
Distributed Diversification of Large Datasets
Mahbub Hasan 1, Abdullah Mueen 2, Vassilis Tsotras 1

1University of California, Riverside
{hasanm,tsotras}@cs.ucr.edu

2University of New Mexico
mueen@cs.unm.edu

Abstract—Diversification has been recently proposed as an
approach to allow a user to better grasp a large result set without
having to look through all relevant results. In this paper, we
expand the use of diversification as an analytical tool to explore
large datasets dispersed over many nodes. The diversification
problem is in general NP-complete and existing uniprocessor
algorithms are unfortunately not suitable for the distributed
setting of our environment. Using the MapReduce framework
we consider two distinct approaches to solve the distributed
diversification problem, one that focuses on optimizing disk I/O
and one that optimizes for network I/O. Our approaches are
iterative in nature, allowing the user to continue refining the
diversification process if more time is available. Moreover, we
prove that (i) this iteration process converges and (ii) it produces
a 2-approximate diversified result set when compared to the
optimal solution. We also develop a cost model to predict the
run-time for both approaches based on the network and disk
characteristics. We implemented our approaches on a cluster of
40 cores and showed that they are scalable and produce the same
quality results as the state-of-the-art uniprocessor algorithms.

Keywords-Diversity, MapReduce, Parallel Processing

I. INTRODUCTION

Many search related applications have recently incorporated
result diversification as a means of increasing user under-
standing of the result space. The idea is to return to the
user results that are as relevant as possible to the query and
at the same time, as diverse as possible from each other.
Diversification has been applied on several domains including
recommendation and web search [22][16][19][25][3], struc-
tured databases [13][17], personalized systems [18], topic
summarization [8], etc. However, all these previous works have
advocated diversification only for the online applications and
proposed algorithms that are suitable to diversify a typically
smaller result set (e.g. thousands of results). In this paper,
we use diversification as an analytical tool to explore large
datasets (e.g. millions of elements). Consider the scenario
where the user specifies some criteria (expressed as SQL
text, keywords, images etc.); for simplicity we call these
criteria as the query. These criteria order elements from the
large dataspace according to their relevance to the user query.
(Despite the use of the term query, the reader should note
that our environment is not on-line querying but off-line.)
Returning the top-k elements based on relevance-only may
return many elements from the same category, therefore is
not suitable for exploring the dataspace. Instead returning the
top-k most diverse elements provides the user with a better
understanding of the dataspace.

Low Relevance and High Diversity

Cabbage Butterfly Brush Footed

Lycaenid Danaid Sulphur Peacock Hairstreak

Query image

Relevance only

Fig. 1. A set of different types of butterflies match with a sample query
image and 3 images selected satisfying different criteria: relevance only and
relevance with diversity

As an example consider a dataset (dataspace) with images
crawled from the web [1]. A user is interested in butterflies so
s/he provides a query image of a butterfly as shown in Figure 1.
Assuming that relevance is based on shape similarity, millions
of images match this query (for simplicity, the dataspace
shown in the figure contains only ten images) and the top-
3 based on relevance-only are depicted. However, we could
have better explored the dataspace by using other image
features such as texture, color, etc. to capture diversity among
the returned results. When both diversity and relevance are
considered, results are ranked according to a score function
that considers a weighted sum of similarity and diversity based
on a trade-off parameter [16]. The second top-3 results depict
a lower-relevance higher-diversity set of butterflies.

The diversification problem is in general NP-complete
[23] and many uniprocessor approximation algorithms have
been proposed in the literature [22][23][10][24][7]. For large
datasets, even the approximate algorithms are lethargic and
therefore, parallelization becomes the method of choice for
faster response time. MapReduce[12] has become extremely
popular over the last few years for processing large volume
of data in a distributed setting. Several database problems
(e.g. clustering[9], join[5]) have been solved successfully using
MapReduce. In this paper we propose two distinct approaches
for result diversification using the mapreduce framework.

While there exist domain specific diversification algorithms
[6][3][11] that assume availability of prior information such
as query log, taxonomy, etc., our approaches provide a more
general distributed framework for result diversification. The
choices for the relevance and diversity measures are orthogonal
with our approaches.

Extending diversification on a distributed environment is a
challenging task because none of the previous uniprocessor di-
versification algorithms can be directly extended to a MapRe-
duce setting. For example, parallelizing the computation of
the method in [7] requires one read of the entire file (dataset)
to produce one diversified result in the output. Therefore,
computing the top-k diverse results require at least k file
reads which becomes infeasible (in disk I/O [20]) for large
datasets. Another challenge is to minimize the communication
cost between the distributed nodes (network I/O [9]). This
motivates the need to develop distributed algorithms that
can diversify large datasets (e.g. millions of elements) fast
while preserving the quality of the diversification, as well as
achieving linear speedup for increasing number of nodes.

We propose two distributed diversification approaches ad-
dressing these challenges. In Section IV, we show that differ-
ent approaches perform better in different scenarios (e.g. disk
rate, network speed, number of cluster nodes, data size). We
present a cost model that can dynamically choose the most
suitable approach for a given computation environment.

In particular, we make the following contributions:
• We describe the first distributed solution for diversifying

large datasets using the MapReduce framework.
• We propose two approaches; one optimized for the disk

access cost while the second optimized towards the
network transfer cost. We present a cost model that can
dynamically choose the suitable approach considering
the environment parameters (disk rate, network speed,
number of cluster nodes) and data size.

• We propose an approach to improve the quality of the
diversification by iteratively refining the output. The final
output is a 2-approximation over the optimal solution.

The rest of the paper is organized as follows: we define
the top-k diversification problem in Section II. Section III
explains the core components of diversification (i.e. diversi-
fication approaches, cost model, iterative refinement). Section
IV provides an experimental evaluation of the components
using two real life datasets. Section V describes the related
work and finally we conclude in Section VII.

II. PROBLEM DEFINITION

Consider a set of n elements D = {e1, e2, . . . , en}, a query
Q and an integer k (≤ n). Each element ei ∈ D has a
relevance score, rel : D → R+, to the query Q, where higher
relevance score implies the element ei is more relevant to
the query Q. The dissimilarity between two elements ei, ej is
defined by the function, dis : D × D → R+, where a higher
score implies that the elements ei and ej are highly dissimilar
to each other. Our goal is to find a set of k elements, Sk ⊆ D,

such that the elements in Sk are highly relevant to the query
Q and highly dissimilar to each other.

Most previous works define top-k diversification as a bi-
criteria optimization problem: to each k-element subset Sk ⊆
D a score F(Sk) is assigned, using both the relevance and
dissimilarity of the elements in Sk. In particular, let d : D ×
D → R+ be the distance metric defined as,

d(ei, ej) = (1− λ) rel(ei) + rel(ej)

2
+ λ dis(ei, ej) (1)

where, the trade-off parameter, λ ∈ [0, 1], balances the
relative weights between relevance and dissimilarity [23].
Then F(Sk) is the sum of all pairwise distances between the
elements in Sk, namely:

F(Sk) =
k−1∑
i=1

k∑
j=i+1

d(ei, ej) (2)

Problem 1 (Top-k Diverse Elements): Given D, Q and k
identify the subset Sk for which F(Sk) is maximum.

III. DIVERSIFICATION FRAMEWORK

There are three main components in our diversification
framework (Figure 2): 1) the Diversification Stage, 2) the Cost
Analysis, and, 3) the Iterative Refinement. The Diversification
Stage component reads data from HDFS and generates the
set Sk using a diversification algorithm. In Section III-A we
propose two distributed diversification approaches for this
component. In Section III-B we present a cost model to
estimate the execution time of each diversification approach
given the environment parameters and data characteristics.
Using this model, the Cost Analysis component chooses the
best approach dynamically at runtime. Finally, the Iterative
Refinement component iteratively refines the set Sk returned
from the diversification stage until it either converges (no
further score improvement) or a user time threshold is reached
(Section III-C).

Cost
Analysis

Diversification
Stage

Iterative
Refinement

Results

User Interruption/
Max Time Reached/

No Further Score
Improvement is Possible

Sk

HDFS

(1) (2) (3)

Fig. 2. The Diversification Framework Architecture

A. Diversification Approaches

In the rest of the paper, we assume a distributed MapReduce
framework with m mappers and r reducers. Previous works
[9][15] on designing algorithms in a MapReduce framework
generally consider the following approach: First the data is
divided (mapped) into partitions and each partition is assigned
to a single node. Each node solves (reduces) the problem
on the assigned partition and generates an output. Then, all
outputs are merged together in single node which produces the
final output. Our first approach, the Divide and Merge based

HDFS

M1 M2 Mm …

R1 R2 Rr

Single
Node

…

HDFS

M1 M2 Mm …

R

M1 M2 Mm …

R

HDFS HDFS

Sample

Refine Merge

Input Split from HDFS

(a) (b)

Divide

Fig. 3. Overview of (a)DM and (b)SR Diversification Approaches

diversification (DM), follows a similar strategy. This approach
is disk I/O efficient since it reads the whole data only once
from the disk. However, it incurs high network cost to send
all the elements through the network for partitioning.

To reduce the network cost, recently another approach,
namely “sample and ignore”, has been proposed for the
problem of clustering large data [9]. It reduces the network
cost by first finding the major clusters from a sample of the
input data and then ignoring the elements that are contained
in the major clusters from passing through the network. The
sampling idea is useful for our purposes as it maintains
the charasteristics of the dataset; however, we replaced the
“ignore” phase with a novel “refine” phase which reduces the
network cost significantly compared to the “ignore” phase by
sending only k results from each node. This resulted to the
Sample and Refine based diversification (SR) approach.

Note that both of our approaches use a uniprocessor diversi-
fication algorithm as a plug-in when each single node performs
diversification on its local element set. The choice of this
diversification algorithm is independent with our framework.
Therefore, any of the algorithms proposed in [22][23][7] can
serve the purpose.

1) Divide and Merge (DM): As the name implies, there
are two phases, divide and merge (Figure 3(a)). In the divide
phase, data is partitioned randomly to different nodes main-
taining a balanced load. Each node executes the uniprocessor
diversification algorithm on the assigned partition and gen-
erates a top-k diversified subset from its own partition. One
key assumption in this phase is that each node has enough
memory to store its assigned partition (the case that this does
not hold is considered in section III-C). In the merge phase,
all k-diverse results generated by different nodes are merged
in a single node to compute the overall top-k diverse results.

The divide phase is implemented by a single MapReduce
job. In the map phase, each map task reads a split (block)
of D from HDFS. For each element in the file split, it
outputs the pair < key, element >. The key denotes the
ID of the reducer (between 1 to r). In the shuffle phase,

each reducer gets the pairs with the same key, and pairs
with distinct key values are forwarded to distinct reducers
to be processed separately. In the reduce phase, each reducer
executes the uniprocessor diversification algorithm on the
assigned elements and generates k-diverse elements. Note that,
the value of k is relatively small (in tens) while the value of
r is assumed in the hundreds. Therefore, the total number of
merged elements (rk) is small enough to fit in the memory
of a single node at the merge phase. This node executes the
uniprocessor diversification algorithm on the rk elements and
generates the overall k diverse elements Sk.

2) Sample and Refine (SR): Although the DM approach
reads the input data only once in its divide phase (therefore,
is disk I/O efficient), it sends all the elements through the
network for partitioning. For a slow network, this might cause
a bottleneck. Instead, the SR approach reduces the network
load significantly by sending a small subset of the elements
through the network.

SR (Figure 3(b)) also works in two phases, namely, sample
and refine. In the sample phase, each mapper reads a split of D
from HDFS and selects a small random sample from the split.
Let α be the sampling ratio. A single reducer collects all the
samples, executes the uniprocessor algorithm on the sampled
elements and computes the k diverse elements S′k. Note that,
only the selected samples need to be shuffled through the
network. Thus the SR algorithm reduces the network cost
significantly compared to the DM algorithm.

The key challenge of the sample phase is to select a good
representative sample from each mapper’s file, such that the
single node that diversifies the samples, can still produce a
good k-diverse result. Since the quality of the diversification
depends on the score F(S′k) (higher score means more diversi-
fied result), we investigate the effect of α on the diversification
score. Figure 4 shows the F(S′10) score of top-10 diverse
tweets computed from 10 million tweets[2] by varying the
sampling ratio α. The MMR uniprocessor algorithm [7] was
used for diversification. For small k, a sample of about 1% is
good enough. However, for higher k, a larger sample is needed

(around 30% for k = 25).
Note that the SR approach assumes that all samples taken

from the mappers will fit in the memory of the single reducer
node. If this is not the case (assuming that a limited amount of
memory is available for the diversification task), the sampling
rate needs to be adjusted, thus reducing the quality of the
sample. This motivates us to further refine the k diverse
element set (S′k) generated in the sample phase by a novel
refine phase using the elements in D.

0.0001 0.01 0.1 0.3 1
0

50

100

150

200

250

300

α

ℱ

 k = 5 k = 10 k = 15

k = 20 k = 25

Fig. 4. Effect of α on F

In the refine phase, S′k is broadcasted to all mappers. Each
mapper reads a split of data from the disk and tries to refine
S′k using the elements from the split. Since in MapReduce
framework the mapper works on a single element at a time,
we use the swap strategy [24] for refinement. Each element
e in the partition is checked against all the elements ei in
S′k to see if there exists a replacement operation, e for ei,
that can improve the quality of S′k. If there exists multiple
such operations, e replaces the element ei in S′k that improves
the quality the most. When all elements in the split are
checked, the refined k-diverse element set is forwarded to a
single reducer. This reducer combines all refined element sets
returned from different mappers, executes the uniprocessor
algorithm on the combined element set and computes the
final k-diverse results. Note that, the total number of elements
shuffled in the refine phase is mk. The value of k is in tens (as
discussed before) and the value of m is in hundreds depending
on the split size and data size. Therefore, the network cost of
the refine phase is negligible compared to the DM algorithm.

Algorithm 1 shows the pseudocode of the SR algorithm in
high level. The sample phase corresponds to the lines (2-3).
The refine phase (line 5) is further elaborated by Algorithm
2. In the map phase of Algorithm 2 (lines 2-5), each mapper
works on a split of D and call the subroutine get refined set
for each element in the file split. When all the elements are
processed, the refined element set is forwarded to a single
reducer. Finally, one reducer merges the refined element sets
and computes the final k-diverse results (line 7).

In Section IV, we show that the quality of the diversified
result set produced by each of our approaches, DM and
SR, matches the quality of the diversified result set that a
uniprocessor diversification algorithm would produce (if it
was fed the full data set). Furthermore, in section III-C we
theoretically prove that combined with some refine phases,
both of our algorithms produce a diversified result set whose

Algorithm 1 SR(D,k, α)
Require: Element Set D, value of k and Sampling Ratio α
Ensure: Return k diverse results

1: // sample
2: In parallel, each mapper reads a split of D from HDFS,

selects some elements with probability α and sends the
elements to a single reducer

3: one reducer gets the elements, executes the uniprocessor
algorithm and produces a k-diverse results, S′k

4: // refine
5: Sk ← Refine(D,S′k)
6: return Sk

Algorithm 2 Refine(D,Sk)
Require: Element Set D and k-element set Sk
Ensure: Return refined k diverse results

1: // map
2: In parallel, each mapper reads a split of D from HDFS

and do the following
3: for each element e in the file split do
4: Sk ← get refined set(e, Sk)
5: sends Sk to a single reducer
6: // Reduce
7: one reducer gets the refined result sets, executes the

uniprocessor algorithm, and produces k-diverse results Sk
8: return Sk

score is 2-approximate to the score of the optimal diversified
result set.

B. Cost Model

The performance of the two approaches depends on various
parameters of the distributed environment (disk speed, network
speed, number of nodes etc.) For example, Figures 8(a), 8(c)
show the wall clock time needed to compute top-10 diverse
results (for twitter[2] and image[1] datasets respectively), by
varying the number of reducers. As seen from these experi-
ments, the SR approach performs better for smaller number of
reducers while the DM dominates as the number of reducers
increases. Ideally, depending on the environment parameters
and data characteristics, we would like to choose the best
diversification approach. We thus proceed with a cost model

Algorithm 3 get refined set(e, Sk)

Require: an element e and k-element set Sk
Ensure: Return k diverse results

1: S′k ← Sk
2: for each element ei in Sk do
3: if F({Sk − ei} ∪ e) >F(S′k) then
4: S′k ← {Sk − ei} ∪ e
5: if F(S′k) >F(Sk) then
6: Sk ← S′k
7: return Sk

Symbols Definitions
FD File Size of D in bytes
Dr Disk Rate in bytes/sec (average read/write)
Nr Network Rate in bytes/sec
α Sampling Ratio
β Dispersion Ratio
m Number of Mappers
r Number of Reducer

TABLE I
COST MODEL PARAMETERS

that captures the disk I/O, network I/O and CPU cost for DM
and SR.

Our cost model is developed on a standard deployment of
Hadoop 1.0.4 for massive data. Therefore, we do not assume
data piping from memory to memory, instead, pessimistically
assume disk is being used in between the mappers and
reducers. Table I summarizes the parameters used. Using an
approach similar to [9] we first model the cost of a single
MapReduce job which is the sum of costs for the Map and
Reduce phases.

Map Cost: Let the cost to start m mappers be delay(m),
where delay(1) denotes the time required to start a single task
(map/reduce). To read FD bytes from the disk by m mappers
incurs FD

m.Dr
cost. On average, each mapper gets FD

m bytes.
Let costP (FD

m) be the cost to process the FD
m bytes by each

mapper. A factor of α bytes are picked during the processing.
To spill the sampled bytes to disk each mapper takes α.FD

m.Dr

cost. Note that, we ignore the additional bytes required to
store the key part in the output pairs since this is negligible
compared to input bytes α.FD. Therefore the cost to execute
the map phase, costM(FD,m, α), is:

costM(FD,m, α) =delay(m) +
FD
m.Dr

+ costP (
FD
m

)

+
α.FD
m.Dr

Reduce Cost: In the reduce phase, the data stored in the
mapper local disks are copied in the reducer memory. To read
α.FD bytes from m mappers’ local disks takes α.FD

m.Dr
cost.

Note that, a fraction of these α.FD bytes are shuffled through
the network to reach the other cluster nodes running reduce
tasks. Let β is the dispersion ratio, denotes the fraction of
mapper output are shuffled though the network. To shuffle
β.α.FD bytes to r reducers requires β.α.FD

r.Nr
cost.

Once the data is copied in reducer memory, the uniprocessor
diversification algorithm is executed on the data. On average
each reducer gets α.FD

r bytes. Let costD(α.FD
r) be the cost to

execute the uniprocessor algorithm on α.FD
r bytes. Finally the

output records in written in HDFS. Since each reducer needs
to write only k elements, which is small in size, thus the cost
to write the output is ignored.

Therefore, the cost to execute the refine phase,
costR(FD,m, r, α), is defined as,

costR(FD,m, r, α) =delay(r) +
α.FD
m.Dr

+
β.α.FD
r.Nr

+ costD(
α.FD
r

)

Note that, in both the DM and SR approaches, each reducer
gets the elements with the same key. Therefore, the sorting
time is negligible in the reduce phase.

DM Cost: In the divide phase, m mappers read the
data and do the partitioning with cost costM(FD,m, 1).
The reducers execute the uniprocessor algorithm with cost
costR(FD,m, r, 1). Note that, in the merge phase, one single
machine runs the uniprocessor algorithm on r.k elements.
Since the value of r.k is relatively small (discussed in Section
III-A), the cost associated with the merging phase is ignored
from calculation. Therefore, the cost to execute the DM
algorithm is:

costDM = costM(FD,m, 1) + costR(FD,m, r, 1) (3)

SR Cost: The cost to execute SR algorithm consists of
the cost associated with the two phases, sample and refine.
In the sample phase, m mappers do the sampling with cost
costM(FD,m, α). One reducer processes the remaining data
with cost costR(FD,m, 1, α). In the refine phase, m mappers
do the refinement with cost costM(FD,m, 1). Note that, in the
map phase, each mapper outputs k elements. Thus the single
reducer gets a total m.k elements by m mappers; since this is
small, the cost associated in diversifying these mk elements
is ignored. Hence, the cost to execute the SR algorithm is:

costSR = costM(FD,m, α) + costR(FD,m, 1, α)

+ costM(FD,m, 1) (4)

Using Equations 3 and 4, the cost analysis component in
Figure 2 estimates the execution times of two diversification
approaches DM, SR respectively, and picks the best one at
runtime.

C. Iterative Refinement

Our DM approach assumes that in the divide phase each
reducer has enough memory to store the assigned partition.
However, in case of limited memory, each reducer gets a
sample of the partition, thus reduces the quality of diversi-
fication (Figures 10(a)) by the DM approach. Therefore, we
propose an iterative refinement component that further refines
the output of the DM approach and guarantees a 2-approximate
solution compared to the optimal. Note that this component
is also applicable after the SR approach to guarantee the 2-
approximate solution.

The iterative refinement component works as a plug-in
after the diversification stage and iteratively improves the
quality of the k-diverse elements returned by the diversification
approaches. Each iteration corresponds to a single mapreduce
job and does exactly the same task like the refine phase in
SR algorithm. This process continues until no further score
improvement is possible or a user threshold time is reached.
Also note that, the user can stop the execution at any point in
the iterative refinement to get the best result set produced at
the elapsed period of time. This ensures a possible adaptation
of our approach as an anytime algorithm.

Algorithm 4 (DivF) describes the overall workflow of our
diversification framework. At first, the cost analysis component
computes the cost of our two diversification approaches DM
and SR (line 1). Based on the costs, the best approach
is executed in diversification stage (lines 2-5). Finally the
iterative component refines the k diverse set returned from
diversification stage (lines 6-11).

Algorithm 4 DivF (D,k, α)
Require: Element set D and size of k, Sampling Ratio α
Ensure: Return set Sk ⊆ D of size k

1: compute costDM and costSR using the cost model
proposed in Section III-B

2: if costDM < costSR then
3: Sk ← DM(D,k)
4: else
5: Sk ← SR(D,k, α)
6: repeat
7: S′ ← Refine(D,Sk)
8: diff = score(Q,S′)− score(Q,Sk)
9: if diff > 0 then

10: Sk ← S′

11: until diff ≤ 0 or max time elapsed or user interrupts
12: return Sk

Next, we prove that DivF halts after finite number of
iterations, and when it halts (no refinement is possible in
the mappers of the refine phase), it produces a 2-approximate
solution compared to the optimal solution.

Lemma 1: DivF halts after finite number of iterations.
Proof: Since the while loop in Algorithm 4 is the only

iterative component, it suffices to show that the while loop
halts after finite number of iterations. Let Sopt denotes the
optimal k-diverse element set of D. Each iteration of the
while loop changes the current k element set Sk to a new
refined set and improves the current score by a positive value
(0,F(Sopt)−F(Sk)]. Note that, the total number of k elements
subsets of D is

(|D|
k

)
, and each subset has a fixed score F .

Therefore, DivF halts after at most
(|D|
k

)
iterations.

Although the proof section of Lemma 1 considers the
worst case scenario (

(|D|
k

)
iterations), in Section IV, we show

empirically (Figures 10(b)) that there is a high probability that
DivF halts after 2 ∼ 3 iterations.

To prove that our iterative algorithm DivF produces 2-
approximate solution we assume that the distance metric d
follows the triangular inequality. We can rewrite the score
F(Sk) as, F(Sk) = 1

2

∑
ei∈Sk

∑
ej∈Sk,ej 6=ei d(ei, ej) =

1
2

∑
ei∈Sk

CSk
ei . Here CSk

ei denotes the contribution of an
element ei ∈ Sk to F(Sk) which is the sum of all d(ei, ej)
between ei and the other elements ej in Sk. Let S is the final
k element set returned by DivF when it halts.

Theorem 1: F(Sopt) ≤ 2F(S).
Proof: Let us consider the worst case scenario where Sopt

and S have no elements in common, that means Sopt∩S = ∅.
We will establish a one to one mapping between the elements

in Sopt and S. Let ei and e′i are two arbitrary elements from
S and Sopt respectively. Since, the total score of an element
set is half to the sum of all individual element contributions
to the score, to prove Theorem 1, it suffices to show that
C
Sopt

e′i
≤ 2CSei .

Let e′j is an element in Sopt and e′j 6= e′i. Also let C1 (or C2)
denotes the sum of all d(., .)s between the elements in S/ei
and e′i (or e′j). Note that C1 (or C2) is less than CSei , otherwise
ei would be replaced by e′i (or e′j) in the refine phase. By the
triangular inequality, we can say that the sum of C1 and C2

is at least as (k − 1)d(e′i, e
′
j) (as seen in Figure 5). Thus,

(k− 1)d(e′i, e
′
j) ≤ C1 +C2 ≤ 2CSei . Therefore, we can write,

C
Sopt

e′i
=
∑
e′j∈Sopt/e′i

d(e′i, e
′
j) ≤

∑
e′j∈Sopt/e′i

2
(k−1)C

S
ei =

2CSei .

…

e’i e’j

ei

d(e’i,e’j)

ej

ek

element ∊ S

element ∊ Sopt

Fig. 5. 2-approximation of DivF

IV. EXPERIMENTAL EVALUATION

We proceed with an experimental evaluation of the three
main components (diversification approaches, cost model,
iterative refinement) of our diversification framework. Section
IV-A describes the setup along with the datasets, methodology,
cluster parameters used for the experiments. In Section IV-B,
we evaluate the quality and performance of our two diversifica-
tion approaches, DM and SR, by changing the environmental
and algorithmic parameters, and the dataset size. In Section
IV-C, we analyze the accuracy of our cost model. Finally,
Section IV-D provides an empirical evaluation of the iterative
refinement component using real life datasets.

A. Setup

All of our experiments are performed on a five node cluster
running Hadoop 1.0.4. Each node has 8 cores (3.30GHz Intel
Xeon CPU) with 16GB RAM and 1TB of raw disk storage.
We configure each node to run 8 tasks (map/reduce) at a
time. Thus, at any point of time, we can run at most 40 tasks
concurrently on our cluster.

Datasets: We use two datasets for the experiments in this
section,
• TwitterCrawl: This dataset contains 82,774,328 tweets

crawled from Twitter[2]. Each tweet has 8 terms on
average. The total size of the dataset on disk is 7.55GB.

• Image: This dataset has 79,302,017 feature vectors ex-
tracted from collection of images[1]. Each vector has 16
features. The total size on disk is 5.12GB.

Methodology: We randomly select 100 elements from each
dataset and use them as the queries. The results shown in this

(c) r = 40, λ = 0.5

r
0 10 20 30 40

33

34

35

36

37

38

39

40

ℱ

Uniprocessor DM SR

(a) λ = 0.5, k = 10

0.1 0.3 0.5 0.7 0.9

26

28

30

32

34

36

38

40

42

ℱ

λ

Uniprocessor DM SR

5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

200

k

ℱ

 Uniprocessor DM SR

0.1 0.3 0.5 0.7 0.9
37

38

39

40

41

42

43

λ

ℱ

Uniprocessor DM SR

5 10 15 20 25
0

50

100

150

200

250

300

k

ℱ

Uniprocessor DM SR

(d) λ = 0.5, k = 10

(b) r = 40, k = 10

(e) r = 40, k = 10

(f) r = 40, λ = 0.5

0 10 20 30 40
25

26

27

28

29

30

31

ℱ

Uniprocessor DM SR

r

Fig. 6. For TwitterCrawl dataset, (a) Avg. F vs. r, (b) Avg. F vs. λ, (c) Avg. F vs. k. (d),(e),(f) show the same figures for Image dataset

section are averaged over these 100 queries. We use the same
distance metric for rel and dis calculation; euclidean distance
for Image dataset, and cosine similarity for TwitterCrawl
dataset. Note that, the relevance features are always taken from
the user in the form of a query and the user always expects
relevant answers. However, since the user has given a subset
of features, diversification is necessary before presenting the
potential large set of relevant results. Therefore, in our exper-
iments, a subset of the feature set is used for rel calculation
and the whole feature set is used for dis calculation [23]. For
the Image dataset, first half of the features are used for rel
calculation (i.e. rel = (1− L2(1..8))), and the whole feature
set is used for dis calculation (i.e. dis = L2(1..16)). For
the TwitterCrawl dataset, three random terms are used for rel
calculation (i.e. rel = cosine(terms)), and the whole tweet
is used for dis calculation (i.e. dis = 1 − cosine(tweets)).
However, we have also tested other feature combinations for
relevance computation which produced similar results, thus are
skipped in this paper (due to limited space).

Uniprocessor Diversification: Several algorithms have
been proposed in literature for result diversification in a
uniprocessor system [22][23][10][24][7]. For our experiments,
we use the MMR [7] diversification because of its efficiency
within a single node [23]. MMR picks diverse results using the
greedy strategy. The first element is always picked as the most
relevant one. Successive diverse results are picked (one at a
time) that maximize the F score with respect to the current
selected diverse results. This process continues until k diverse
results are picked. Note that, recently two other algorithms
(GMC and GNE) have been proposed for diversification[23].
These algorithms may provide better diversification quality but
require quadratic running time on the size of the data set D.
Instead MMR’s running time is linear to the size of D.

Cluster Parameters: We perform several experiments on
our cluster to estimate the values of the parameters in Table
I. Based on our experiments, the values are estimated as,
disk rate Dr = 20MB/sec, network rate Nr = 10MB/sec,
delay(1) = 0.1sec, dispersion ratio β = 0.8. The uniprocessor
MMR cost is estimated as costD(bk) = 3.37E−6bk sec,
which is the cost to generate k diverse results from b bytes.
The mapper cost during the refine phase of SR approach is
estimated as, costP (bk) = 2.9E−7bk sec. Note that, the
mapper processing cost in the first phase of the diversification
approaches (DM and SR) are ignored from our calculation
since the values are estimated as close to zero.

In all of our experiments, the number of mappers m is set by
the Hadoop framework and we vary the number of reducers r
from 1 to 40 (default value 40). We set the sampling ratio such
that the number of elements processed in the single reducer
during the sample phase of SR algorithm is ∼ 1 million, i.e.
α = 1million

|D| . The results shown in this section are averaged
over 10 distinct runs. Note that, unless specified explicitly, the
default value used for k is 10 and for λ is 0.5

B. Evaluation of Diversification Approaches

We proceed with an evaluation of our two diversification
approaches, DM and SR, in terms of quality and performance.

1) Qualitative Analysis: The motivation of the qualitative
analysis is to answer the question, Does the distributed imple-
mentation of the diversification algorithm degrades the quality
when compared to the uniprocessor algorithm? Therefore,
we compare the quality achieved by the top-k result set
generated by our two distributed approaches, DM and SR,
with the quality of the uniprocessor MMR algorithm (i.e., a
naive implementation where all elements are forwarded to
a single reducer which computes the top-k diverse results

using MMR). The comparison with a uniprocessor optimal
algorithm has been skipped due to the optimal algorithm’s
time complexity (given that the dataset we consider is in the
millions of records). However, [24] contains a comparison
between the uniprocessor MMR and the optimal algorithm for
a small dataset (|D| = 200), which shows that MMR produced
good quality results with respect to the optimal algorithm.
We use score (F) as the measurement of quality[23] for our
experiments (i.e. higher F denotes better quality results).

Due to memory constraints and problem complexity, we
could run the uniprocessor MMR only on a small set of
elements. Figure 6 shows the quality comparisons of three
algorithms, DM, SR and uniprocessor MMR, using a dataset
with 10 million elements. We vary the number of reducers
r from 1 to 40 (Figures 6(a),6(d)), the λ values from 0.1 to
0.9 (Figures 6(b),6(e)), the k values from 5 to 25 (Figures
6(c),6(f)) for two datasets TwitterCrawl, Image (respectively).
Note that, since both the SR and uniprocessor MMR algorithms
use only one reducer, the (F) scores are fixed, independent
from the changing r values (Figures 6(a),6(d)).

In all the experiments of Figure 6, the DM and SR ap-
proaches produce equal or better quality results when com-
pared to the uniprocessor MMR algorithm. This is due to the
nature of the DM and SR approaches. Note that, the quality
of the final k diverse results produced by the uniprocessor
MMR algorithm depends heavily on the first chosen element.
If the first element is not chosen properly then the final k
diverse results may be of low quality. In comparison, during
the divide phase of our DM approach, each reducer uses a
separate initial element to compute the k-diverse results from
the assigned sample. Thus r different initial elements (one
in each reducer) are used to compute a total of rk diverse
elements. These rk elements form a better candidate set to be
considered for diversification since these elements are selected
by a uniprocessor MMR (run on different reducers). Therefore,
the final k diverse results computed from these rk elements
(during the merge phase) would be of better quality when
compared to the results produced by the uniprocessor MMR
on the whole dataset (as seen in most of the experiments of
Figure 6).

In the case of the SR approach, a k diverse set is computed
using the uniprocessor MMR from a sample of the dataset (in
the sample phase) which is further refined by an additional
scan of the whole dataset (in the refine phase). Therefore,
the second scan of the dataset improves the quality of the
diverse results produced by the SR approach when compared
to the results produced by the uniprocessor MMR on the whole
dataset.

Figure 7 shows the wall clock time needed by the three
algorithms (uniprocessor MMR, DM and SR) for the quality
experiments. As seen from the figure, our algorithms, DM
and SR, compute diverse results much faster compare to the
uniprocessor MMR. In fact, DM (SR) decreases the running
time of uniprocessor MMR to a factor of 0.037 (0.119) and
a factor of 0.039 (0.107) for the TwitterCrawl and Image
datasets respectively.

Dataset
Wall Clock Time (sec)

Uniprocessor DM (r = 40) SR

TwitterCrawl 3053.94 113.19 363.49

Image 2193.72 85.1 235.63

Fig. 7. Avg. wall clock time needed by Uniprocessor MMR, DM and SR
algorithms for k = 10 and |D|= 10 millions

2) Performance Analysis: Figures 8(a),8(c) show the wall
clock time needed to compute top-10 diverse results by varying
the number of reducers r, 1 to 40, using 10 million elements
from the TwitterCrawl and image datasets respectively. As
described earlier, the SR approach uses only one reducer, thus
the total time taken by this approach is independent from the
increasing number of reducers. However, the total time for the
DM algorithm is decreasing nonlinearly with the increasing r.
Note that, the SR algorithm performs better for smaller number
of reducers 1 ∼ 10. If we increase the number of reducers,
then DM algorithm starts to dominate.

Figures 8(b),8(d) show the wall clock time needed to
compute top-10 diverse results by varying the number of
records |D|, 10 to ∼80 millions, from the TwitterCrawl and
Image datasets respectively. The number of reducers is fixed
to 40. As seen from the figures, both of the approaches, DM
and SR, show linear scale-up with the increasing |D| value.
Unlike to the Figures 8(a) and 8(c), DM algorithm performs
better for small number of elements (up to ∼ 25 millions),
while SR works better for larger dataset.

Therefore, Figures 8(a)-(d) conclude that none of two di-
versification approaches, DM and SR, is a universal winner
in all scenarios. DM performs better for small dataset and
large number of reducers, while SR works better for larger
dataset and small number of reducers. This provides a strong
motivation of our cost model which has been analyzed in the
next subsection.

C. Evaluation of Cost Model

In this subsection, we analyze the accuracy of the cost
model. Figures 9(a), 9(d) show the same figures as in Figures
8(a), 8(c) with one more red curve (denoted as best) that, using
cost model in Section III-B, can consistently pick the best
approach at runtime (as shown from figures 9(a), 9(d)). Similar
characteristics are found for figures 8(b),8(d), thus skipped in
this paper. Figures 9(b), 9(e) (Figures 9(c), 9(f)) show the
actual and predicted running times for DM (SR) algorithm
using two datasets TwitterCrawl and Image respectively. As
seen from the figures, the predicted and actual times are close
to each other. This confirms the fact that the cluster parameters
estimated in Section IV-A are realistic.

D. Evaluation of Iterative Refinement

Our last experiment is to evaluate our iterative refinement
component. For the space limitation, only the results of the
TwitterCrawl dataset are shown in this paper. As discussed
in Section III-C, our iterative component is useful when we

0 5 10 15 20 25 30 35 40

40

400

4000

r

W
a
ll

C
lo

c
k
 T

im
e
 (

s
e
c
)

DM SR

(a)

10 20 30 40 50 60 70 80 90
0

200

400

600

800

1000

1200

1400

|𝒟|

W
a
ll

C
lo

c
k
 T

im
e
 (

s
e
c
)

(b)

DM SR

0 5 10 15 20 25 30 35 40
20

200

2000

r

W
a
ll

C
lo

c
k
 T

im
e
 (

s
e
c
)

(c)

DM SR

(d)

10 20 30 40 50 60 70 80
0

100

200

300

400

500

600

700

800

W
a
ll

C
lo

c
k
 T

im
e
 (

s
e
c
)

|𝒟|

DM SR

Fig. 8. For TwitterCrawl dataset, (a) Avg. wall clock time vs. r, (b) Avg. wall clock time vs. |D|. (c),(d) show the same figures for Image dataset

0 5 10 15 20 25 30 35 40

40

400

4000

r

W
a

ll
C

lo
c
k
 T

im
e

 (
s
e

c
)

DM Predicted

r
0 5 10 15 20 25 30 35 40

40

400

4000

W
a
ll

C
lo

c
k
 T

im
e
 (

s
e
c
)

SR Predicted

r
0 5 10 15 20 25 30 35 40

20

200

2000

W
a
ll

C
lo

c
k
 T

im
e
 (

s
e
c
)

DM SR Best

0 5 10 15 20 25 30 35 40
20

200

2000

r

W
a
ll

C
lo

c
k
 T

im
e
 (

s
e
c
)

DM Predicted

0 5 10 15 20 25 30 35 40

40

400

4000

r

W
a
ll

C
lo

c
k
 T

im
e
 (

s
e
c
)

DM SR Best

0 5 10 15 20 25 30 35 40
20

200

2000

r
W

a
ll

C
lo

c
k
 T

im
e
 (

s
e
c
)

SR Predicted

(a) (b)
(c)

(d) (e) (f)

Fig. 9. For TwitterCrawl dataset, (a) the ability of the cost model to select the best strategy (red curve) from DM and SR (b) actual and predicted times for
DM, (c) actual and predicted times for SR. (d),(e),(f) show the same figures for Image dataset

have limited amount of resources (e.g. number of reducers,
memory). Therefore, in the divide phase of DM approach, we
set r to 8 and assign a random sample of 0.5 millions to each
reducer. Similarly, the single reducer in the sample phase of
SR approach gets a sample of size 0.5 millions.

Figure 10(a) shows the average values of F over iterations
(0 to 4) for the top-10 diverse results calculated from the whole
TwitterCrawl dataset. Note that, the scores at iteration 0 denote
the F(S10) scores of the 10 diverse results returned from the
diversification stage by the two diversification approaches DM
and SR. As seen in Figure 10(a), the SR approach produces
better quality result compare to the DM approach for limited
resources. This is due to the refine phase in SR approach which
makes a whole pass on D. The DM approach reaches the
quality of SR approach at iteration 1. After that the quality
remains similar for both of the approaches.

We then estimate the number of iterations needed to con-
verge the while loop in Algorithm 4. Figure 10(b) shows our
estimated probability to converge vs. number of iterations
using 100 random queries selected from the TwitterCrawl
dataset. As seen from the figure, both of the diversification
approaches, DM and SR, have high probability of convergence
within 1 ∼ 3 iterations. The maximum number of iterations

needed in our experiment was 7. Therefore, empirically we
conclude that, with high probability, our iterative refinement
strategy guarantees 2-approximate solution after 3 iterations.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Iterations

P
ro

b
a
b
ili

ty
 t

o
 C

o
n
v
e
rg

e

DM SR

(b) (a)

0 1 2 3 4
33

34

35

36

37

38

39

40

Number of Iterations

ℱ

DM SR

Fig. 10. For TwitterCrawl dataset, (a) Avg. F vs. Number of Iterations, (b)
Probability to Converge vs. Number of Iterations

V. RELATED WORK

Diversification has recently been researched heavily for
a uniprocessor environment. Several approaches have been
proposed in literature for result diversification in many do-
mains. [22][13][17][14] propose diversification in structured
databases. [22] introduces diversity ordering between the result
attributes of structured data and proposes diversification based
on this ordering. [13] proposes diversification based on the

possible interpretation of keyword queries and novelty of the
search results. [17] tries to identify a set of differentiating
features that help the users to analyze and compare the search
results. [14] computes a diverse result set where the results
are dissimilar to each other as well as cover the whole
dataspace. Diversification has also been applied in recommen-
dation systems [25][24]. [25] proposes topic diversification in
the recommendation lists to cover the user’s different range
of interests. [24] introduces explanation based diversification
where the explanation of an item is defined by a set of similar
items rated by the user in the past. However, all these works
consider online applications of diversification and propose
algorithms assuming the size of the dataset is small enough
(e.g. thousands of elements) to be stored in a single node’s
memory, thus fail to diversify large datasets (e.g. millions of
elements). In this paper, we consider diversification on massive
datasets.

There are also diversification frameworks [6][11] proposed
in literature that generate the diverse result set in polyno-
mial time. [6] uses the query log information to measure
the ambiguity of query terms (e.g. java, apple, jaguar) and
proposes diversification which retrieves k documents that
cover different specializations. [11] proposes diversification by
proportionality; the number of documents in the final top-k
result set covering a particular query aspect is proportional to
the popularity of the aspect. However, all these approaches
require some prior knowledge (e.g. query log, specializations,
query aspects) which may not be available in all applications
(when workloads and query information are not known in ad-
vance [23]). In this paper, we adapt the general diversification
framework described in [23] and propose distributed solution
to the problem.

One may argue using an existing clustering approach
[9][15], that clusters large datasets using the MapReduce
framework, to generate k clusters and then pick one repre-
sentative from each of the clusters, to provide a diversified
result. In fact [21] uses clustering technique to generate diverse
result set. However, as pointed out in [23] this approach
does not guarantee good quality of diversification. This is
because it is not trivial to identify which representative point
to select from each cluster for the most diversified result.
[23] showed experimentally that obvious choices of picking
cluster representatives for the diversified result (k-medoids,
etc.) provides low diversification score.

VI. ACKNOWLEDGMENTS

This work was partially supported by NSF grants: IIS-
0910859 and IIS-1161997.

VII. CONCLUSION

In this paper, we propose two distributed approaches, DM
and SR, for result diversification on massive datasets. The
actual winner of these two approaches depends on the en-
vironment parameters and data characteristics. Therefore, we
propose a cost model that can choose the best approach at
runtime. We also propose an iterative refinement component

that iteratively refines the diverse result set returned by the
diversification approach and guarantees a 2-approximate so-
lution when converses. Our iterative refinement component is
useful when we have limited resources (e.g. limited memory,
small number of nodes).

Our discussion considered diversification on a static dataset;
it is an interesting open problem whether we can iteratively
identify a good quality diversified answer if the dataset
changes over time (i.e., a new element is added to D or an
element is deleted). For further future work, we are planning
to add diversification on the Asterix platform (both as an
extension of AQL and on top of the Hyracks engine) [4].

REFERENCES

[1] Tiny image dataset, http://horatio.cs.nyu.edu/mit/tiny/data/index.html.
[2] Twitter, https://twitter.com/.
[3] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying

search results. In Proc. ACM WSDM, 2009.
[4] A. Behm, V. R. Borkar, M. J. Carey, R. Grover, C. Li, N. Onose,

R. Vernica, A. Deutsch, Y. Papakonstantinou, and V. J. Tsotras. Asterix:
towards a scalable, semistructured data platform for evolving-world
models. Distributed and Parallel Databases, 29(3), 2011.

[5] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian.
A comparison of join algorithms for log processing in mapreduce. In
SIGMOD, 2010.

[6] G. Capannini, F. M. Nardini, R. Perego, and F. Silvestri. Efficient
diversification of web search results. VLDB, 4(7), 2011.

[7] J. Carbonell and J. Goldstein. The use of mmr, diversity-based reranking
for reordering documents and producing summaries. In SIGIR, 1998.

[8] C. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkan,
S. Büttcher, and I. MacKinnon. Novelty and diversity in information
retrieval evaluation. In SIGIR, 2008.

[9] R. L. F. Cordeiro, C. T. Junior, A. J. M. Traina, J. López, U. Kang,
and C. Faloutsos. Clustering very large multi-dimensional datasets with
mapreduce. In KDD, 2011.

[10] M. Coyle and B. Smyth. On the importance of being diverse. In IIP.
2005.

[11] V. Dang and W. B. Croft. Diversity by proportionality: an election-based
approach to search result diversification. In SIGIR, 2012.

[12] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. In OSDI. 2004.

[13] E. Demidova, P. Fankhauser, X. Zhou, and W. Nejdl. Divq: Diversifi-
cation for keyword search over structured databases. In SIGIR, 2010.

[14] M. Drosou and E. Pitoura. Disc diversity: result diversification based
on dissimilarity and coverage. VLDB, 6(1), 2012.

[15] A. Ene, S. Im, and B. Moseley. Fast clustering using mapreduce. In
SIGKDD, 2011.

[16] S. Gollapudi and A. Sharma. An axiomatic approach for result
diversification. In WWW, 2009.

[17] Z. Liu, P. Sun, and Y. Chen. Structured search result differentiation. In
PVLDB, 2009.

[18] F. Radlinski and S. Dumais. Improving personalized web search using
result diversification. In SIGIR, 2006.

[19] D. Rafiei, K. Bharat, and A. Shukla. Diversifying web search results.
In WWW, 2010.

[20] A. Rasmussen, M. Conley, R. Kapoor, V. T. Lam, G. Porter, and
A. Vahdat. ThemisMR: An I/O-Efficient MapReduce. Technical Report
CS2012-0983, UCSD, 2012.

[21] R. H. van Leuken, L. Garcia, X. Olivares, and R. van Zwol. Visual
diversification of image search results. In WWW, 2009.

[22] E. Vee, U. Srivastava, J. Shanmugasundaram, P. Bhat, and S. Amer-
Yahia. Efficient computation of diverse query results. In ICDE, 2008.

[23] M. R. Vieira, H. L. Razente, M. C. N. Barioni, M. Hadjieleftheriou,
D. Srivastava, C. Traina, and V. J. Tsotras. On query result diversifica-
tion. In ICDE, 2011.

[24] C. Yu, L. Lakshmanan, and S. Amer-Yahia. It takes variety to make a
world: diversification in recommender systems. In EDBT, 2009.

[25] C. N. Ziegler, S. M. Mcnee, J. A. Konstan, and G. Lausen. Improving
recommendation lists through topic diversification. In WWW, 2005.

