 8 5 90 4 7 6 2 1−2 4 3 −1

Inversion distance is
n - #cycles + #hurdles + (fortress)
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Gene-Order Distances in General

Signed gene orders may include duplications,
need not have identical gene content.
• Extension to translocations (transpositions between

chromosomes) by Hannenhalli and Pevzner.
Implemented by Tesler as GRIMM.

• Heuristic for duplications by Sankoff (exemplars, an
NP-hard problem).

• Extension to inversions and deletions (no duplications
allowed) by El-Mabrouk; linear-time distance
computation by our group.

• Heuristic for unequal gene content by Bourque.
• Bounded approximation for unequal gene content and

direct estimate of evolutionary distance by our group.
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EvolutionaryModels for Gene Order

• Evidence for inversions in chloroplasts,
transpositions in mitochondria, and
translocations in eukaryotic genomes.

• Computational evidence (Sankoff 2001,
Lefebvre et al. 2003) for short inversions in
bacterial genomes.

• Hard radiation plus repair mechanisms
could create more complex
rearrangements.

• Respective probabilities unknown.
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Distance Corrections for Gene Order

• Assume a distribution of events and compute
relationship between number of events and edit
distance.

• Exact derivation for correcting the breakpoint distance
into an expected number of inversions (IEBP,
Wang/Warnow 2001).

• Empirical derivation for correcting the inversion
distance into an expected number of inversions (EDE,
Moret et al. 2002).
EDE correction =⇒ large performance improvement
for distance-based and parsimony-based
reconstruction methods.
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EDE Distance Correction
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Direct Estimate of Distance

• Direct estimate (Swenson et al. 2004) highly accurate
even on large genomes with large distances.

• Accounts for insertions, duplications, deletions, and
inversions.

• Uses result of Marron/Swenson/Moret: there always
exists a shortest sequence that first does all
insertions, then all inversions, and finally all deletions.

• Matches elements of gene families using a version of
optimal covering; treats unmatched elements as
insertions/deletions.

• After matching duplicates, uses El-Mabrouk’s exact
algorithm for inversions plus deletions.

• Tracks sequence of deletions and inversions
backward to figure out how to parcel out insertions.
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Direct Distance Estimate: Example

Simulated 800-gene genomes, 70% inversions (mean of
20, located uniformly), 16% deletions, 7% insertions, and
7% duplications (all mean 10).

left: expected pairwise distances from 40 to 160 events
right: expected pairwise distances from 80 to 320 events
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Using the Swenson et al. Estimate
(unpublished)
13 gamma proteobacteria (Lerat/Daubin/Moran 2003)
Only gene families occurring in at least 3 species.
Over 3,400 genes, with 540–3,000 genes and 3%–30% duplications
per genome; pairwise distances from 170 to 1700 events.

Xanthomonas campestris

Xanthomonas axonopodis

Xylella fastidiosa

Pseudomonas aeruginosa

Vibrio cholerae

Buchnera aphidicola

Wigglesworthia brevipalpis

Escherichia coli

Salmonella typhimurium

Yersinia pestis−KIM

Yersinia pestis−CO92

Haemophilus influenzae

Pasteurella multocida

100

100

S. typhimurium

E. coli

Y. pestis−CO92

Y. pestis−KIM

W. brevipalpis

B. aphidicola

V. cholerae

P. aeruginosa

P. multocida

H. influenzae

X. fastidiosa

X. campestris

X. axonopodis

100

100

100

100

100

100

87

100

Only one error in red tree: {P. multocida/H. influenzae}
moved (long branch attraction in NJ).
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Reconstructing Ancestral Genomes

Goal: Reconstruct a signed gene order at
each internal node in the tree to minimize
sum of edge distances.

Problem is NP-hard even for just three leaves, no
duplications, and simplest of distances (breakpoint, plain
inversion)!

This is the median problem for signed genomes: given
three genomes, produce a new genome that will minimize
the sum of the distances from it to the other three.
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Median Problem for Breakpoints

Sankoff showed to to convert MPB for identical gene
content to the Travelling Salesperson Problem

cost = 2

cost = 1

cost = 0

cost = − max

4
+

1

+ −

−
2

+

−
3

+−
edges not shown have cost = 3

+2 −3 −4 −1
+1 +2 −3 −4
+1 −2 +4 +3

corresponding to genome
an optimal solution

+1 +2 −3 −4

The cost of an edge A −B is the number of genomes that do NOT have the adjacency A B
Adjacency A B becomes an edge from A to −B
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Median Problem for Inversions

No simple formulation in terms of a standard
optimization problem.

• Exact solutions given by Siepel/Moret and by Caprara
for identical gene content; work well for distances to
median of 0–15 inversions.

• Various heuristics proposed by Bourque and Pevzner
and others.

• Extensions by Tang/Moret to handle distances up to
50-100 events.

• Inversion median preferable to the breakpoint median
(fewer ties, better trees).
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Median with Deletions/Duplications

Can be solved exactly for small numbers of
deletions and duplications (Tang/Moret 2003).

• Assume no change is reversed and that changes are
independent and of low probability.

• Gene content of median can then be determined by
preferring one event (e.g., one insertion) over two
concurrent events (e.g., two deletions).

• Knowing gene content, all combinations of
duplications or insertion locations can be
examined—choice grows exponentially, but is
manageable for organellar genomes.

• Accuracy is good (less than 5% error).
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Small Example

Tang/Moret/Cui/DePamphilis (2004): chloroplast data

organismal Tang/Moret GRAPPA

NJ (inv.) breakpoint GRAPPA
– p. 36
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Reconstruction from Gene-Order Data

• Distance methods
• NJ and Weighbor with corrected distances,

with or without DCM

• Parsimony-based methods
• Encoding approaches: MPBE, MPME
• Direct approaches: BPAnalysis, GRAPPA, MGR,

DCM-GRAPPA

• Likelihood-based methods
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DistanceMethods

Neighbor-joining and variants using BP, INV,
IEBP, and EDE distances.
We showed that Weighbor-EDE is clearly
better than other combinations:
• Low error rates up to a few hundred genomes.
• Robust against various models of genome

rearrangements.
• Suffers for large tree diameters.

Improved by using DCM boosting, but
surpassed by direct optimization methods
(GRAPPA).
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Direct Approaches: BPAnalysis

(Sankoff and Blanchette)

Initially label all internal nodes with gene
orders
Repeat

For each internal node v, with
neighbors A, B, and C, do

Solve the MPB on A, B, C to yield
label m
If relabelling v with m improves the
tree score, then do it

until no internal node can be relabelled
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GRAPPA

Genome Rearrangements Analysis under

Parsimony & other Phylogenetic Algorithms

• Began as a reimplementation of .
• Current version runs up to one billion times faster than

, thanks to algorithmic engineering. (Fast
code, better bounding, caching results, ordering
computations, etc.)

• Limit: every added taxon multiplies the running time
by twice the number of taxa.
So 13 taxa take 20 mins, 15 taxa two weeks, 16 taxa
a year, 20 taxa over 2 million years, and . . .
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GRAPPA: Speed-Ups

In order of increasing benefits:
• very fast generation of candidate trees
• hand-tuned code (unrolling loops, maintaining values

in registers)
• parallelization
• minimizing memory usage and maximizing cache hits
• very fast specialized TSP solver for breakpoint

medians
• bounding trees to avoid scoring them (using a tour of

the leaves)
• examining trees in increasing order by bound values
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DCM-GRAPPA

Extension to GRAPPA to scale it to large
datasets (Tang and Moret 2003).
• Scales gracefully to at least 1,000

genomes (less than 2 days of
computation).

• Retains accuracy of GRAPPA: error rates
on 1,000-genome datasets are
consistently below 3%.

• Uses DCM1 (early version), so can surely
be improved.
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Very Tight Bounds from LP

(unpublished)
Use selected triangle inequalities on a tree as
Linear Programming constraints to compute
a lower bound.
• With good selection, bound is extremely tight (99% or

better).
• Avoids scoring tree with GRAPPA:

no median computation, so very fast.
• Allows GRAPPA to handle much larger genomes.
• Not yet good enough for reconstructing ancestral

genomes.
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Testing Algorithms

How to choose test sets?
• Biological datasets test performance where it matters,

but can be used only for ranking, are too few to permit
quantitative evaluations, and are often hard to obtain.
Good for anecdotal reports and “reality checks."

• Simulated datasets enable absolute evaluations of
solution quality and can be generated in arbitrarily
large numbers.
Only way to obtain valid characterizations.

– p. 46



Phylogenetic Considerations

• Tree shape plays a large role.
Challenge:the shape of the true trees is unknown; moreover, the
shape depends on the selection of genomes—e.g., a single
genus vs. a sampling of an entire kingdom.

• The evolutionary model is important.
Challenge:devise an evolutionary model with few parameters,
good analytical and computational properties, producing realistic
data, and preferably with explanatory power.

• Test a large range of parameters and use many runs
for each setting to estimate variance.
Challenge:even the simplest of models induces a huge
parameter space—sampling it requires smoothness guarantees,
but NP-hard search spaces lack smoothness.
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Some Open Problems

• Tree models
• Evolutionary models
• Extensions of Hannenhalli-Pevzner theory to handle

• transpositions and inversions

• length-dependent rearrangements

• position-dependent rearrangements

• duplications

• Good combinatorial formulation of the median
problem for inversions and for more general cases.

• Tighter bounds on tree scores (our linear
programming approach may be solving that).

• Extensions to phylogenetic networks.
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Conclusions

• Gene-order data carry a strong phylogenetic signal.

• Current algorithmic approaches scale to significant
sizes (1000s for DCM-GRAPPA)—comparable to
sequence data and often with better results.

• Current approaches can just begin to handle
significantly unequal gene content with duplications.

• Data availability is increasing rapidly for organellar
genomes, slowly for nuclear genomes, and remains
very limited compared to sequence data.
(When will we get the $1,000.- genome?)
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Thank You!

Laboratory for
High-Performance Algorithm Engineering

and Computational Molecular Biology

compbio.unm.edu

All publications by our lab, GRAPPA source files, email
addresses, and links to our main collaborators.
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