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Disclaimer
• Some of the slides are more “wordy” than 

we would like.
• Our idea is to expose you to all the 

important issues in the next few hours. If 
you need to, you can follow up  later by 
re-reading the slides (augmented by 
notes/references)  

• Feel free to use these slides for teaching, 
but please let us know if you do so.

Many slides have 
additional notes 



Approximate Outline

• The First Act: How to do DTW correctly
Keogh 

• The Second Act: How to do DTW fast
Mueen



What are Time Series?    1 of 2
A time series is a collection of observations made 
sequentially in time. 
More than most types of data, time series lend themselves to visual
inspection and intuitions…
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For example, looking at 
the numbers in this blue
vector tells us nothing.
But after plotting the 
data, we can recognize a 
heartbeat, and possibly 
even diagnose this 
person's disease.
This tutorial will 
leverage the visual 
intuitiveness time 
series.



Mantled Howler Monkey
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What are Time Series?    2 of 2
As an aside… (not the main point for today)
Many types of data that are not true time series can be 
fruitfully transformed into time series, including DNA, speech, 
textures, core samples, ASCII text, historical handwriting, 
novels and even shapes.
This fact greatly expands the purview of DTW

0 50 100 150 200 250 300 350 400 450



What is Dynamic Time Warping?  
• DTW is an algorithm for measuring similarity 

between two time series which may vary (i.e. 
warp) in timing.

DTWEuclidean 
Distance

• This invariance to 
warping is critical 
in many domains, 
for many tasks. 

• Without warping 
invariance, we are 
often condemned 
to very poor 
results. 



Why Study DTW?  1 of 5

• Why should you spend several hours 
studying DTW?
• On the face of it, this seems strange. 
• We probably would not spend hours on 

just the Hamming distance, or the just 
the Jaccard similarity etc.



Why Study DTW?  2 of 5

• It is almost impossible to overstate the 
ubiquity of DTW in data analytics 
• It is used in: robotics, biometrics, 

medicine, metrology, bioinformatics, 
video games, gesture recognition, image 
processing, seismology, music 
processing, entomology, anthropology, 
computational photography, 
bioacoustics, finance ,…



Why Study DTW?  3 of 5

• While the is no free lunch, multiple rigorous 
independent studies1 show that for the core 
problem of time series classification, Nearest 
Neighbor DTW is very hard to beat.

• Moreover, where NN-DTW can be beaten, it 
typically by a very small margin, at the cost of 
huge effort in coding/complexity of 
implementation, and a large time and space 
overhead.

1This paper conducts 35 million experiments, on 85 datasets, with dozens of rival methods
http://arxiv.org/abs/1602.01711    The Great Time Series Classification Bake Off. Bagnall et al.



Why Study DTW?  4 of 5

• While DTW is easy to implement, there are 

common mistakes that can hurt efficiency and 

effectiveness.

• Efficiency: You can use DTW to search one billion 

subsequences in under two minutes, using all the “tricks” 

shown in this tutorial. However a naïve off-the-shelf recursion-

based DTW implementation would take six years1.

• Effectiveness: While DTW is quite robust, there are some 

“silly” things you could do to cripple its effectiveness; not z-

normalizing, set the wrong warping window, enforcing the 

endpoint constraint in certain datasets…

1The recursive version of cDTW10 takes about  0.19 seconds for length 128 (see slide notes)



Why Study DTW?  5 of 5

• Finally, many of the ideas we will discuss today 
to make DTW effective and efficient, can be 
applied to other domains. (constraining 
distance measures that are “too” invariant, 
lower bounding search, just-in-time 
normalization, early abandoning, cascading 
multiple lower bounds… )

• So, even if you don’t care about DTW per se, 
we hope you will find some ideas you can use.



An Unstated Assumption
For all time series, faces, gait, fish and heartbeats, we could design and extract 
features, and just represent the objects as feature vectors.  However, in the 
dozens of cases where we compared this type of approach to just using DTW on 
the raw data, DTW  almost always wins!
So, at the very least, try the simplest ideas first, and DTW is very simple.

Accuracy 
75 to 95%
(10 classes)

1NN DTW
Accuracy 
98% plus
(10 classes)

PR Interval, PR Segment, Corrected-QT Interval, ST 
Segment , ST Interval , RR Interval , RQ Amplitude, Rpeak
to Tonset Segment RS Amplitude , Angle Q, Angle R, Angle 
S,.. 

Parameter-free or parameter-lite, 
robust to noise etc.

Bazett’s formula 

F1={7.3,4.2,5.2,1.2,6.7, …}



-2 -1 0 1 2-2 -1 0 1 2

1. length between the nose and dorsal fin 
2. width of the dorsal fin 
3. distance between the dorsal fin and adipose fin 
4. width of the adipose fin 
5. width of the anal fin 

An Unstated Assumption (alterative)
For all time series, heartbeats, gait, faces, and even fish!, we could design and 
extract features, and just represent the objects as feature vectors.  However, in 
the dozen of cases where we compared this type of approach to just using DTW on 
the raw data, DTW  almost always wins!
So, at the very least, try the simplest ideas first, and DTW is very simple.

F1={5.1,1.2,2.9,1.0,2.2}

Accuracy 
75.7%

1NN DTW
Accuracy 
86.0%



An Unstated Assumption (alterative)
For all time series, heartbeats, gait, fish and faces, we could design and extract 
features, and just represent the objects as feature vectors.  However, in the dozen 
of cases where we compared this type of approach to just using DTW on the raw 
data, DTW  almost always wins!
So, at the very least, try the simplest ideas first, and DTW is very simple.

Accuracy 
70 to 80%
(10 classes)

1NN DTW
Accuracy 
90% plus
(10 classes)

How many fiducials? Pantic suggests 
10, Campos suggests 8, Dariush 
suggests 9, Liposcak suggests 12…

Parameter-free or parameter-lite, 
robust to changes of expression..

F1={7.4,1.3,2.1,1.2,4.6, 5.6, 43.3}



A Visual Intuition of Distance Measures  
We have two time series, what is the distance between them?
Equivalently, how similar are they?

n



Euclidean 
Distance

One-to-onemapping



Mantled Howler Monkey
Alouatta palliata

Red Howler Monkey 
Alouatta seniculus

Euclidean 
Distance



Mountain Gorilla
Gorilla gorilla beringei

Lowland Gorilla
Gorilla gorilla graueri

DTW
Alignment

One-to-many mapping



This region 
will not be 
matched

DTW

LCSS
Alignment

BA
C

One-to-many mapping
With some points allowed 
to be unmapped
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How is DTW 
Calculated? I

We create a matrix the size of 
|Q| by |C|, then fill it in with 
the distance between every 
possible pair of points in our 
two time series.
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How is DTW 
Calculated? II

îí
ì= å =

KwCQDTW K
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min),(

Warping path w

Every possible warping between two 
time series, is a path through the matrix. 
We want the best one…

g(i,j)  = d(qi,cj) + min{ g(i-1,j-1), g(i-1,j ), g(i,j-1) }

This recursive function gives us the 
minimum cost path



We can visualize the recursive 
function as a “step pattern” of 
allowable moves, or search operators
g(i,j)  = d(qi,cj) + min{ g(i-1,j-1), g(i-1,j ), g(i,j-1)}

This suggests two generalizations. 
•We could weight the diagonal step, to 
“discourage” the warping path wandering 
too far from the diagonal.
•We could create other steps patterns, 
including asymmetric step patterns.

RabinerJuangStepPattern IV

Both ideas were extensively studied when DTW was the dominant 
speech processing algorithm, but have not been investigated 
extensively in the data mining context. 
Empirically, they seem to make little difference.
We only consider the classic symmetric1 step pattern in our work. 



How is DTW Calculated?  Disclaimer!

g(i,j)  = d(qi,cj) + min{ g(i-1,j-1), g(i-1,j ), g(i,j-1) }

This recursive function gives us the 
minimum cost path

In practice we don’t use recursion to calculate DTW. Instead we 
use an equivalent iterative method (which we will explain later).

The iterative method is both absolutely faster, and it is allows 
many speed-up optimizations (early abandoning etc).

The time difference is several orders of magnitude.

However, there is no logical difference between the two 
methods for the first half of this tutorial.

Logically correct, but too 
slow and memory 
intensive



DTW is a Distance Measure, not a Metric 1 of 2

Requirements to be a metric 

D(A,B) = D(B,A) Symmetry 

D(A,A) = 0 Constancy of Self-Similarity

D(A,B) = 0 IIf A=B Positivity (Separation)

D(A,B) £ D(A,C) + D(B,C) Triangular Inequality

Yes for DTW

No for DTW

Normally we prefer metrics over measures for two reasons:

• Non-Metrics can sometimes give pathological solutions when 

clustering or classifying data etc.

• Almost all speed-up “tricks” for high dimensional data exploit the 

Triangular Inequality. 



DTW is a Distance Measure, not a Metric 2 of 2

• Non-Metrics can sometimes give pathological solutions when 
clustering or classifying data etc.

DTW is almost a metric! That is to say if you randomly 
sample a million triples A, B and C, you will probably find 
D(A,B) £ D(A,C) + D(B,C)  is obeyed for 999,999 of them.

*Moreover, in the limit, as w approaches zero, DTW is a 
metric. As we will see, we almost always use a very small 
value of w.
• Almost all speed-up “tricks” for high dimensional data exploit the 
Triangular Inequality. 

This used to be a big issue, but after a decade of research, 
the community has found alterative techniques that allow 
us to speed up DTW (Second half of the tutorial).

*We will explain what “w” is in a few slides.



DTW: Time and Space complexity

• The “off-the-shelf” DTW has 
• a time complexity of O(n2) (with a large constant factor)
• a space complexity of O(n2)
This is the most cited reason for not using DTW. 

• However, as we will show in the second half of this 
tutorial. DTW can have
• a space complexity of O(n)
• an amortized time complexity of O(n) (with a very small 
constant factor)



Let us visualize the cumulative matrix on a real world problem I

This example shows two 
one-week periods from 
an electrical power 
demand time series.

Note that although they 
both describe 4-day work 
weeks, the blue sequence 
had Monday as a holiday, 
and the red sequence had 
Wednesday as a holiday.



Let us visualize the cumulative matrix on a real world problem II
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Sakoe-Chiba Band

Understanding w, the Warping Constraint

n

We need to understand w
because:
• The most useful speedup 
tricks all exploit w.
• The value chosen for w
can greatly affect accuracy. 

The value of w is the maximum 
amount the warping path is allow 
to deviate from the diagonal.
It is normally expressed as the ratio 
w = r/n (or as a percentage)

r



Preamble: Reading the plots for.. 
The value of w vs. some measure of quality

Testing every value of w,  from w = 0 to w = 20

0 5 10 15 20 Warping Window Width
0

0.2
Er

r or
Ra

t e

Test Error Rate

Note: The leftmost data point, when w = 0,  
is the Euclidean Distance error 

We use the 
simple 1NN 
classifier

Time needed:   Milliseconds,….     Seconds,….      Minutes,… (at least, if naively implemented) 

This is
 just a

 meta-

slid
e, on how to 

read a fig
ure



How important is the value of w?

To find out, we measured the testing accuracy on some UCR datasets

We tested every value of w,  from w = 0 to w = 20
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Warping Window Width

0

0.2

Er
r or

Ra
t e

Trace 

Test Error Rate

0

0.14

0 5 10 15 20

Meat

0.17

0.25

0 5 10 15 20

ShapesAll

There is high variability:  Any warping hurts for Meat (such datasets are rare), any 

amount of warping above 5 is optimal for Trace, and ShapesAll really needs 7, 

not more, not less.    

How can we set the value of w?



How can we set the value of w?
We can set the value of w using leave-one-out cross-validation on the 
testing data. So long as we have enough labeled data, this generally 
works very well, as shown below:
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What do you do if you don’t have enough labeled data? (open problem) 
One Idea: Find a dataset that is similar, that does have labeled data, and hope 
the best setting generalizes from that dataset.

Not perfect, but close



The value of w vs. data size 

For classification and query-by-content, the best setting of w also 

depends on the size of the training dataset. 

If we are given more training data, we should expect:

– The error rate to decrease (as with all ML problems and all data types)

– The best value for w to get smaller (it is possible to construct synthetic counterexamples)

This implies that with enough training data, you would not need DTW!

0.17

0.25

0 5 10 15 20

ShapesAll

0.17

0.25

0 5 10 15 20

ShapesAll

If given more 

training data….

… we expect the 

best value for w to 

decline.

w = 7

w = 4



..this implies that with enough training data, you would not need DTW!
Empirically, these seems to be universally true. 1NN-DTW classification is generally 
much more accurate than 1NN-ED classification for small datasets. However, as you 
add more training data, the gap begins to close, and eventually converges.
To our knowledge, there is no research on quantifying how fast they converge, if they 
must converge, the relative benefit of a new training object for each approach etc.

As a practical matter, this observation probably does not matter much.
•We rarely have the luxury lots of training data
• If we did, it would probably still be faster to do 1NN-DTW with less data, than 1NN-
ED with lots of data.
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Revisited: How important is the value of w? 1 of 5
While the community has just begun to understand that the setting 
of w is important for classification, it is not well appreciated that it is 
just as important for clustering. 
Below we show the rand-index vs w for three datasets, clustered 
using TADPole. As we can see, the value of w is critical. 
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Revisited: How important is the value of w? 2 of 5 
Why is the value of w is so critical?  The Goldilocks Principle 
Lets make a dataset of time series of length 100. The dataset is mostly a flat line with 
a little noise. The red class has a single “spike” somewhere between 1 and 40. The 
blue class has a single “spike” somewhere between 60 and 100. 



Revisited: How important is the value of w? 3 of 5 
Why is the value of w is so critical?  The Goldilocks Principle 
Lets make a dataset of time series of length 100. The dataset is mostly a flat line with 
a little noise. The red class has a single “spike” somewhere between 1 and 40. The 
blue class has a single “spike” somewhere between 60 and 100. 

With no warping allowed, 
we map the top of the spike 
on the source to a low spot 
on the target.

Dist = 0.82Dist = 1.62Dist = 18.4

With a little warping 
allowed, we map the spike 
on the source to spike on 
the target. Success!

With unlimited warping 
allowed, we can map the 
top of the spike on the 
source to a very far away 
spike, which what defines 
the opposite class!



Revisited: How important is the value of w? 4 of 5 
Why is the value of w is so critical?  The Goldilocks Principle 
Lets make a dataset of time series of length 100. The dataset is mostly a flat line with 
a little noise. The red class has a single “spike” somewhere between 1 and 40. The 
blue class has a single “spike” somewhere between 60 and 100. 

–With no warping allowed, we get random results
–With a little warping allowed (say 10%), a red can “warp” to a red, and vice versa
–With 100% warping allowed, a blue could warp to a red, and vice versa.



Revisited: How important is the value of w? 5 of 5 
Important note: The best value of w for classification may not be the 
best value for clustering.  

In retrospect it is not surprising
that these values are at best
weakly related. For 1NN
classification only the distance
between the unlabeled exemplar
and it’s single nearest neighbor
matters.

However, for clustering, the
mutual distance among small
groups of objects matter.0 10 20
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Increasing values of w

The Rand-Index and the classification accuracy vs. the warping 
window width, for the MiddlePhalanxTW dataset.



Time series of different lengths 1 of 2 
What if you have two time series that 
are different lengths? For example, here 
Run B is only 81% the length of Run A.

This situation occurs quite a lot:
– Heartbeats recorded at 60bpm vs. 50bpm
– Star light curves come in discrete classes, but each 
class can have variable periods. 
– An utterance of ‘Mississippi’ may take 0.6 to 0.9 
seconds
– Etc.

This global difference in scaling is 
typically independent of the local
scaling that DTW is designed to handle.

Run A

Run B

Star light curve



Time series of different lengths 2 of 2 
What if you have two time series that are 
different lengths? For example, here B is 
only 81% the length of A.
There are at least two things you can do:

1) Compare them in their native lengths.

2) Re-interpolate them to have the same length. 
An inelegant, but quick way to do this in Matlab is:

Bnew= B(1:0.81:end);

Empirically makes little or no difference for 
classification, clustering etc.
However, the equal length case is much easier 
to handle, so we assume it from now on.

DTW(A , Bnew) = 2.71

DTW(A , B) = 2.68

Run A

Run B



The Importance of Endpoints: 1 of 3
Consider the two time series below. They are similar, but out of 
phase, exactly the case that DTW is designed for.
Let us compare them using DTW….

0 5 10 15 20 25 30 35 40 45 50

Thanks to Diego Silva for help with this example



The Importance of Endpoints: 2 of 3
DTW can be invariant to all the warping, but it cannot handle the difference at the 
very beginning of these two time series. Recall the boundary constraint:  

Boundary Condition: w1 = (1,1) and wK = (m,n), this requires the warping path to start and finish in 

diagonally opposite corner cells of the matrix.
This constraint means that DTW must match the pairs of beginning (and end) points, 
even though they may be a poor match, as here. 

0 5 10 15 20 25 30 35 40 45 50

This region corresponds to only 6% of 
the length of the signals, yet it accounts 
for 70.5% of the DTW distance.



The Importance of Endpoints: 3 of 3
Possible Fixes (Open problem)
1) Use a better subsequence extraction algorithm. 
For example, the heartbeats to the right were very 
badly extracted, and have a large variability in the 
endpoints.

r

3) Open-Ended Warping: Redefine the endpoint constraint. Change…
Boundary conditions: w1 = (1,1) and wK = (m,n), this requires the warping path to 
start and finish in diagonally opposite corner cells of the matrix. 

…to 
Boundary conditions: w1 = (1,B) or (B,1) and wK = (m-C,n) or (m,n-C), with 0 ≤ B ≤ r, 
and 0 ≤ C ≤ r this requires the warping path to start and finish in a cyan cell.

Only top right section of the warping matrix shown for brevity

0 40 80 120 160

2) Recall the warping path is:
W = w1, w2, w3, … wK-2,wK-1,…,wK

If you fear that the error is concentrated at the ends, you can multiple the first 
and last r elements by a weight Ŵ, with 0 ≤ Ŵ ≤ 1
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The Importance of Z-Normalization 1 of 3
Essentially all datasets must have every
subsequence z-normalized. 
There are a handful of occasions where 
it does not make sense to z-normalize, 
but in those cases, DTW probably does 
not make sense either.

In this example, we begin by extracting 
heartbeats  from two unrelated people.

Even without normalization, it happens 
that  both sets have almost the same 
mean and standard deviation. Given 
that, do we need to bother to normalize 
them?  (next slide)

Extracted 
beats 
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The Importance of Z-Normalization 2 of 3

Un-normalized Normalized

Surprisingly z-normalizing can be a 
computational bottleneck, but later we 
will show you how to fix that.
Without normalization, the results are 
very poor, some blue heartbeats are 
closer to red heartbeats than there are 
to another blue beat . 
With normalization, the results are 
perfect.

In this example, we extracted heartbeats from 
two different time series, and clustered them  
with and without normalization.

Extracted 
beats 



The Importance of Z-Normalization 3 of 3

Preempting a common misunderstanding

It is not sufficient to normalize the entire time 
series. You must normalize each subsequence

Not as it stands…   …but suppose

• The camera pans down? (the mean changes)

• The camera zooms out? (the STD changes)

• The actor wears high heel shoes? (the 
mean changes)

•We find a shorter actor? (the mean and the 
STD change)

While there are a handful of 
normalization techniques , in most 
cases z-normalizing seems best:

T = (T-mean(T))/std(T)
Consider for example the famous Gun/Point 
dataset. Do we need to normalize it?



Can you beat 1NN-DTW? 
Lots of papers claim to be able to beat 1NN-DTW, is that true?
Hmm…, no and yes.
• No: More than 90% of such claims are false to cherry-
picking, training and testing on the same data, the Texas 
Sharpshooter fallacy (see next slide) , etc
• Yes: There are a handful of such methods, but…

–They sometimes win, but typically by very slim margins (say 1 to 3% better).
–They come at a huge cost of coding effort, time complexity.
– They just beat the most basic 1NN-DTW, with the simple CV trick to learn the 
warping window. It is less clear they could beat KNN-DTW, when a little more 
effort was spent to find a good warping window.
–We strongly recommend the bake-offs/discussion by Dr. Tony Bagnall. 

At a minimum, it is clear that 1NN-DTW will get you within 
98% of the best accuracy possible, in the first five minutes.



Can you beat 1NN-DTW? 
The Texas Sharpshooter Fallacy
• A paper in SIGMOD 2016 claims “Our STS3 approach is more accurate than DTW in 
our suitable scenarios”.

• They then note “DTW outperforms STS3 in 79.5% cases.” !?! (our emphasis)

• They then do a post-hoc explanation of why they think they won on 20.5% of the 
cases that “suit them”.

• The problem is the post-hoc analysis, this is a form of the Texas Sharpshooter 
Fallacy. Below is a visual representation. 

This is what they show you, 
and you are impressed…



Can you beat 1NN-DTW? 
The Texas Sharpshooter Fallacy
• A paper in SIGMOD 2016 claims “Our STS3 approach is more accurate than DTW in 
our suitable scenarios”.

• They then note “DTW outperforms STS3 in 79.5% cases.” !?! (our emphasis)

• They then do a post-hoc explanation of why they think they won on 20.5% of the 
cases that “suit them”.

• The problem is the post-hoc analysis, this is a form of the Texas Sharpshooter 
Fallacy. Below is a visual representation. 

This is what they show you, 
and you are impressed…

…until you realize that they shot the arrow 
first,  and then painted the target around 
it!



A good visual trick to compare algorithms of the 80 or so labeled time series in the public 
domain is the Texas Sharpshooter plot.
For each dataset
• First you compute the baseline accuracy of the approach you hope to beat.
• Then you compute the expected improvement we would get using your proposed approach (at this 
stage, learning any parameters and settings) using only the training data. Note that the expected 
improvement could be negative.
• Then compute the actual improvement  obtained (using these now hardcoded parameters and 
settings) by testing on the test dataset. 
You can plot the point {expected improvement , actual improvement } in a 2D grid, as below.

In this example, we predicted the 
expected improvement would be 10%, 
and the actual improvement  obtained  
was 7%, pretty close!

We need to do these for all 80 or so 
datasets. What are the possible outcomes?

Expected Accuracy Gain

Ac
tu

al
 A

cc
ur

ac
y 

G
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n

Can you beat 1NN-DTW? 

10% 

7% 



With a Texas Sharpshooter plot, each dataset falls into one of four possibilities.

•We expected an improvement and we got it! This is clearly the best case.
•We expected to do worse, and we did. This is still a good case, we know not to use our 
proposed algorithm for these datasets
•We expected to do worse, but we did better. This is the wasted opportunity case. 
•We expected to do better, but actually did worse. This is the worst case. 

We expected 
to do worse, 
but we did 

better

We expected 
an 

improvement 
and we got it!

We expected 
to do worse, 
and we did

We expected 
to do better, 
but actually 
did worse

Now that we know how to read the plots, we will use it  to 
see if DTW is better than Euclidean Distance, 

Expected Improvement: We will search over different 
warping window constraints, from 0% to 100%, in 1% 
increments, looking for the warping window size that gives 
the highest 1NN training accuracy (if there are ties, we 
choose the smaller warping window size).

Actual Improvement: Using the warping window size we 
learned in the last phase, we test the holdout test data on 
the training set with 1NN. 

Texas Sharpshooter Plot
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Can you beat 1NN-DTW? 3 of 3



The results are strongly 
supportive of the claim 
“DTW better than 
Euclidean distance for most 
problems”  

We sometimes had 
difficultly in predicting 
when DTW would be 
better/worse, but many of 
the training sets are tiny, 
making such tests very 
difficult. 

For example, 51 is 
BeetleFy, with just 20 train 
and 20 test instances. Here 
we expected to do a little 
better, but we did a little 
worse.

In contrast, for 76 
(LargeKitchenAppliances) 
we had 375 train and 375 
test instances, and where 
able to more accurately 
predict a large 
improvement.

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Expected Accuracy Gain

Ac
tu

al
 A

cc
ur

ac
y 

G
ai

n

12

3

4

5
6

7

8

9

10

11

12

13
14

15

1617
18

19

20 21 22
23

242526

27

28
29

30 31

32

33 34 35

36
37

38

39

4041

42

43 4445

4647
48

49 50

51

52

53
54

5556
57

58

59
60

61
62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79
80

81

82

83 84

85

86



Recall the paper in SIGMOD that claimed “Our STS3 approach is more accurate than DTW in 
our suitable scenarios”. And “DTW outperforms STS3 in 79.5% cases.” 
They are claiming to be better for 1/5th of the datasets, but in essence they are only 
reporting one axis of the Sharpshooter plot. 

They did (slightly) win 20.5% of the time.

They lost 79.5% of the time.

Can you beat 1NN-DTW? 

*We had considered trying to reimplment this work to make this 
plot. But the idea has 3 parameters, and the writing is quite vague..

Breakeven point



Recall the paper in SIGMOD that claimed “Our STS3 approach is more accurate than DTW in 
our suitable scenarios”. And “DTW outperforms STS3 in 79.5% cases.” 
They are claiming to be better for 1/5th of the datasets, but in essence they are only 
reporting one axis of the Sharpshooter plot. 
It may be* that if we computed the Sharpshooter plot it would look like the below (for two 
selected points only)

They did (slightly) win 20.5% of the time, 
but they did not predict ahead of time 
that they would win.

They lost 79.5% of the time.
Moreover, on a huge fraction of the 
datasets they lost on, they might have 
said “you should use our algorithm here, 
we think we will win”, and we would have 
been much worse off!

Expected Accuracy Gain
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Can you beat 1NN-DTW? 

*We had considered trying to reimplment this work to make this 
plot. But the idea has 3 parameters, and the writing is quite vague..



Summary for this section:

I think that at least 90% of the claims to beat DTW are wrong.
Of the 10% of claims that remain
• They are beating the simplest 1NN-DTW with w learned in a simple 
way. Using KNN-DTW , smoothing the data, relaxing the endpoint 
constraints, better methods for learning w etc, would often close 
some or all the gap.
• The improvements are so small in most cases, it takes a 
sophisticated and sensitive test to be sure you have a real 
improvement.

The Texas Sharpshooter test is a great sanity check for this, but you 
should see the work of Anthony Bagnall and students  
https://arxiv.org/abs/1602.01711 for a more principled methods. 

Can you beat 1NN-DTW? 



Generalizing to Multi-Dimensional Data 1 of 4

It is increasingly common to 
encounter Multi-Dimensional (MD) 
time series data. Here we measure 
the X-axis acceleration of both the 
left and right hand.  

There are two obvious ways to compute the MD DTW score.

Independent: Just compute the DTW score for each 
dimension independently, and sum up each score.

Dependent:  Create a single distance matrix that 
reflect the distance between each corresponding pair 
of time series, then find the single warping path and 
distance as per normal.

Q

C

x

y

x
y

DTWI(Q,C) = DTW(Qx,Cx) + DTW(Qy,Cy) = 2.4

DTWD(Q,C) = DTW({Qx,Qy},{Cx,Cy}) = 3.2

Given these pair of 2D 
objects…



Generalizing to Multi-Dimensional Data 2 of 4

So, of DTWI and DTWD which is best?

Lets think of it this way:

The thing we want classify is an physical process, the utterance of the 

word “bicycle”, the beat of a heart, an autograph, a tennis shot etc. 

We cannot see the actual event, just 2 or more time series it created.

–If the physical process affects the time series simultaneously, then DTWD will 

probably be best. We call this the tightly coupled case.

–If the physical process affects the time series with varying lags, then DTWI will 

probably be best. We call this the loosely coupled case.

Example: Suppose we measure the directionless 
acceleration of the left and right wrists of a tennis 

player.

The “physical process” is a backhand stoke. If a two-
handed backstroke, the two time series are tightly 

coupled. If a one-handed backhand, the two hands 
will be very loosely coupled .

Jo-Wilfried Tsonga



Generalizing to Multi-Dimensional Data 3 of 4
We can demonstrate the claim in the last slide with experiments.
Let us begin with a dataset that we are 100% sure is tightly coupled, 
then slowly add some random time lags into the data… 

0 5 10 15 20 25 30 35 400.4

0.5

0.6

0.7

0.8
DTWD

DTWI

Er
ro

r 
Ra

te

More Random Lag  ®

We know that the handwriting dataset is 
tightly coupled. We find that DTWD has an 
error-rate of about 0.42, much better than 
that DTWI has an error-rate of about 0.55.
However, as we uncouple the perfect 
synchronization by adding some random lag, 
DTWD quickly gets worse, while that DTWI is 
barely effected.

handwriting dataset 

Data DTW(1st) DTW(2nd) DTWI DTWD

T1Z ULX 0.34 0.59 0.25 0.31
T1Y T1Z 0.38 0.34 0.24 0.15

Word Recognition from Articulatory Movement Data
This effect is observed on real 
data
Note the results here show that..
1) Using 2D can be better than 1D
2) Neither DTWI nor DTWD dominates



Generalizing to Multi-Dimensional Data 4 of 4
Critical Point: You can generalize DTW to 2,3,4,…1,000 dimensions.
However, it is very unlikely that more than 2 to 4 is useful, after that, 
you are almost certainly condemned to the curse of dimensionality. 

Which Dimensions? Accuracy
All dimensions 0.19
A single random 
dimension (on average)

0.51

The best single dimension 
(as predicted by CV)

0.72

The best 3 dimensions (as 
predicted by CV)

0.89

Consider a physical activity dataset 
containing 36 axis synchronous 
measurements from three Inertial 
Measurement Units (IMUs) located on the 
wrist, chest and ankle. This dataset has eight 
subjects performing activities such as: 
rope-jumping, running, folding
laundry, ascending-stairs.

Using all dimensions is a disaster! 
Using the best three is a lot better than 
using the best one, so there is evidence that 
Multi-Dimensional DTW really does help.

PAMAP, Physical Activity 
Monitoring for Aging 
People www.pamap.org/
(we used DTW with w = 0 for 
simplicity here, we could do 
better by tuning w)



Summary…



Texas Horned Lizard
Phrynosoma cornutum

Flat-tailed Horned Lizard
Phrynosoma mcallii

Summary…

DTW is an extraordinarily 
powerful and useful tool.

Its uses are limited only 
by our imaginations.

We believe it will remain 
and important part of the 
data mining toolbox for 
decades to come.



Coffee Break!
When we come back after the break

• Dr. Mueen will take over

• We will learn how to speed up 
DTW, and scale up to a trillion 
subsequences!



The Second Act: How to do DTW fast

• We are motivated that DTW is GOOD by the first 
act
• The general conception: DTW is slow and we have a 

never-ending need  for speed

• Better performance in knowledge extraction
• Better scalability to process BigData
• Better interactivity in human driven data analysis
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What can be made fast?

• One-to-One comparison
• Exact Implementation and Constraints
• Efficient Approximation
• Exploiting Sparsity

• One-to-Many comparisons
• Nearest Neighbor Search

• In a database of independent time series
• In subsequences of a long time series

• Density Estimation
• In clustering 

• Averaging Under Warping
• In classification

• Many-to-Many comparisons
• All-pair Distance Calculations
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Speeding up DTW: one-to-one

• One-to-One comparison
• Exact Implementation 
• Efficient Constraints
• Exploiting Hardware
• Efficient Approximation
• Exploiting Sparsity

67



Simplest Exact Implementation

0 5 10 15 20 25

D(1:n+1,1:m+1) = inf;
D(1,1) = 0;
for i = 2 : n+1 %for each row
for j = 2 : m+1 %for each column
cost = (x(i-1)-y(j-1))^2;
D(i,j) = cost + min( [ D(i-1,j), D(i,j-1), D(i-1,j-1) ]); 

d = sqrt(D(n+1,m+1));

!(#$) time
!(#$) space

Input: x and y are time series of length n and m
Output: DTW distance d between x and y
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Simplest Implementation 
(Constrained)
D(1:n+1,1:m+1) = inf;
D(1,1) = 0;
w = max(w, abs(n-m));
for i = 2 : n+1
for j = max(2,i-w) : min(m+1,i+w)
cost = (x(i-1)-y(j-1))^2;
D(i,j) = cost + min( [ D(i-1,j), D(i,j-1), D(i-1,j-1) ]); 

d = sqrt(D(n+1,m+1));6969

0 5 10 15 20 25 30

!(#$) time
!(#&) space

$
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Memoization

∞

∞

1 2 2 1 2 3 4 5 3 2 1

1 3 3

D(2,1:m+1) = inf;
D(2,1) = inf;
D(1,1) = 0;
p = 1; c = 2;
for i = 2 : n+1
for j = 2 : m+1
cost = (x(i-1)-y(j-1))^2;
D(c,j) = cost + min( [ D(p,j), D(c,j-1), D(p,j-1) ]);

swap(c,p);
d = sqrt(D(n+1,m+1));

Previous Row

Current Row

!(#$) time
!(#) space
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Hardware Acceleration
• Single Instruction Multiple Data 

(SIMD) architecture
• Cells on a diagonal are 

computed in parallel
• Values of a diagonal depend on 

the previous two diagonals

!(#) time
!(#) space
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PAA based approximation

1 2 3 4 5 6 7

! "
#

$
time

! "
#

$
space

Piecewise Aggregate Approximation
%

Selina Chu, Eamonn J. Keogh, David M. Hart, Michael J. Pazzani: Iterative Deepening Dynamic Time Warping for Time Series. SDM 2002: 195-212
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Approximation by Length-
encoding

0 2 4 6 8 10 11

0

1

1 0 0 0 1 0 0 0 1 1 0 0 0 1

1 0 0 0 0 1 0 0 0 0 1

0

1

0 2 4 6 8 10 12 14

1    (4)    1   (4)     1

1    (3)    1   (3)    1     1    (3)    1

To exploit sparsity,

encode lengths of the 

runs of zeros

A Mueen, N Chavoshi, N Abu-El-Rub, H Hamooni, A Minnich, Fast Warping Distance for Sparse Time Series, Technical Report at UNM: 

http://www.cs.unm.edu/~mueen/Projects/AWarp/awarp.pdf
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1  0  0  0  0  1  0  0  0  0  1
1 0 1  2  3  4 4 5  6  7  8 8
0 1  0  0  0  0  1  1  1  1  1  2
0 2  0  0  0  0  1  1  1  1  1  2
0 3  0  0  0  0 1 1  1  1  1 2
1 3 1  1  1  1 0 1  2  2  2 1
0 4  1  1  1  1  1  0  0  0  0  1
0 5  1  1  1  1  2  0  0  0  0  1
0 6 1  1  1  1 2 0  0  0  0 1
1 6 2  2  2  2 1 1  1  1  1 0
1 6 3  3  3  3 1 2  2  2  2 0
0 7  3  3  3  3  2  1  1  1  1  1
0 8  3  3  3  3  3  1  1  1  1  2
0 9 3  3  3  3 4 1  1  1  1  2
1 9 4  4  4  4 3 2  2  2  2 1

Exploiting Sparsity (1)

0 2 4 6 8 10 11

0

1

0

1

0 2 4 6 8 10 12 14

y

x
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1  0  0  0  0  1  0  0  0  0  1
1 0 1  2  3  4 4 5  6  7  8 8
0 1  0  0  0  0  1  1  1  1  1  2
0 2  0  0  0  0  1  1  1  1  1  2
0 3 0  0  0  0 1 1  1  1  1 2
1 3 1  1  1  1 0 1  2  2  2 1
0 4  1  1  1  1  1  0  0  0  0  1
0 5  1  1  1  1  2  0  0  0  0  1
0 6 1  1  1  1 2 0  0  0  0 1
1 6 2  2  2  2 1 1  1  1  1 0
1 6 3  3  3  3 1 2  2  2  2 0
0 7  3  3  3  3  2  1  1  1  1  1
0 8  3  3  3  3  3  1  1  1  1  2
0 9 3  3  3  3 4 1  1  1  1  2
1 9 4  4  4  4 3 2  2  2  2 1

Exploiting Sparsity (2)
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Exploiting Sparsity (2)
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Exploiting Sparsity (3)

Normal Distribution
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Exponential Distribution
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Binomial Distribution

Sparsity Factor of s
means !" % of the time 
series is filled with non-
zeros. 
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What can be made fast?

• One-to-One comparison
• Exact Implementation and Constraints
• Efficient Approximation
• Exploiting Sparsity

• One-to-Many comparisons
• Nearest Neighbor Search

• In a database of independent time series
• In subsequences of a long time series

• Density Estimation
• In clustering 

• Averaging Under Warping
• In classification

• Many-to-Many comparisons
• All-pair Distance Calculations
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Nearest Neighbor Search  

• A query Q is given
• n independent candidate time series C1, C2, …, Cn

• O(n) distance calculations are performed to

Find THE nearest neighbor of the 
given query under DTW.
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Brute Force Nearest Neighbor Search

1. best_so_far = infinity;
2. for all sequences in database
3.
4.
5.
6. if true_dist < best_so_far
7. best_so_far = true_dist;
8. index_of_best_match= i;
9. endif
10.
11.  endfor

Algorithm
1. best_so_far = infinity;
2. for all sequences in database
3.
4.
5.
6. if true_dist < best_so_far
7. best_so_far = true_dist;
8. index_of_best_match= i;
9. endif
10.
11.  endfor

Algorithm Sequential_Scan(Q) 

true_dist = DTW(Ci ,Q);

Computational cost: O(nm2)
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Lower Bounding Nearest Neighbor 
Search

We can speed up similarity search under 
DTW by using a lower bounding function

1. best_so_far = infinity;
2. for all sequences in database
3.
4. if LB_dist < best_so_far
5.
6. if true_dist < best_so_far
7. best_so_far = true_dist;
8. index_of_best_match= i;
9. endif
10. endif
11.  endfor

Algorithm Lower_Bounding_Sequential_Scan(Q) 

1. best_so_far = infinity;
2. for all sequences in database
3.
4. if LB_dist < best_so_far
5.
6. if true_dist < best_so_far
7. best_so_far = true_dist;
8. index_of_best_match= i;
9. endif
10. endif
11.  endfor

Algorithm Lower_Bounding_Sequential_Scan(Q) 

Only do the 
expensive, full 
calculations when 
it is absolutely 
necessary

Try to use a cheap 
lower bounding 
calculation as 
often as possible.LB_dist = lower_bound_distance(Ci ,Q);

true_dist = DTW(Ci ,Q);
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A

B

C

D

The squared difference between the two 
sequence’s first (A), last (D), minimum (B) 
and maximum points (C) is returned as 
the lower bound 

Kim, S, Park, S, & Chu, W.  An 
index-based approach for 
similarity search supporting time 
warping in large sequence 
databases. ICDE 01, pp 607-614

LB_Kim

Lower Bound of Kim

!(1) time if considered only first and last points
!(%) time for all four distances
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Lower Bound of Yi

The sum of the squared length of white 
lines represent the minimum contribution 
of the observations above and below the 
yellow lines. 

Yi, B, Jagadish, H & Faloutsos, C. 
Efficient retrieval of similar time 
sequences under time warping. 
ICDE 98, pp 23-27. 

max(Q)

min(Q)
LB_Yi

!(#) time
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Sakoe-Chiba Band

Ui = max(qi-w : qi+w)
Li = min(qi-w : qi+w)
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C
U

LQ

Reversing the Query/Data Role in 
LB_Keogh
• Make LB_Keogh tighter
• Much cheaper than DTW
• U/L envelops on the 

candidates can be calculated 
online or pre-calculated

Envelop on Q

C
U

LQ

Envelop on C

max(LB_KeoghEQ, LB_KeoghEC)
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LB_Keogh
Sakoe-Chiba

LB_Keogh
Itakura

LB_Yi

LB_Kim

The tightness of the lower bound for each technique is 
proportional to the length of lines used in the illustrations 
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Cascading Lower Bounds
• At least 18 lower bounds of DTW was proposed. 
• Use lower bounds only on the Skyline.
• Use the bounds on the skyline in cascade from least 

expensive to most expensive
• When unable to prune, use early abandoning techniques

0

1

O(1) O(n) O(nR)

LB_KimFL LB_KeoghEQ

max(LB_KeoghEQ, LB_KeoghEC)
Early_abandoning_DTW

LB_Kim
LB_YiTi

gh
tn
es
s 
of
 

lo
w
er
 b
ou
nd

LB_Ecorner
LB_FTW DTW

LB_PAA

99.9% of the time DTW is not calculated88



Early Abandoning Techniques

Abandon accumulating errors as soon as the current 
total is larger than the best_so_far
Four techniques to abandon early
1. Early Abandoning of LB_Keogh
2. Early Abandoning of DTW
3. Earlier Early Abandoning of DTW using LB_Keogh
4. Reordering Early Abandoning
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Early Abandoning of LB_Keogh

U, L are upper and lower envelopes of Q

C
U

LQ

Abandon the computation, when the 
accumulated error is larger than best_so_far
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Early Abandoning of DTW

C
Q

w (Warping Windows)

dtw_dist

Abandon the computation, when the 
dtw_dist is larger than best_so_far

C

Q
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Earlier Early Abandoning of DTW
using LB_Keogh

C
Q

w (Warping Windows)

(partial)
dtw_dist

(partial)
lb_keogh

U, L are upper and lower envelopes of Q

Abandon the computation, when the
dtw_dist + lb_keogh is larger than best_so_far

C
U

LQ
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Reordering Early Abandoning
• We don’t have to compute LB from left to right.
• Order points by expected contribution.

- Order by the absolute height of the query point.

1 2 3 4 5 6 7 8 9
7 3 1 2 6 8 4 5 9

Idea
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Summary of the techniques

Group-2 Techniques
• Just-in-time Z-normalizations

• Reordering Early Abandoning

• Reversing LB_Koegh

• Cascading Lower Bounds

Group-1 Techniques
– Early Abandoning of LB_Keogh

– Early Abandoning of DTW

– Earlier Early Abandoning of 

DTW using LB_Keogh

UCR Suite
Code and data is available at:

www.cs.ucr.edu/~eamonn/UCRsuite.html

Thanawin Rakthanmanon, Bilson J. L. Campana, Abdullah Mueen, Gustavo E. A. P. A. Batista, M. Brandon Westover, Qiang Zhu, Jesin Zakaria, 

Eamonn J. Keogh: Searching and mining trillions of time series subsequences under dynamic time warping. KDD 2012: 262-270
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Experimental Result: Random Walk

Million
(Seconds)

Billion 
(Minutes)

Trillion 
(Hours)

DTW-Naive 75.21 1,252.2 20,869

Group-1 2.447 38.14 472.80

Group-1 and 2 0.159 1.83 34.09

• Random Walk: Varying size of the data, |Q| = 128

Extrapolated

• Experiments performed on a commodity machine
• Disk is accessed sequentially as the algorithm is 

invariant to data order
• The computation is performed while the next disk 

block is read 95



• Random Walk: Varying size of the query, n = 20 million

Experimental Result: Random Walk

Naïve DTW

100

1000

10000
seconds

Group-1 Techniques

For query lengths of 4,096 
(rightmost part of this graph) 
The times are:
Naïve DTW  24,286
Group-1 5,078
Group-1 and 2 567

Query Length

Group 1 and 2

4 5 6 7 8 9 10 11 12
Power of two
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Experimental Result: Random Walk

0
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Sakoe-Chiba Band Width (percentage of query length)

• Random Walk: Varying size of the band
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Nearest Subsequence Search  

• A Q query is given
• A long time series of length n
• O(n) distance calculations are performed to

Find THE nearest subsequence of 
the given query under DTW.
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Time Warping Subsequence Search

Reuses computation for subsequence matching
S

Q

Match 1 Match 2 Match 3 Match 4

Yasushi Sakurai, Christos Faloutsos, Masashi Yamamuro: Stream Monitoring under the Time Warping Distance. ICDE 2007:1046-1055

• For every new observation only one column is added on the right
• No need for any of the techniques
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Normalization is required

• If each window is normalized separately, reuse of 
computation is no longer possible
• To take advantage of the bounding and abandoning 

techniques, we need just-in-time normalization 
with constant overhead per comparison

100



Just-in-time Normalization
• In one pass, calculate cumulative sums of over x and 

x2 and store
• Subtract two cumulative sums to obtain the sum over 

a window
• Use the sums to calculate the means and standard 

deviations of all windows in linear time 

• Dynamically normalize observations when calculating 
distance and possibly abandon early

! = ∑$ !% = ∑$%

&'% = !'()% − !'%&' = !'() − !'

+' =
&'
, -' =

&'%
, − &'

,
%

./01 = $'2 − +3'
-3'

− 4' − +5'-5'

%
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• Data: One year of Electrocardiograms 8.5 billion data points.

• Query: Idealized Premature Ventricular Contraction (PVC) of 
length 421 (w=21=5%).

Group-1 Group 1 & 2

ECG 49.2 hours 18.0 minutes

Experimental Result: ECG

PVC (aka. skipped beat)
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Chromosome 2: BP 5709500:5782000

Human

Chimp

Gorilla

Orangutan

Gibbon

Rhesus 
macaque

Catarrhines

Hominidae

Homininae

Hominini

Hominoidea

• Query: Human Chromosome 2 of length 72,500 bps
• Data: Chimp Genome 2.9 billion bps
• Time: UCR Suite 14.6 hours

Experimental Result: DNA
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What can be made fast?

• One-to-One comparison
• Exact Implementation and Constraints
• Efficient Approximation
• Exploiting Sparsity

• One-to-Many comparisons
• Nearest Neighbor Search

• In a database of independent time series
• In subsequences of a long time series

• Density Estimation
• In clustering 

• Averaging Under Warping
• In classification

• Many-to-Many comparisons
• All-pair Distance Calculations
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Density based clustering

• Density Peaks (DP)* Algorithm
• Find the densities of every point to pick cluster centers
• Connect every point to the nearest higher density point

*Rodriguez, A., & Laio, A. (2014). Clustering by fast search and find of density peaks. Science, 344(6191), 1492-1496.105



Range Search/Density Estimation
• Density is estimated by the number of points within 

a radius/threshold t

all sequences Ci in database1.
2.

for

3.
LB_dist = lower_bound_distance (Ci, Q)

4.
if LB_dist < 

5.

true_dist = DTW(Ci, Q)
6.

if
7.
8.
9.

endif
10.

endif
11.  

endfor

Algorithm Bounding_Range_Search(Q,t) 

1.
2.

for

3.
4.

if LB_dist < t

5.
6.

true_dist < t
7.
8.
9.

endif10.
11.  

Algorithm

if UB_dist < t then output Ci
else 

output Ci

12.

UB_dist = upper_bound_distance (Ci, Q)

13.

Try to use an 
upper bound to 
identify a point 
within the range

Nurjahan Begum, Liudmila Ulanova, Jun Wang, Eamonn J. Keogh: Accelerating Dynamic Time Warping Clustering with a Novel 
Admissible Pruning Strategy. KDD 2015: 49-58 106



Density Connectedness
• Distance between a pair of points is an upper 

bound of the NN distance from both of the points

1. best_so_far =min(upper_bound_NN_distance(D,Q)
2. for
3. LB_dist = lower_bound_distance(
4. if LB_dist < best_so_far
5. true_dist = DTW(
6. if true_dist < best_so_far
7. best_so_far = true_dist;
8. index_of_best_match= i;
9. endif
10. endif
11.  endfor

Algorithm
1. best_so_far
2. for all sequences in D
3.
4. if LB_dist < best_so_far
5. C i, Q);C i, Q);
6. if true_dist < best_so_far
7. best_so_far = true_dist;
8. index_of_best_match= i;
9. endif
10. endif
11.  endfor

Algorithm Bounding_Scan(D,Q) 

C i, Q);C i, Q);

Try to use an 
upper bound to the 
NN distance as 
the best_so_far

Nurjahan Begum, Liudmila Ulanova, Jun Wang, Eamonn J. Keogh: Accelerating Dynamic Time Warping Clustering with a Novel 
Admissible Pruning Strategy. KDD 2015: 49-58

D

Q
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Upper bounding
• Euclidean distance is a trivial upper bound
• DTW distance in a band w is an upper bound for 

DTW distance in band w+1
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Speedup by upper bounds
Density Peak: 9 Hours
TADPole: 9 minutes
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What can be made fast?

• One-to-One comparison
• Exact Implementation and Constraints
• Efficient Approximation
• Exploiting Sparsity

• One-to-Many comparisons
• Nearest Neighbor Search

• In a database of independent time series
• In subsequences of a long time series

• Density Estimation
• In clustering 

• Averaging Under Warping
• In classification

• Many-to-Many comparisons
• All-pair Distance Calculations
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Data Reduction for 1NN 
Classification
• The training set is reduced to a smaller set keeping 

a representative set of labeled instances
• Smaller training set entails performance gain
• Smaller training set may gain accuracy if noisy 

instances are filtered effectively
• Reduction methods
• Random Selection
• Rank the instances and take top-K
• Cluster instances based on proximity and take 

representative from each cluster
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Many clustering algorithms require finding a centroid of 
two or more instances

Compute 
average

The issue is then: 

ØHow to average time series consistently with DTW?

300
François Petitjean, Germain Forestier, Geoffrey I. Webb, Ann E. Nicholson, Yanping Chen, Eamonn J. Keogh: Dynamic Time Warping 
Averaging of Time Series Allows Faster and More Accurate Classification. ICDM 2014: 470-479

Trace dataset
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Mathematically, the mean "̅ of a set of objects #
embedded in a space induced by a distance $ is:

argmin+, -
,∈/

$0 "̅, "

The mean of a set minimizes the sum of the squared distances 

If $ is the Euclidean distance
The arithmetic mean 

solves the problem exactly

"̅ = 1
4-,∈/

"

Arithmetic 
mean

113



To solve the optimization problem for DTW distance, 
we need to perform simultaneous alignment of many 
time series.

But, finding the optimal multiple alignment:
1. Is NP-complete [a] 
2. Requires ! "# operations

• $ is the length of the sequences (≈ 100)
• ( is the number of sequences (≈ 1,000)

⇒ Efficient solutions will be heuristic
• Pairwise Averaging
• DTW Barycenter Averaging (DBA)

[a] F. Petitjean, A. Ketterlin and P. Gançarski, “A global averaging method for dynamic time warping, with applications to clustering,” Pattern 
Recognition, vol. 44, no. 3, pp. 678–693, 2011.
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Pairwise averaging for DTW

V. Niennattrakul and C. A. Ratanamahatana, “On Clustering Multimedia Time Series Data Using K-Means and Dynamic Time 
Warping,” IEEE International Conference on Multimedia and Ubiquitous Engineering, pp.733-738, 2007.

0 5 10 15 20 25

• Average each alignment between the 
two time series

• Commonly increases the length
• Chaining can produce average over a set
• The operation is not associative, the 

average produced depends on the order

X2

X1

X3

X4

Average

Average

X1,2

X3,4

Average X1-4

Average
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DTW Barycenter Averaging (DBA)

Algorithm DBA(D,av)
1 Iterate until convergence
2 for each sequence si in D
3 Ai = GetAlignment(DTW(si , av))
4 for each observation j in av
5 av[j] = mean([A1[j] A2[j] A3[j] …. An[j])

s1

s2
av

s1

s2
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• Does not increase length
• Does not depend on the 

order of the points
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The minimum error-rate is 
0.092, with 19 pairs of objects

The full dataset error-rate is 
0.14, with 100 pairs of objects

Items per class in reduced training set

Experimental Evaluation 
on Insect Data

Code Available : http://www.francois-petitjean.com/Research/ICDM2014-DTW

2 average-based techniques
1. K-means
2. AHC
… both using DBA

4 rank-based competitors 
1. Drop 1
2. Drop 2
3. Drop 3
4. Simple Rank
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What can be made fast?

• One-to-One comparison
• Exact Implementation and Constraints
• Efficient Approximation
• Exploiting Sparsity

• One-to-Many comparisons
• Nearest Neighbor Search

• In a database of independent time series
• In subsequences of a long time series

• Density Estimation
• In clustering 

• Averaging Under Warping
• In classification

• Many-to-Many comparisons
• All-pair Distance Calculations
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Speeding up DTW: many-to-many

• Several variants
• Self-join within a threshold - top-K Self-join

• Use similarity search techniques as subroutine
• Application: Motif discovery [a], Discord discovery

• A/B Join within a threshold - top-K A/B Join
• Use similarity search techniques as subroutine
• Application: Motion Stitching [b] 

• All-pair distance matrix
• Use techniques to speedup one-to-one comparisons
• Application: Hierarchical Clustering

[b] Y. Chen, G. Chen, K. Chen and B. C. Ooi, "Efficient Processing of Warping Time Series Join of Motion Capture Data," ICDE, 2009, pp. 1048-
1059.

[a] N Chavoshi, H Hamooni, A Mueen, “DeBot: Real-Time Bot Detection via Activity Correlation” UNM Technical Report 119



PrunedDTW: speeding up all-pair 
distance matrix calculation
• Two types of pruning 

when calculating DTW 
matrix
• Exact method
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Diego F. Silva, Gustavo E. A. P. A. Batista, Speeding Up All-Pairwise Dynamic Time Warping Matrix Calculation, SDM 2016 

Lower triangle pruning

Upper triangle pruningUB = Euclidean distance         UB = DTW distance
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Experiments
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Conclusion

• Nearest neighbor search under warping is fast 
enough for most practical purposes
• Data reduction improves 1NN classification both in 

speed and accuracy
• DTW is an extraordinarily powerful and useful tool. 

Its uses are limited only by our imagination.
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